var tipuesearch = {"pages": [{"loc":"http://hexapdf.gettalong.org/contributing.html","title":"Contributing","tags":"","text":" Contributing Contributing You are welcome to contribute to HexaPDF. Please note that HexaPDF is licensed under the GNU Affero General Public License version 3 and only code licensed as such can be included. Before you contribute please sign the individual contributor license agreement or entity contributor license agreement (for companies and other organizations) and email the signed document to t_leitner@gmx.at. This is needed due to HexaPDF also being available under a commercial license. "},{"loc":"http://hexapdf.gettalong.org/documentation/basics/analysing-pdfs.html","title":"Analysing PDFs ","tags":"","text":" Analysing PDFs This how-to guide shows how to use the hexapdf inspect command to analyse PDF files. How hexapdf inspect Works The hexapdf command line tool comes with a variety of sub-commands, one of them being the inspect command. This command is designed to allow its user to inspect and analyse a PDF file. The default mode is the interactive mode which is used when no command line arguments besides the PDF file are given. The interactive mode loads the PDF file and allows running one or more commands against it which is useful if the PDF file in question is huge. If additional arguments are provided on the command line, they are interpreted as interactive mode commands and executed. Let’s see those two ways of running hexapdf inspect in action: First we invoke the interactive mode and run three commands: h for showing the help, pages for displaying all pages and quit for quitting the interactive mode. Then we use command line arguments to run the same three commands (although quit wouldn’t be necessary). Note how we have to add a semicolon (escaped because otherwise it would be interpreted by the shell) after the pages command as command separator because otherwise it would use q as argument. That’s all the needed basics, let’s dive into various usage scenarios and explore the inspect command’s functionality. Traversing the PDF Tree Structure The key topic on PDF’s document structure explains the main structures used in PDF files. Basic knowledge of the places where certain information can be found is useful when analysing PDF files. The trailer, object, catalog and stream commands can help you navigate through this tree structure by showing the objects in question. Let’s see them in action: The trailer or t command shows the trailer dictionary. This dictionary may have an associated object identifier but since that is not always the case this special command is available. Interesting objects in the trailer dictionary are the /Info dictionary with basic meta data, the /Encryption dictionary with encryption information and the catalog dictionary under the /Root key containing the main PDF objects. Next we use the short form of the object command by just providing the object number referenced in the /Root entry. This will show us the catalog dictionary. We then use the catalog command to show the same object. So if you want to start at the catalog, its faster to use the provided catalog command. Finally we navigate through the page tree, which only contains one page, and then show the contents of the page - more on that below. The used sample PDF is very simple, in normal PDFs the catalog dictionary contains many more keys for various things like annotations or form fields. Another way to view the tree structure of a PDF is to use the recursive command. This command will not only show the requested object but also all objects referenced from it. Note that this will often show you the whole document tree when one page is referenced since page nodes have a reference to their parent. See Comparing PDF Files below for details. Analysing Pages In the last section you got a glimpse at inspecting pages, by navigating from the catalog dictionary. Since inspecting pages is often necessary the special pages command exists. It will display all page object identifiers in the correct order, together with the object identifiers for their content streams: In the example you can see that the PDF file has one page and that the page has one content stream. Using two object commands at once we show the respective objects. From the page object we see that the page has size A4 (the /MediaBox key and knowing that the numbers represent PDF points with 72 points per inch) and that it references (but may not actually use) one font (in the /Resources → /Font dictionary). The stream object itself is rather plain, the interesting part is the stream contents. A page’s content stream is written with the same syntax as a PDF file and contains the render instructions for the viewer. Since we use a very simple PDF as example (see the tutorial “Creating a PDF Document from Scratch” for how it was created), deciphering the instructions is not that hard: The first line selects a font from the resource dictionary and sets the font size to 50 points. The second line sets the “text color” (actually the fill color) to an RGB value of (0, 128, 255). The next four lines draw the text “Hello World” at the location (150, 396). Page objects often contain much more information, for example references to image resources, annotations or form fields. Searching for Data Sometimes you need to find an object with some specific data in it. For example, when an error message provides the name of a dictionary key or (part of) a value. Or when you want to find all objects referencing a specific indirect object. In such cases the search command comes in handy: It searches through all indirect objects and prints those matching the given argument (a regular expression). Here is an example: First we search for occurrences of “hexa”, finding the information dictionary where the search string appears under the /Producer key. Then we search for all references to the indirect object (2,0) by using the search string \\b2 0 R\\b (in this case it is important to use the \\b anchors for word boundaries). This results in two objects being shown, the catalog dictionary and the dictionary of the only page, because the object (2,0) refers to the root of the page tree. Comparing PDF File Structure Comparing the structures of two PDF files allows you to analyse “behind the scenes” changes done by a program. If you want to compare two PDF files visually, i.e. the appearance of the page content, we recommend using a tool like DiffPDF. To compare PDF structures use the recursive command to output the whole structure of the PDFs in question and then compare the output. By using the process substitution feature of the shell you don’t even need to create temporary files. Here is a simple example showing the difference between the hello-world.pdf we have used throughout this guide and the optimized version: First we produce the optimized version using the hexapdf optimize command which compresses the PDF down to about 50% of the original file size. Then we use the recursive command in hexapdf inspect’s command line mode for hello-world.pdf and hello-world-opt.pdf and use their output directly with vimdiff to show the differences. There are only three differences shown: The second part of the /ID key changed. This is expected as this part should always change when an existing file is modified. The /ModDate field also changed to reflect the date of the change. And although the file is smaller now it contains two more objects: one cross-reference stream and one object stream. These stream objects are never referenced from the main structure since they only provide a different way of storing data in the PDF file. Therefore they also don’t appear in the recursive output. If the PDF file was created by another program and not HexaPDF, the /Producer line would also have changed. The meaning of this is that nothing essential really changed when the PDF file was optimized, which was expected. If you try this with bigger files and ones not created with HexaPDF, the output will probably show many more changes because HexaPDF also removes unneeded key-value pairs of dictionaries. "},{"loc":"http://hexapdf.gettalong.org/documentation/basics/document-structure.html","title":"Document Structure ","tags":"","text":" File TrailerDocument CatalogPage TreePage PDF Document Structure The PDF specification defines a single entry point into the document structure, the file trailer dictionary, from which all other objects are referenced (n.b.: It is possible to store objects in a PDF file without any reference to them. However, no standard PDF reader would be able to use them). This means that the file trailer can be thought of as the root of a tree of PDF objects. Although HexaPDF provides abstractions and convenience methods for working with the most important PDF objects, basic knowledge of the structure of a PDF file helps a lot. For in-depth information or for information about parts that are not covered, please consult the relevant parts of the PDF specification. File Trailer The file trailer dictionary (implemented by HexaPDF::Type::Trailer) is not really useful for the library user but for the PDF library itself because it contains all the information to properly parse a PDF file, for example, encryption information. Additionally, it provides access to the document catalog via the /Root key and to the information dictionary via the /Info key. If you need to access it, use HexaPDF::Document#trailer. Document Catalog Although the file trailer provides the entry point to all objects, the document catalog (see HexaPDF::Type::Catalog) is the real root of the document tree. It contains references to all the important parts of a PDF file, for example, the page tree, the objects for interactive form support and the outline. Additionally, it can be used to specify how the PDF document should be displayed
through the keys /ViewerPreferences, /PageLayout and /PageMode. The document catalog can be accessed via HexaPDF::Document#catalog. Page Tree The page tree is a tree-like object structure that contains references to all the pages of a PDF document. The PDF specification could have used a simple array with references to the pages instead of the page tree. However, when a PDF document contains many pages and is viewed on a device with limited memory, a tree structure is better suited. Since the object structure contains several redundant fields to aid in quickly getting the right page object and since these fields need to be in sync, it is not advised to manually alter the structure by inserting or deleting pages. HexaPDF can recover from such modifications but only if explicitly told so through its validation feature. Because of this complexity the class HexaPDF::Type::PageTreeNode which implements nodes of the tree provides all the necessary convenience methods for adding, retrieving and deleting pages as well as getting the zero-based index of a page. To make it still easier to work with pages, HexaPDF provides an additional convenience wrapper HexaPDF::Document::Pages that can be accessed via HexaPDF::Document#pages. This wrapper allows you to use standard methods names like #add, #delete and #[] when working with pages. If you still want to access the page tree itself, use HexaPDF::Document::Pages#root. Page For each page in a PDF document exists one page object that holds all the needed information for displaying that page. The most important information is stored in the following keys: Media box (key /MediaBox) Defines the size of the physical medium on which the page is to be printed. This key is required and HexaPDF sets this key when creating a new page, defaulting to A4. Crop box (key /CropBox) Defines the region to which the contents of the page should be clipped when viewed or printed. This key is optional and if not set defaults to the value of the media box. Note, however, that this key is used (by HexaPDF and other PDF libraries, viewers, …) to determine the actual page size! Content streams (key /Contents) Holds references to one or more content streams that define the contents of page. Ressource dictionary (key /Ressources) Contains reference to ressources that may be used by the page, like fonts or images. There are many other keys for specifying things like page transitions, annotations or actions. Page pbjects are represented by HexaPDF::Type::Page. This class provides all the necessary convenience methods to work with pages, for example: #canvas Gives you access to a HexaPDF::Content::Canvas object for drawing on the page. You could manually assemble the content streams but this is error prone and very tedious - better rely on the canvas object. #orientation and #rotation Use these methods to retrieve the page orientation and to rotate a page. #box Allows you to view or change the various page boxes like the crop box. #each_annotation Iterates over all annotations of the page. It is also possible to flatten one or more annotations. To access an existing page object you can use HexaPDF::Document::Pages#[] with a zero-based index; to add a new one use HexaPDF::Document::Pages#add. "},{"loc":"http://hexapdf.gettalong.org/documentation/basics/index.html","title":"Introduction","tags":"","text":" About PDFHexaPDF API DesignGeneral Usage Pattern Introduction PDF files are ubiquitous in today’s digital world and HexaPDF provides easy but fully-featured access to all those PDF files. The only thing HexaPDF won’t implement is rendering of PDF documents. About PDF PDF, the Portable Document Format, is a file format created by Adobe for representing digital documents independently from applications, operating systems or hardware. It is the defacto standard for digital documents and for their interchange. It can not only contain text and graphics but also annotations, links, form fields, layers, rich media like video and many more things. While the PDF specification has started out as a propriertary, though open, document format at Adobe, the PDF 1.7 specification became an ISO standard (32000-1:2008) in 2008. It then took nine years for the next version of the specification, PDF 2.0, to get published in 2017. Because the original ISO standard was nearly identical to the then already publicly available Adobe PDF 1.7 specification, it is one of the few ISO specifications that is freely available to the public at Adobe’s website. While it was not publicly available from the beginning, the PDF Association has managed to make the PDF 2.0 specification freely available via sponsors. Although it is more evolution than revolution, it is better to get it while it is easily available since it has better and more detailed explanations for a few sections and fixes and corrections for previously underspecified functionality. I suggest getting it for first-hand knowledge about PDF topics. You will find that the API documentation has many references to applicable sections of the PDF 2.0 specification. So having the specification at hand will allow you dive deeper into a certain topic. HexaPDF API Design HexaPDF was designed with ease of use and performance in mind. To this end the API follows some guidelines: To use HexaPDF you only need to require 'hexapdf'. All other parts of HexaPDF are automatically loaded when needed to avoid unnecessary resource usage. Everything should be accessible through methods once the main HexaPDF::Document (or HexaPDF::Composer) instance is created. This especially means that you don’t need to remember a multitude of class names. There is a low-level interface which allows direct access to PDF internals. However, you will only rarely use that interface since the high-level interface is much more convenient. The low-level interface is there for cases where some PDF feature is not yet implemented in the high-level HexaPDF interface or when you need more control over PDF structures. The main PDF data type is the dictionary (hash) which is used to implement the various PDF dictionary types, like the page object. HexaPDF implements those PDF types by subclassing the HexaPDF::Dictionary class. However, even if a PDF dictionary type is not yet supported by HexaPDF through a high-level interface, you can work with it through the standard dictionary interface. The high-level interface is usually implemented directly on the class implementing the PDF type, for example HexaPDF::Type::Page or HexaPDF::Type::Outline. If some PDF functionality can’t be implemented on a concrete PDF dictionary type, a helper class is created and made accessible on the main document class, for example HexaPDF::Document::Destinations via HexaPDF::Document#destinations. It is possible to use the low-level interface to directly manipulate PDF structures like the page tree. However, when available it is advised to use the high-level interface to ensure the validity of the created PDF structures as some of them have various complex requirements. The base PDF object classes HexaPDF::Object, HexaPDF::PDFArray and HexaPDF::Dictionary as well as the implemented PDF dictionary types contain validation routines to ensure the underlying PDF structures are valid. Validation is automatically done by default before writing a PDF document, see below for more information. Apart from these guidelines concerning the API care has been taken to make sure that HexaPDF performs well and doesn’t use much memory. Most parts of HexaPDF are therefore already very optimized and various benchmarks ensure that HexaPDF gets still faster over time. The library is also thoroughly tested with 100% code coverage. General Usage Pattern As stated above you will only need to remember the class name HexaPDF::Document for creating a new document or loading an existing one: doc = HexaPDF::Document.new # or doc = HexaPDF::Document.open(pdf_file) You might optionally set some configuration options when instantiating the main class or later via the HexaPDF::Document#config method. The configuration options allow you to fine tune internal behaviour to your liking. For example, by default HexaPDF is quite forgiving when it comes to corrupt or invalid PDF files and can handle or recover from many. This can be changed by changing the appropriate configuration options like parser.on_correctable_error. Next you work with the document: add, delete or change pages, handle annotations, fill out or create interactive forms and much more. The final step is to write out the document: doc.write('output.pdf', optimize: true) Optimizing the resulting file is optional but highly recommended to produce quite a bit smaller PDF files. The default optimization should be fine for most cases. However, if you need more control, you can invoke the task HexaPDF::Task::Optimize yourself before writing out the document. Additionally, before writing out the document, the validation routine HexaPDF::Document#validate is called to validate and possibly auto-correct problems. It is advised not to disable it. Un-correctable validation problems lead to an exception. If you want to handle this part yourself, e.g. by customizing your reaction to validation problems, you would pass validate: false to HexaPDF::Document#write and invoke #validate before writing. The smallest HexaPDF application which writes out a minimal PDF is: HexaPDF::Document.new.write('output.pdf') HexaPDF doesn’t automatically add any content to a newly created document, not even a page. However, if you look at the resulting PDF you will see that it has a single, blank page. This is because for a PDF to valid it needs at least one page and the validation routine ensure that. "},{"loc":"http://hexapdf.gettalong.org/documentation/basics/pdf-object-representation.html","title":"PDF Object Representation ","tags":"","text":" Basic Object TypesDictionary TypesMapping Dictionary Types to Classes
PDF Objects A PDF file essentially consists of PDF objects in serialized form; the additional information in the file is just needed to locate and load these objects. These PDF objects define everything, from the meta data needed for a page to how certain parts of a page are defined as form fields. Basic Object Types The PDF specification defines several basic object types and most of them map directly to native Ruby classes: Booleans Represented by true and false. Numerics Integers like 123 and floats like 123.45. Strings Represented by Ruby’s String class and the special HexaPDF::DictionaryFields::PDFByteString class. Strings can be pure ASCII strings, Unicode strings or binary strings. There are two serialization formats: One uses parentheses, e.g. (Test), the other angle brackets with hex-encoding, like <54657374>. Names Work like symbols in Ruby and are therefore mapped to them. PDF names are serialized by prefixing a slash to the name, e.g. /Name. Arrays Represented by Array or HexaPDF::PDFArray and serialized by using brackets around the values, e.g. [123 (Test) /Name]. The HexaPDF::PDFArray class provides, among other things, automatic dereferencing of values (see below). Dictionaries Represented by Hash or HexaPDF::Dictionary but can only have name objects as keys. Serialization is done using double angle brackets where each key is followed by its value, e.g. <</Key (Value) /AnotherKey 12345>>. HexaPDF uses HexaPDF::Dictionary instead of plain hashes where possible. The reason is that the dictionary class provides various methods that allow for much more convenient use. For example, accessing a value automatically dereferences it so that not the reference itself is returned, but the referenced indirect object (see below). Null Represented by nil and serialized as null. Streams A sequence of potentially unlimited bytes. Represented by the HexaPDF::Stream class and serialized as a dictionary followed by stream\\n...stream bytes...\\nendstream. A stream is always an indirect object (see below). Since the stream data can amount to many mebibytes, the stream data itself is lazily loaded on first access. Indirect objects An object of any of the above types that is additionally assigned an object identifier consisting of an object number (a positive integer) and a generation number (a non-negative integer). Represented by the HexaPDF::Object class and serialized by putting the object between OID GEN obj and endobj, like this 4 0 obj (SomeObject) endobj. Can be referenced in serialized form from another object like this: 4 0 R. Indirect objects are special in that they don’t define a separate type but allow an object of any other type to be referenced. This reference mechanism allows HexaPDF to provide lazy loading of indirect objects, e.g. only those indirect objects that are actually accessed are loaded. Sometimes a direct object is also represented by a subclass of HexaPDF::Object (e.g. to work with the object using convenience methods). In such cases the object number 0 is used to indicate that the object is a direct object. Use HexaPDF::Object#indirect? to determine whether an object direct or indirect. Since most of the PDF object types map perfectly to Ruby classes, working with PDF objects is very easy because you don’t need to do anything special in nearly all cases. As an example, the following code creates a new PDF document, manually assembles a page dictionary and then adds it to the document’s page tree: require 'hexapdf' doc = HexaPDF::Document.new page = doc.add({Type: :Page, MediaBox: [0, 0, 100, 100]}) page.contents = \"0 0 m 100 100 l S\" doc.pages << page doc.write(\"sample.pdf\") Note that the HexaPDF::Document#add call actually returns a HexaPDF::Type::Page object and not a simple dictionary, allowing the use of its #contents method. See below for details. Dictionary Types While specifying an object as indirect object gives you access to it from anywhere in the PDF file, the meaning of this indirect object may not be apparent. This is where the dictionary object type comes into play. The PDF specification uses dictionary objects to describe various dictionary types, like pages, fonts or annotations. It defines each key of such a dictionary type, together with additional information like the allowed object types of the value, possible default value, earliest PDF version that key is available and, naturally, a description These dictionary types are implemented as subclasses of HexaPDF::Dictionary and use HexaPDF::Dictionary::define_field to define the fields described in the PDF specification together with the mentioned meta data about them. This meta data allows HexaPDF to do things like validating values and mapping objects to more specific classes (see the next section). Mapping Dictionary Types to Classes Most of the dictionary types have a special /Type key with which an object can be recognized. For example, the main PDF object, the catalog, has the type /Catalog. While many dictionary types require the /Type key to be present, sometimes it is optional. And there are also dictionary types that don’t have a /Type key at all. In such cases the dictionary type can be inferred via the object from which it is referenced. For example, the viewer preferences type doesn’t have a /Type key but because it is referenced from the document catalog via the /ViewerPreferences key we know how to interpret it. This allows HexaPDF to provide an automatic mapping of objects to more specific classes! For example, a page object would normally be represented by HexaPDF::Dictionary. However, since there is a more specific subclass HexaPDF::Type::Page registered for it, this subclass is used. Internally, this is made possible by HexaPDF::Object not actually storing the (indirect) object’s data but just a HexaPDF::PDFData object that holds everything related to a PDF object. So it doesn’t matter whether a HexaPDF::Dictionary or a HexaPDF::Type::Page object is used as wrapper as long as they use the same HexaPDF::PDFData object. This increases memory usage but the gains are worth it. The automatic mapping happens in two places: HexaPDF::Document#wrap Whenever an object is loaded from a PDF or manually added through HexaPDF::Document#add, the #wrap method is called. This method contains the logic to map a hash to a concrete dictionary type class, mainly based on the contents of the hash. HexaPDF::Dictionary#[] The only required meta data item of a dictionary field definition is the type of the field. When the #[] method is used to retrieve a value, this type information is used to wrap the value in the correct dictionary class. Internally, this is done by the HexaPDF::DictionaryFields::DictionaryConverter module. How the mapping from dictionary object to concrete implementation class is done can be configured via the global configuration object (see HexaPDF::GlobalConfiguration). The default configuration uses all the classes shipped with HexaPDF. However, you can easily replace a class or add a new mapping by changing the configuration. "},{"loc":"http://hexapdf.gettalong.org/documentation/benchmarks/index.html","title":"Benchmarks","tags":"","text":" Benchmarks Here you will find various benchmarks of HexaPDF compared to other applications and libraries. The benchmark data includes the execution performance as well as the memory use and resulting file sizes. The benchmark scripts and supporting files can be found in the benchmark/ directory of the HexaPDF distribution. "},{"loc":"http://hexapdf.gettalong.org/documentation/changelog.html","title":"Changelog","tags":"","text":" 0.37.2 - 2024-02-27 Fixed Type of /TransformParams field in signature reference dictionary HexaPDF::Type::Page#box to intersect the requested box with the media box Validation of HexaPDF::Type::Annotation to resolve PDF reference before access HexaPDF::Type::Page#flatten_annotations to work in case of duplicate annotations HexaPDF::Type::AcroForm::Form#each_field to gracefully handle null values HexaPDF::Type::AcroForm::AppearanceGenerator to take an appearance string set on a widget instead of a field into account HexaPDF::Type::AcroForm::ChoiceField to take PDFs where the /Opt key is set on the widgets into account 0.37.1 - 2024-02-05 Fixed Validation of annotation dictionaries having an empty appearance dictionary 0.37.0 - 2024-01-29 Added HexaPDF::Document::Metadata for working with metadata (reading the info dictionary and writing it as well as the XMP metadata stream) Changed Minimum Ruby version to be 2.7 Fixed HexaPDF::FiberDoubleForString#length to not assume a binary string 0.36.0 - 2024-01-20 Added HexaPDF::Layout::ContainerBox for grouping child boxes together Changed HexaPDF::Layout::Frame::FitResult#draw to allow drawing at an offset HexaPDF::Layout::Box#fit to delegate the actual content fitting to the #fit_content method HexaPDF::Document::Layout#box to allow using the block as drawing block for the base box class Fixed HexaPDF::Type::FontSimple#to_utf8 to work in case the font’s encoding cannot be retrieved 0.35.1 - 2024-01-11 Added HexaPDF::Utils module functions for float comparisons and using them instead of the geom2d ones Changed Pre-defined paper sizes of the ISO A, B and C series to be more precise Fixed HexaPDF::Layout::Box#fit to use float comparison HexaPDF::Type::IconFit to use correct superclass 0.35.0 - 2024-01-06 Added Command ‘psd’ for CLI hexapdf inspect to show a decoded content stream Style property ‘mask_mode’ for more control over the region that gets removed from a frame after placing a box Style property ‘valign’ for vertically centering a box in a frame HexaPDF::Content::Canvas#form for creating reusable Form XObjects Method #valid? to all Glyph classes HexaPDF::Font::InvalidGlyph#control_char? for detecting invalid glyphs that represent a control character (like a newline) HexaPDF::Font::Type1Wrapper#decode_codepoint and HexaPDF::Font::TrueTypeWrapper#decode_codepoint for decoding a single
Unicode codepoint into a glyph HexaPDF::Layout::TextFragment::create_with_fallback_glyphs for creating an array of text fragments with support for fallback glyphs Configuration option ‘font.on_invalid_glyph’ for use together with the new method for creating text fragments with fallback glyphs Configuration option ‘font.fallback’ which is used by the default implementation of ‘font.on_invalid_glyph’ HexaPDF::Document::Layout#text_fragments for creating text fragments with support for fallback glyphs via ‘font.on_invalid_glyph’ HexaPDF::Content::CanvasComposer for using high-level layout functionality on a single canvas HexaPDF::Content::Canvas#composer for easily creating a canvas composer HexaPDF::Font::TrueTypeWrapper#bold? and HexaPDF::Font::Type1Wrapper#bold? for determining whether a font is bold HexaPDF::Font::TrueTypeWrapper#italic? and HexaPDF::Font::Type1Wrapper#italic? for determining whether a font is italic HexaPDF::Encryption::StandardSecurityHandler#decryption_password_type for information on the type of password used for decryption Changed Breaking change: Style property ‘align’ is now called ‘text_align’ and ‘valign’ is ‘text_valign’ Breaking change: Style property ‘position’ now takes the absolute position directly as value instead of in the ‘position_hint’ property Breaking change: Style property ‘position_hint’ is now called ‘align’ Breaking change: Glyph objects now take the font wrapper instead of the font on creation Breaking change: The item marker type of a HexaPDF::Layout::ListBox item is now set via #marker_type instead of #item_type HexaPDF::Object#validate to catch exceptions and provided an appropriate validation message Fixed HexaPDF::Layout::ColumnBox#fit to correctly take initial height into account HexaPDF::Layout::ColumnBox#fit to ensure correct results in case the requested dimensions are larger than the current region HexaPDF::Document::Layout#formatted_text_box to correctly handle properties HexaPDF::Layout::Frame#fit to raise an error if an invalid value for the style property ‘position’ is used Validation of PDF arrays and dictionaries by making sure only processed values are used 0.34.1 - 2023-11-01 Added Setting of /SMask key in graphics state parameters operator Fixed HexaPDF::Composer#page_style to set a page style when no attributes are given but a block is HexaPDF::Type::Page#each_annotation and HexaPDF::Type::Page#flatten_annotations to process certain invalid /Annot keys without errors 0.34.0 - 2023-10-22 Added Support for optional content groups (layers) Support for reference XObjects Basic support for group XObjects HexaPDF::Layout::Style#fill_horizontal for allowing a text fragment to fill the remaining space of line HexaPDF::Layout::TextFragment#text and HexaPDF::Layout::TextBox#text for retrieving the text represented by the stored items HexaPDF::Content::Canvas#pos for retrieving untransformed positions HexaPDF::Type::CIDFont::CIDSystemInfo type class Changed HexaPDF::Composer#draw_box to return the last drawn box HexaPDF::Layout::Style::LinkLayer to support arbitrary actions HexaPDF::Layout::Frame::new (and adapted other layout classes) to accept a context argument (a page or Form XObject instance) HexaPDF::Layout::ListBox to use its ‘fill_color’ style property for the item marker color HexaPDF::Layout::Frame::FitResult#draw to use optional content groups for debug output Fixed HexaPDF::Document::Pages#add_labelling_range to add a correct entry for the default range starting at page 1 HexaPDF::Type::Page#flatten_annotations to correctly handle scaled appearances Using an unknown style name in [HexaPDF:Document::Layout] method by providing a useful error message HexaPDF::Layout::Box::new to ensure that the properties attribute is always a hash HexaPDF::Layout::ListBox to work correctly if the marker height is larger than the item content height HexaPDF::Dictionary setting default values on wrong classes in certain situations 0.33.0 - 2023-08-02 Added HexaPDF::Layout::TableBox for rendering tables HexaPDF::Document::Layout#table_box for easier table box creation HexaPDF::Content::GraphicObject::EndpointArc#max_curves for setting the approximation accuracy HexaPDF::Importer::copy for completely copying (including referenced indirect objects) a single PDF object (which may be from the same document) HexaPDF::Layout::Style::Border#draw_on_bounds for drawing the border on the bounds instead of inside HexaPDF::MissingGlyphError for better error messages when a font is missing a glyph HexaPDF::Font::Type1Wrapper#custom_glyph and HexaPDF::Font::TrueTypeWrapper#custom_glyph for custom glyph creation HexaPDF::FiberDoubleForString to avoid creating real Fiber instances when not necessary Support for drawing Geom2D::Rectangle instances via the :geom2d graphic object Optional argument apply_first_text_indent to HexaPDF::Layout::TextLayouter#fit Changed HexaPDF::Layout::Frame to use more efficient Geom2D::Rectangle class Internal constant HexaPDF::Content::ColorSpace::CSS_COLOR_NAMES changed to HexaPDF::Content::ColorSpace::COLOR_NAMES Constructor of HexaPDF::Layout::PageStyle to allow setting next_style attribute The encryption dictionary is now validated before using it for decryption Changed encryption permissions to be compatible to PDF 2.0 by always activating the “extract content” permission Digital signature creation in case of signature widgets containing images to work around bug in Adobe Acrobat HexaPDF::Type::Page#each_annotation and HexaPDF::Type::Page#flatten_annotations to process certain invalid /Annot keys without errors Fixed Breaking change: HexaPDF::Object::make_direct now needs the document instance as second argument to correctly resolve references HexaPDF::Layout::ColumnBox, HexaPDF::Layout::ListBox and HexaPDF::Layout::ImageBox to correctly respond to #empty? HexaPDF::Layout::ColumnBox and HexaPDF::Layout::ListBox to take different final box positions into account HexaPDF::Content::Canvas#text to set the leading only when multiple lines are drawn HexaPDF::Layout::TextBox#split to use float comparison Validation of standard encryption dictionary to auto-correct invalid /U and /O fields in case they are padded with zeros HexaPDF::Document#wrap handling of sub-type mapping in case of missing type HexaPDF::Type::AcroForm::AppearanceGenerator to also take a text field widget’s width into account when auto-sizing HexaPDF::Layout::TextBox to correctly handle text indentation for split boxes 0.32.2 - 2023-05-06 Changed Cross-reference table reconstruction to be more relaxed concerning the endobj keyword Fixed HexaPDF::Type::ObjectStream to not compress any encryption dictionary instead of only the current one 0.32.1 - 2023-04-20 Added HexaPDF::Type::FontType0#font_descriptor and HexaPDF::Type::FontSimple#font_descriptor for easy access to the font descriptor Changed HexaPDF::Content::Canvas#color_from_specification to allow strings and color objects without a wrapping array Fixed AES 128bit encryption to include unnecessary field in encryption dictionary to work around buggy PDF libraries HexaPDF::Layout::Style::LinkLayer to correctly process the border color HexaPDF::Type::AcroForm::AppearanceGenerator to use fallback for font cap height value when necessary 0.32.0 - 2023-03-08 Added HexaPDF::Document::Layout#method_missing for more convenient box creation HexaPDF::Composer#method_missing for more convenient box drawing HexaPDF::Document::Layout#inline_box for easy creation of inline boxes HexaPDF::Type::OutlineItem#open? for getting the open state of an outline item Changed HexaPDF::Document::Layout#formatted_text_box to allow using and/or creating inline boxes Fixed Decryption of invalid files having empty strings or streams when using the AES algorithm HexaPDF::Type::Page#flatten_annotations to work for annotations having appearances with degenerate bounding boxes HexaPDF::Tokenizer#parse_literal_string to make sure enough bytes are in the buffer for correctly reading escape sequences HexaPDF::Layout::InlineBox to correctly work for all kinds of wrapped boxes 0.31.0 - 2023-02-22 Added HexaPDF::Layout::PageStyle for collecting all styling information for pages HexaPDF::Composer#page_style for configuring different page styles Configuration option ‘filter.flate.on_error’ for handling potentially recoverable flate errors Changed Breaking change: HexaPDF::Composer uses page styles underneath Breaking change: Configuration options filter.flate_compression and filter.flate_memory are changed to filter.flate.compression and filter.flate.memory Breaking change: HexaPDF::Document#wrap handles cross-reference and object stream specially to avoid problems with invalid PDFs HexaPDF::Composer::new to allow skipping the initial page creation CLI command hexapdf info --check to process streams to reveal stream errors CLI commands to output the name of created PDF files in verbose mode Fixed Validation of document outline items in case the first or last item got deleted HexaPDF::Type::Page#perform_validation to set a /MediaBox for invalid pages that don’t have one Parsing of invalid flate encoded streams that can potentially be recovered 0.30.0 - 2023-02-13 Added HexaPDF::Document::Pages#create for creating a page object without adding it to the page tree Changed HexaPDF::Type::FontSimple#perform_validation to correct /Widths fields in case it has an invalid number of entries Fixed HexaPDF::DictionaryFields::DateConverter to handle invalid months, day, hour, minute and second values 0.29.0 - 2023-01-30 Added HexaPDF::DigitalSignature::Signing::SignedDataCreator for creating custom CMS signed data objects Changed Breaking change: Refactored digital signature support and moved all related code under the HexaPDF::DigitalSignature module Breaking change: New external signing mode without the need for creating the PKCS#7/CMS signed data object for HexaPDF::DigitalSignature::Signing::DefaultHandler Breaking change: Use value :pades instead of :etsi for
HexaPDF::DigitalSignature::Signing::DefaultHandler#signature_type HexaPDF::DigitalSignature::Signing::DefaultHandler to allow creating PAdES level B-B and B-T signatures HexaPDF::DigitalSignature::Signing::DefaultHandler to allow specifying the used digest algorithm HexaPDF::DigitalSignature::Signing::DefaultHandler to allow specifying a timestamp handler for including a timestamp token in the signature Moved setting of signature entries /Filter, /SubFilter and /M fields to the signing handlers Fixed HexaPDF::DictionaryFields::DateConverter to handle invalid timezone hour and minute values 0.28.0 - 2022-12-30 Added HexaPDF::Type::AcroForm::AppearanceGenerator#create_push_button_appearances to allow customizing the behaviour HexaPDF::Parser#linearized? for determining whether a document is linearized Information on linearization to hexapdf info output Support for AFNumber_Format Javascript method to the form field appearance generator Support for using fully embedded, simple TrueType fonts for drawing operations Changed Breaking change: HexaPDF::Revision#reset_objects has been removed Breaking change: Method signature of HexaPDF::Importer::for has been changed Breaking change: HexaPDF::Type::AcroForm::Field#each_widget now has the default value of the argument direct_only set to true instead of false HexaPDF::Revision#each_modified_object to allow deleting the modified objects from the active objects’ container HexaPDF::Revision#each_modified_object to allow ignoring added object and cross-reference stream objects HexaPDF::Revisions::from_io to merge the two revisions of a linearized PDF HexaPDF::Importer and HexaPDF::Document#import to make working with them easier by allowing the import of arbitrary objects HexaPDF::Type::AcroForm::Form#perform_validation to combine fields with the same name Fixed HexaPDF::Type::AcroForm::AppearanceGenerator#create_check_box_appearances to correctly handle a field value of nil Return value of #type method for all AcroForm field classes HexaPDF::Type::Page#flatten_annotations to work correctly in case no annotations are on the page HexaPDF::Type::AcroForm::ButtonField#create_appearances to avoid creating appearances in case of as-yet unresolved references to existing appearances HexaPDF::Type::AcroForm::TextField#create_appearances to avoid creating appearances in case of pre-existing ones HexaPDF::Tokenizer#parse_number to treat invalid indirect object references with an object number of 0 as null values HexaPDF::Type::AcroForm::AppearanceGenerator to handle empty appearance characteristics dictionary marker style strings Writing of encrypted files containing two or more revisions Generation of object streams to never allow storing the catalog object to avoid problems with certain viewers HexaPDF::Type::Outline#perform_validation to not show validation error when /Count is zero Writing of documents with two or more revisions in non-incremental mode when optimize: true is used and the original document used cross-reference tables HexaPDF::Type::AcroForm::AppearanceGenerator to take a widget’s rotation value into account HexaPDF::Type::Page#flatten_annotations to correctly flatten all annotations, including ones with custom rotations HexaPDF::Type::Page#rotate to also rotate annotations 0.27.0 - 2022-11-18 Added Support for timestamp signatures through the HexaPDF::Document::Signatures::TimestampHandler HexaPDF::Document::Destinations#resolve for resolving destination values HexaPDF::Document::Destinations::Destination#value to return the destination array Support for verifying document timestamp signatures HexaPDF::Document::Signatures::DefaultHandler#signature_size to support setting custom signature sizes HexaPDF::Document::Signatures::DefaultHandler#external_signing to support signing via custom mechanisms HexaPDF::Document::Signatures::embed_signature to enable asynchronous external signing Changed Breaking change: The crop box is now used instead of the media box in most cases to be in line with the specification HexaPDF::Document::Signatures::DefaultHandler to allow setting the used signature method Breaking change: HexaPDF::Document::Signatures::DefaultHandler#sign needs to accept the IO object and the byte range instead of just the data Breaking change: Enhanced support for outline items with new methods #level and #destination_page as well as changes to #add and #each_item Breaking change: Removed #filter_name and #sub_filter_name from HexaPDF::Document::Signatures::DefaultHandler HexaPDF::Type::Resources#perform_validation to not add a default procedure set since this feature is deprecated Fixed HexaPDF::Document::Destinations::Destination::new to also accept a hash HexaPDF::Type::Catalog auto-conversion of /Outlines to correct class HexaPDF::Type::AcroForm::Form#flatten to return the unflattened form fields instead of the widgets HexaPDF::Writer#write_incremental to set the /Version in the catalog dictionary when necessary HexaPDF::Importer#import to always return an imported object with the same class as the argument HexaPDF::Type::OutlineItem to always be an indirect object HexaPDF::Tokenizer#parse_number to handle references correctly in all cases HexaPDF::Type::Page#rotate to correctly flatten all page boxes HexaPDF::Document::Signatures#add to raise an error if the reserved space for the signature is not enough HexaPDF::Type::AcroForm::Form#perform_validation to fix broken /Parent entries and to remove invalid objects from the field hierarchy HexaPDF::Type::OutlineItem#perform_validation bug where a missing /Count key was deemed invalid HexaPDF::Revisions::from_io to use the correct /Prev offset when revisions have been merged Handling of indirect objects with invalid values for more situations 0.26.2 - 2022-10-22 Added Support for setting custom properties on HexaPDF::Layout::Box and HexaPDF::Layout::TextFragment Changed HexaPDF::Layout::Style::LinkLayer to use the ‘link’ custom box property if no target is set Fixed HexaPDF::Layout::Style::Layers to allow named layers without options HexaPDF::Revision#each_modified_object to not yield signature objects HexaPDF::Revision#each_modified_object to force comparison of direct objects HexaPDF::Type::ObjectStream to work for encrypted documents again 0.26.1 - 2022-10-14 Changed HexaPDF::Serializer to provide better error messages when encountering unserializable objects Fixed HexaPDF::Importer to correctly expose previously mapped objects 0.26.0 - 2022-10-14 Added Support for page labels HexaPDF::Type::MarkInformation Changed HexaPDF::Rectangle to recover from invalid values by defaulting to [0, 0, 0, 0] Fixed HexaPDF::DictionaryFields::PDFByteStringConverter to duplicate the string before conversion HexaPDF::Type::FileSpecification#path= to duplicate the given string value due to using it for two different fields 0.25.0 - 2022-10-02 Added Support for the document outline HexaPDF::Layout::Style#line_height for setting a custom line height independent of the font size HexaPDF::Document::Destinations#use_or_create as unified interface for using or creating destinations HexaPDF::Document::Destinations::Destination#valid? and class method for checking whether a destination array is valid Fixed Calculation of text related HexaPDF::Layout::Style values for Type3 fonts HexaPDF::Encryption::SecurityHandler#encrypt_string to either return a dupped or encrypted string HexaPDF::Layout::TextLayouter#fit to avoid infinite loop when encountering a non-zero width breakpoint penalty HexaPDF::Type::ObjectStream to parse the initial stream data right after initialization to avoid access errors HexaPDF::Revisions::from_io to merge a completely empty revision with just a /XRefStm pointing into the previous one with the latter HexaPDF::Revisions::from_io to handle the case of the configuration option ‘parser.try_xref_reconstruction’ being false 0.24.2 - 2022-08-31 Fixed HexaPDF::Importer to detect loops in a fully-loaded document HexaPDF::Type::PageTreeNode#perform_validation to only do the validation for the document’s root page tree node HexaPDF::Type::Page#perform_validation to only do the validation if the page is part of the document’s page tree Box layouting to take small floating point differences into account 0.24.1 - 2022-08-11 Added HexaPDF::TestUtils module that contains helper methods useful for testing various parts of HexaPDF Changed All applicable places to only load the current version of PDF objects, to avoid possible inconsistencies when working with files containing multiple revisions Fixed Parsing of streams with an invalid length value that led to a parsing error HexaPDF::Object#== to only allow comparing simple values to non-indirect objects and not also other HexaPDF::Object instances 0.24.0 - 2022-08-01 Added HexaPDF::Layout::ListBox for rendering ordered and unordered lists HexaPDF::Layout::ColumnBox for rendering content inside columns HexaPDF::Layout::BoxFitter for placing boxes into multiple frames New configuration option ‘debug’ for enabling debug output HexaPDF::Document::Pages#move for moving pages around the same document HexaPDF::Composer#box for drawing arbitrary, registered boxes HexaPDF::Layout::Box#split_box? for determining whether a box is a split box, i.e. the continuation of another box HexaPDF::Document::Layout::ChildrenCollector to provide an easy method for defining children boxes of a container box Changed Breaking change: Refactored HexaPDF::Layout::Frame and associated data structures so that the complete result of fitting a box is returned HexaPDF::Layout::Frame to use a better algorithm for trimming the shape HexaPDF::Layout::Frame::new to allow setting the initial shape Breaking change: Removed contour line from HexaPDF::Layout::Frame Breaking change: Changed positional arguments of HexaPDF::Layout::TextBox::new and HexaPDF::Layout::ImageBox::new to keyword arguments for a consistent box initialization interface HexaPDF::Layout::Box#split to provide a default implementation that is
useful for most subclasses Layout box implementations to provide a #supports_position_flow? method that indicates whether the box supports flowing its content around other content. hexapdf info --check to only check the current version of each object HexaPDF::Writer to make sure the producer information is written when writing the file incrementally Fixed HexaPDF::Layout::TextLayouter to freeze the new items when a text fragment needs to be split HexaPDF::Layout::TextLayouter to avoid the possible splitting of a text fragment if there would not be enough height left anyway HexaPDF::Layout::WidthFromPolygon to work correctly in case of very small floating point errors HexaPDF::Layout::TextFragment#inspect to work in case of interspersed numbers HexaPDF::Layout::TextBox#split to work for position :flow when box is wider than the initial available width HexaPDF::Layout::Frame#fit to create minimally sized mask rectangles HexaPDF::Content::GraphicObject::Geom2D to close the path when drawing polygons HexaPDF::Layout::WidthFromPolygon to work for all counterclockwise polygons HexaPDF::Type::PageTreeNode#move_page to work in case the parent node of the moved node doesn’t change HexaPDF::Type::PageTreeNode#move_page to use the correct target position when the moved node is before the target position HexaPDF::Document::Signatures#add to work in case the signature object is the last object written CLI command hexapdf inspect to show correct byte range of the last revision HexaPDF::Writer#write_incremental to only use a cross-reference stream if a revision directly used one and not through an /XRefStm entry HexaPDF::Encryption::FastARC4 to use RubyARC4 as fallback if OpenSSL has RC4 disabled HexaPDF::Font::Encoding::GlyphList to use binary reading to avoid problems on Windows HexaPDF::Document::Signatures#add to use binary writing to avoid problems on Windows 0.23.0 - 2022-05-26 Added HexaPDF::Composer#create_stamp for creating a form Xobject HexaPDF::Revision#reset_objects for deleting all live loaded and added objects Support for removing or flattening annotations to the hexapdf modify command Option to CLI command hexapdf form to allow generation of a template file Support for centering a floating box in HexaPDF::Layout::Frame HexaPDF::Type::Catalog#names for easier access to the name dictionary HexaPDF::Type::Names#destinations for easier access to the destinations name tree HexaPDF::Document::Destinations, accessible via HexaPDF::Document#destinations, as convenience interface for working with destination arrays Changed Breaking change: Refactored the HexaPDF::Document interface for working with objects and move parts into HexaPDF::Revisions Breaking change: HexaPDF::Layout::TextBox to use whole available width when aligning to the center or right Breaking change: HexaPDF::Layout::TextBox to use whole available height when vertically aligning to the center or bottom CLI command hexapdf inspect to show the type of revisions, as well as the number of objects per revision HexaPDF::Task::Optimize to allow skipping invalid content stream operations HexaPDF::Composer#image to allow using a form xobject in place of the image Fixed HexaPDF::Writer#write to write modified objects into the correct revision HexaPDF::Revisions::from_io to correctly handle hybrid-reference files HexaPDF::Writer to assign a valid object number to a created cross-reference stream in all cases HexaPDF::Type::AcroForm::TextField to validate the existence of a /MaxLen value for comb text fields HexaPDF::Type::AcroForm::TextField#field_value= to check for the existence of /MaxLen when setting a value for a comb text field HexaPDF::Type::AcroForm::TextField#field_value= to check the value against /MaxLen HexaPDF::Layout::TextLayouter#fit to not use style valign when doing variable width layouting HexaPDF::Utils::SortedTreeNode#find_entry to work in case of a node without a container name or kids key CLI command hexapdf form to allow setting array values when using a template CLI command hexapdf form to allow setting file select fields 0.22.0 - 2022-03-26 Added Support for writing images with an ICCBased color space Support for writing images with soft masks Changed CLI command hexapdf form to show a warning when working with a file containing an XFA form Fixed HexaPDF::Type::AcroForm::Form#field_by_name to work correctly when field name parts are UTF-16BE encoded hexapdf inspect command ‘revision’ to correctly detect the end of revisions HexaPDF::DictionaryFields::StringConverter to use correct method name HexaPDF::Document#config 0.21.1 - 2022-03-12 Fixed Handling of invalid AES encrypted files where the padding is missing 0.21.0 - 2022-03-04 Added HexaPDF::Parser#reconstructed? which returns true if the cross-reference table was reconstructed HexaPDF::Layout::Style::create for easier creation of style objects The ability to view revisions of a PDF document or extract a single revision via hexapdf inspect Changed Breaking change: Refactored HexaPDF::Composer for better and more consistent style support Breaking change: Arguments for configuration option ‘font.on_missing_glyph’ have changed to allow access to the document instance Fixed Setter for HexaPDF::Layout::Style#line_spacing to allow usage of numeric arguments Digital Signature validation for ‘adbe.pkcs7.detached’ certifiates in case no key usage was defined Removed caching of configuration ‘font.on_missing_glyph’ in font wrappers to avoid problems 0.20.4 - 2022-01-26 Fixed Regression when using Type1 font with different encodings 0.20.3 - 2022-01-24 Changed Appearance of signature field values when using the hexapdf form command Fixed Writing of encrypted PDF files in incremental node in case the encryption was changed HexaPDF::Type::Annotation#appearance to return correctly wrapped object in case of Form XObjects missing required data Decrypting of files with multiple revisions 0.20.2 - 2022-01-17 Fixed HexaPDF::Task::Optimize so that page resource pruning works for pages without XObjects 0.20.1 - 2022-01-05 Changed Refactored signature handlers, making #store_verification_callback a protected method Fixed HexaPDF::Task::Dereference to work for even very deeply nested structures 0.20.0 - 2021-12-30 Added Support for signing a PDF using a digital signature Support for reading and validating digital signatures Output info regarding digital signatures when using the hexapdf info command HexaPDF::Type::AcroForm::Form#create_signature_field for adding signature fields HexaPDF::Type::Annotation::AppearanceDictionary#set_appearance for setting the appearance stream HexaPDF::Type::Annotation#create_appearance for creating an empty appearance stream Changed Breaking change: Method signature of HexaPDF::Type::Annotation#appearance changed HexaPDF::Object#== to allow comparison to simple value if not indirect HexaPDF::Type::AcroForm::Form to use an empty array as default for the /Fields field HexaPDF::Type::ObjectStream to not store signature fields in object streams HexaPDF::Writer to return the last written cross-reference section HexaPDF::Type::AcroForm::Field#create_widget to automatically set the print flag and assign the page Fixed Incremental writing of files in cases where object streams were deleted (e.g. when using the optimize: true argument when writing) Comparison of non-indirect HexaPDF::Object instances with other HexaPDF::Object instances Deleting of objects via HexaPDF::Revision#delete to re-use the HexaPDF::PDFData object of the deleted object when using mark_as_free: true HexaPDF::Revision#each_modified_object to work correctly for dictionary objects even if a value is changed only by reading it 0.19.3 - 2021-12-14 Fixed Handling of invalid files where the “startxref” keyword and its value are on the same line 0.19.2 - 2021-12-14 Fixed Set the trailer’s ID field to an array of two empty strings when decrypting in case it is missing Incremental writing when one of the existing revisions contains a cross-reference stream 0.19.1 - 2021-12-12 Added HexaPDF::Type::FontType3#bounding_box to fix content stream processing error Fixed Calculation of scaled font size for HexaPDF::Content::GraphicsState and HexaPDF::Layout::Style when Type3 fonts are used 0.19.0 - 2021-11-24 Added Page resource pruning to the optimization task An option for page resources pruning to the optimization options of the hexapdf command Fixed Handling of invalid date strings with a minute time zone offset greater than 59 0.18.0 - 2021-11-04 Added HexaPDF::Content::ColorSpace::serialize_device_color for serialization of device colors in parts other than the canvas HexaPDF::Type::AcroForm::VariableTextField::create_appearance_string for centralized creation of appearance strings HexaPDF::Object::make_direct for making objects and all parts of them direct instead of indirect Changed HexaPDF::Type::AcroForm::VariableTextField::parse_appearance_string to also return the font color HexaPDF::Type::AcroForm::VariableTextField#set_default_appearance_string to allow specifying the font color HexaPDF::Type::AcroForm::Form methods to support new variable text field methods HexaPDF::Type::AcroForm::AppearanceGenerator to support the set font color when creating text field appearances Fixed Writing of existing, encrypted PDF files where parts of the encryption dictionary are indirect objects HexaPDF::Content::GraphicObject::EndpointArc to correctly determine the start and end points HexaPDF::Dictionary#perform_validation to correctly handle objects that should not be indirect objects 0.17.3 - 2021-10-31 Fixed Reconstruction of invalid PDF files where the PDF header is not at the start of the file Reconstruction of invalid PDF files where the first object is invalid 0.17.2 - 2021-10-26 Fixed Deployment of HexaPDF’s Rubygem 0.17.1 - 2021-10-21 Fixed Handling of files containing invalid UTF-16 strings 0.17.0 - 2021-10-21 Added CLI command hexapdf fonts for listing fonts of a PDF file HexaPDF::Layout::Style#background_alpha for
defining the opacity of the background HexaPDF::Type::Page#each_annotation for iterating over all annotations of a page Changed Breaking change: Handling of AcroForm check boxes to allow multiple widgets with different values CLI command hexapdf form to support new check box features HexaPDF::Content::Canvas#text to use the font size as leading if no leading has been set HexaPDF::Content::Canvas#line_with_rounded_corner to be a public method HexaPDF::Layout::Style::LineSpacing to allow using integers or floats as type argument to mean proportional line spacing HexaPDF::Type::AcroForm::VariableTextField#set_default_appearance_string to allow specifying font options AcroForm text field creation methods in HexaPDF::Type::AcroForm::Form to allow specifying font options Fixed HexaPDF::Type::AcroForm::Field#each_widget to also return widgets of other form fields that have the same name hexapdf form to allow filling in multiline and comb text fields hexapdf form to correctly work for PDF files containing null values in the list of annotations Handling of files that contain invalid default appearance strings HexaPDF::Type::AcroForm::TextField#field_value to allow setting a nil value for single line text fields HexaPDF::Content::GraphicObject::Arc to respect the value set by the #max_curves accessor 0.16.0 - 2021-09-28 Added Support for RGB color values of the form “RGB” in addition to “RRGGBB” and for CSS color module level 3 color names Conversion module for Integer fields to fix certain invalid PDF files 0.15.9 - 2021-09-04 Fixed Handling of files that contain stream length values that are indirect objects not referring to a number 0.15.8 - 2021-08-16 Fixed Regression when using -v with the hexapdf command line tool 0.15.7 - 2021-07-17 Fixed Infinite loop while parsing PDF array due to missing closing bracket Handling of invalid files with missing or corrupted trailer dictionary 0.15.6 - 2021-07-16 Fixed Handling of indirect objects with invalid values which are now treated as null objects 0.15.5 - 2021-07-06 Changed Refactored HexaPDF::Tokenizer#next_xref_entry and changed yielded value Fixed Handling of invalid cross-reference stream entries that ends with the sequence \\r\\r 0.15.4 - 2021-05-27 Fixed HexaPDF::Type::Annotation#appearance to handle cases where there is no valid appearance stream 0.15.3 - 2021-05-01 Fixed Handling of general (not document-level), unencrypted metadata streams 0.15.2 - 2021-05-01 Fixed Handling of unencrypted metadata streams 0.15.1 - 2021-04-15 Fixed Potential division by zero when calculating the scaling for XObjects Handling of XObjects with a width or height of zero when drawing on canvas 0.15.0 - 2021-04-12 Added HexaPDF::Type::Page#flatten_annotations for flattening the annotations of a page HexaPDF::Type::AcroForm::Form#flatten for flattening interactive forms HexaPDF::Revision#update for updating the stored wrapper class of a PDF object HexaPDF::Type::AcroForm::SignatureField for working with AcroForm signature fields Support for form field flattening to the hexapdf form CLI command Changed Breaking change: Overhauled the interface for accessing appearances of annotations to make it more convenient Validation of HexaPDF::Type::FontDescriptor to delete invalid /FontWeight value HexaPDF::MalformedPDFError#pos an accessor instead of a reader and update the exception message Configuration option ‘acro_form.fallback_font’ to allow a callable object for more advanced fallback font handling Fixed HexaPDF::Type::Annotations::Widget#background_color to correctly handle empty background color arrays HexaPDF::Type::AcroForm::Field#delete_widget to update the wrapper object stored in the document in case the widget is embedded Processing of invalid PDF files containing a space,CR,LF combination after the ‘stream’ keyword Cross-reference stream reconstruction with respect to detection of linearized files Detection of existing appearances for AcroForm push button fields when creating appearances 0.14.4 - 2021-02-27 Added Support for the Crypt filters Changed HexaPDF::MalformedPDFError to make the pos argument optional Fixed Handling of invalid floating point numbers NaN, Inf and -Inf when serializing Processing of invalid PDF files containing NaN and Inf instead of numbers Bug in Type1 font AFM parser that occured if the file doesn’t end with a new line character Cross-reference table reconstruction to handle the case of an entry specifying a non-existent indirect object Cross-reference table reconstruction to handle trailers specified by cross- reference streams Cross-reference table reconstruction to use the set security handle for decrypting indirect objects Parsing of cross-reference streams where data is missing 0.14.3 - 2021-02-16 Fixed Bug in HexaPDF::Font::TrueType::Subsetter#use_glyph which lead to corrupt text output HexaPDF::Serializer to handle infinite recursion problem Cross-reference table reconstruction to avoid an O(n^2) performance problem HexaPDF::Type::Resources validation to handle an invalid /ProcSet entry containing a single value instead of an array Processing of invalid PDF files missing a required value in appearance streams Processing of invalid empty arrays that should be rectangles by converting them to PDF null objects Processing of invalid PDF files containing indirect objects with offset 0 Processing of invalid PDF files containing a space/CR or space/LF combination after the ‘stream’ keyword 0.14.2 - 2021-01-22 Fixed HexaPDF::Font::TrueType::Subsetter#use_glyph to really avoid using subset glyph ID 41 ()) 0.14.1 - 2021-01-21 Changed Validation message when checking for allowed values to include the invalid object HexaPDF::FontLoader::FromFile to allow (re)using an existing font object HexaPDF::Importer internals to avoid problems with retained memory Fixed Parsing of invalid PDF files where whitespace is missing after the integer value of an indirect object HexaPDF::Dictionary so that adding new key-value pairs during validation is possible 0.14.0 - 2020-12-30 Added Support for creating AcroForm multiline text fields and their appearances Support for creating AcroForm comb text fields and their appearances Support for creating AcroForm password fields and their appearances Support for creating AcroForm file select fields and their appearances Support for creating AcroForm list box appearances HexaPDF::Type::AcroForm::ChoiceField#list_box_top_index and its setter method HexaPDF::Type::AcroForm::ChoiceField#update_widgets to create appearances if they don’t exist Methods for caching data to HexaPDF::Object Support for splitting by page size to CLI command hexapdf split Changed HexaPDF::Utils::ObjectHash#oids to be public instead of private Cross-reference table parsing to handle invalidly numbered main sections HexaPDF::Document#cache and HexaPDF::Object#cache to allow updating values for existing keys Appearance creation methods of AcroForm objects to allow forcing the creation of new appearances HexaPDF::Type::AcroForm::AppearanceGenerator#create_text_appearances to re-use existing form objects AcroForm field creation methods to allow specifying often used field properties Fixed Missing usage of :sort flag for AcroForm choice fields Setting the /I field for AcroForm list boxes with multiple selection HexaPDF::Layout::TextLayouter::SimpleLineWrapping to remove glue items (whitespace) before a hard line break Infinite loop when reconstructing the cross-reference table HexaPDF::Type::AcroForm::ChoiceField to support export values for option items AcroForm text field appearance creation to only create a new appearance if the field’s value has changed AcroForm choice field appearance creation to only create a new appearance if the involved dictionary fields’ values have changed HexaPDF::Type::AcroForm::ChoiceField#list_box_top_index= to raise an error if no option items are set HexaPDF::PDFArray#to_ary to return an array with preprocessed values HexaPDF::Type::Form#contents= to clear cached values to avoid returning e.g. an invalid canvas object later HexaPDF::Type::AcroForm::ButtonField#update_widgets to create appearances if they don’t exist 0.13.0 - 2020-11-15 Added Cross-reference table reconstruction for damaged PDFs, controllable via the new ‘parser.try_xref_reconstruction’ option Two new hexapdf inspect commands for showing page objects and page content streams by page number Flag --check to the CLI command hexapdf info for checking a file for parse and validation errors HexaPDF::Type::AcroForm::Field#embedded_widget? for checking if a widget is embedded in the field object HexaPDF::Type::AcroForm::Field#delete_widget for deleting a widget HexaPDF::PDFArray#delete for deleting an object from a PDF array HexaPDF::Type::Page#ancestor_nodes for retrieving all ancestor page tree nodes of a page HexaPDF::Type::PageTreeNode#move_page for moving a page to another index Changed Breaking change: Overhauled document/object validation interfaces and internals to be more similar and to allow for reporting of multiple validation problems Validation of TrueType fonts to ignore missing fields if the font name suggests that the font is one of the standard 14 PDF fonts Option -p of CLI command hexapdf image2pdf to also allow lowercase page size names Fixed Reporting of cross-reference section entry parsing error PDF version used by default for dictionary fields Error in CLI command hexapdf inspect when parsing an invalid object number Output of error messages in CLI command hexapdf inspect to go to $stderr Bug in HexaPDF::Type::AcroForm::TextField validation due to missing nil handling 0.12.3 - 2020-08-22 Changed Allow any object responding to #to_sym when setting a radio button value Fixed Error in the AcroForm appearance generator for text fields when the font is not found in the default resources Parsing of long numbers when reading a file from IO Usage of unsupported method for Ruby 2.4 so that all tests pass again 0.12.2 - 2020-08-17 Fixed Wrong origin for page
canvases when bottom left corner of media box doesn’t coincide with origin of coordinate system Wrong origin for Form XObject canvas when bottom left corner of bounding box doesn’t coincide with origin of coordinate system 0.12.1 - 2020-08-16 Added HexaPDF::Font::Encoding::Base#code for retrieving the code for a given glyph name Fixed HexaPDF::Font::Type1Wrapper#encode to correctly resolve the code for a glyph name 0.12.0 - 2020-08-12 Added Convenience methods for accessing field flags for HexaPDF::Type::AcroForm::Field HexaPDF::Type::AcroForm::TextField and HexaPDF::Type::AcroForm::VariableTextField for basic text field support HexaPDF::Type::AcroForm::ButtonField for push button, radio button and check box support HexaPDF::Type::AcroForm::ChoiceField for combo box and list box support HexaPDF::Type::AcroForm::AppearanceGenerator as central class for generating appearance streams for form fields Various convenience methods for HexaPDF::Type::AcroForm::Form Various convenience methods for HexaPDF::Type::AcroForm::Field Various convenience methods for HexaPDF::Type::Annotations::Widget HexaPDF::Type::Annotation::AppearanceDictionary HexaPDF::Document#acro_form and HexaPDF::Type::Catalog#acro_form convenience methods CLI command hexapdf form for listing fields of interactive forms and filling them out HexaPDF::Rectangle methods for setting the left, top, right, bottom, width and height Method #prenormalized_color to all color space implementations HexaPDF::Type::Font#font_wrapper for accessing an associated font wrapper instance HexaPDF::Type::FontType1#font_wrapper for providing a font wrapper for the standard PDF fonts HexaPDF::Type::Annotation::Border class HexaPDF::Content::ColorSpace::device_color_from_specification for easily getting a device color object HexaPDF::Content::ColorSpace::prenormalized_device_color for getting a device color object without normalizing values HexaPDF::Type::Annotation#appearance for returning the associated appearance dictionary HexaPDF::Type::Annotation#appearance? for checking whether an appearance for the annotation exists Configuration option ‘acro_form.create_appearance_streams’ for automatically creating appearance streams HexaPDF::Type::Resources methods #pattern and add_pattern Changed Deletion of pages to delete them from the document as well Refactored HexaPDF::Font::Type1Wrapper and HexaPDF::Font::TrueTypeWrapper and renamed #dict to #pdf_object Fall back to the Type1 font’s internal encoding when decoding a string All HexaPDF::Content::ColorSpace implementations to only normalize values when using the ::color method HexaPDF::Content::Parser#parse to also accept a block in place of a processor object HexaPDF::Type::AcroForm::Field#full_name to HexaPDF::Type::AcroForm::Field#full_field_name Moved HexaPDF::Content::Canvas#color_space_for_components to class method on HexaPDF::Content::ColorSpace Added bit unsetter method toHexaPDF::Utils::BitField HexaPDF::Type::AcroForm::Form#find_root_fields and #each_field to take the field type into account when wrapping a field dictionary Pages specification of CLI commands to allow counting from the end using the new r<N> notation HexaPDF::Font::Type1Wrapper to use the internal encoding of a font with a ‘Special’ character set instead of a custom encoding Configuration ‘filter.map’ to use the pass-through filter on all unsupported filters Fixed Wrong normalization of color values when invoking a color operator Invalid type of /DR field of HexaPDF::Type::AcroForm::Form Invalid ordering of types for the /V and /DV fields of HexaPDF::Type::AcroForm::Field HexaPDF::Type::AcroForm::Field#terminal_field? to work according to the spec Handling of empty files by throwing better error messages HexaPDF::Type::Image#info to correctly identify images with a soft mask as currently not supported for writing HexaPDF::Revision#delete to remove the connection between the object and the document Missing #definition method of DeviceRGB, DeviceCMYK and DeviceGray color spaces Handling of ‘Pattern’ color spaces when parsing content streams 0.11.9 - 2020-06-15 Changed Encryption dictionaries to always be indirect objects 0.11.8 - 2020-06-11 Fixed Serialization of special / (zero-length name) object in dictionaries and arrays 0.11.7 - 2020-06-10 Fixed Deletion of object streams in HexaPDF::Task::Optimize to avoid accessing then invalid object streams HexaPDF::Task::Optimize to work correctly when deleting object streams and generating xref streams 0.11.6 - 2020-05-27 Fixed HexaPDF::Layout::TextBox to respect the set width and height when fitting and splitting the box 0.11.5 - 2020-01-27 Changed HexaPDF::Font::TrueType::Table::CmapSubtable to lazily parse the subtable HexaPDF::Font::TrueType::Table::Hmtx to lazily parse the width data CLI command hexapdf image2pdf to use the last argument as output file instead of the first (same order as merge) Automatically require the HexaPDF C extension if it is installed Fixed Wrong line length calculation for variable width layouting when a text box is too wide and needs to be broken into parts CLI command hexapdf image2pdf so that treating a PDF as image works 0.11.4 - 2019-12-28 Fixed Memory consumption problem of PNG image loader when using images with alpha channel 0.11.3 - 2019-11-27 Fixed Restore compatibility with Ruby 2.4 0.11.2 - 2019-11-22 Fixed Conversion of HexaPDF::Rectangle type when the original is not a plain Array but a HexaPDF::PDFArray 0.11.1 - 2019-11-19 Fixed HexaPDF::Type::AcroForm::Form#find_root_fields to work for documents where not all pages have form fields 0.11.0 - 2019-11-19 Added HexaPDF::PDFArray to wrap arrays and allow automatic resolution of references like with HexaPDF::Dictionary - MAY BREAK THINGS! CLI command hexapdf watermark to apply a watermark PDF as background or stamp onto another PDF file CLI command hexapdf image2pdf to convert images into a PDF file HexaPDF::DictionaryFields::Field#allowed_values to allow constraining a field to certain allowed values HexaPDF::Document::Fonts#configured_fonts to return all font variants that are configured and available for adding to a document HexaPDF::Type::Annotations::Widget and associated classes HexaPDF::Type::AcroForm::Form and HexaPDF::Type::AcroForm::Field for basic AcroForm support Changed Use Reline for interactive mode of hexapdf inspect if available HexaPDF::DictionaryFields::Field::new to use keyword arguments Update the field information for implemented PDF types to include the allowed values where possible Interface of font loader objects to allow another method available_fonts for returning all available fonts HexaPDF::Layout::Style to check for valid values where possible Fixed Line spacing of empty lines for HexaPDF::Layout::TextLayouter Handling of /DecodeParms when exporting to PNG images 0.10.0 - 2019-10-02 Added HexaPDF::Reference#to_s to return the serialized form of the PDF reference HexaPDF::Revision#xref for getting cross-reference entries HexaPDF::XRefSection::Entry#to_s to return a description of the cross-reference entry Changed Enhanced the hexapdf images command to also show information on PPI (pixels per inch) and size Completely revamped the hexapdf inspect command with an interactive mode, structure output, cross-reference entry output and object search Output of validation problem messages for hexapdf command to include more information The Validation feature to automatically correct String-for-Symbol and Symbol-for-String problems Fixed HexaPDF::Document#wrap to better handle subtype mappings in case of unknown type information HexaPDF::DictionaryFields::DictionaryConverter to not allow conversion to a HexaPDF::Stream subclass from objects without stream data Import of JPEG images with YCCK color encoding Export of images without /FlateDecode filter or /DecodeParms to PNG files Mistyped name of field type for field /Popup of HexaPDF::Type::Annotations::MarkupAnnotation Loading and saving of encrypted and signed PDFs CLI commands that optimize font data structures won’t crash when encountering invalid font objects 0.9.3 - 2019-06-13 Changed Behaviour of how object streams are generated to work around a bug (?) in Adobe Acrobat Fixed Fix problem with HexaPDF::Encryption::StandardSecurityHandler due to behaviour change of Ruby 2.6.0 in String#setbyte 0.9.2 - 2019-05-22 Changed HexaPDF::Encryption::AES to handle invalid padding HexaPDF::Filter::FlateDecode to correctly handle invalid empty streams 0.9.1 - 2019-03-26 Fixed HexaPDF::Serializer to avoid infinite loops for self-referencing streams Bug due to frozen string in HexaPDF::Font::CMap::Writer 0.9.0 - 2018-12-31 Added HexaPDF::Composer for composing PDF documents in a high-level way Incremental writing support (i.e. appending a single revision with all the changes to an existing document) to HexaPDF::Writer and HexaPDF::Document CLI command hexapdf split to split a PDF file into individual pages HexaPDF::Revisions#parser for accessing the parser object that is created when a document is read from an IO stream HexaPDF::Document#each argument only_loaded for iteration over loaded objects only HexaPDF::Document#validate argument only_loaded for validating only loaded objects HexaPDF::Revision#each_modified_object for iterating over all modified objects of a revision HexaPDF::Layout::Box#split and HexaPDF::Layout::TextBox#split for splitting a box into two parts HexaPDF::Layout::Frame#full? for testing whether the frame has any space left HexaPDF::Layout::Style property last_line_gap for controlling the spacing after the last line of text HexaPDF::Layout::Box#draw_content for use by subclasses HexaPDF::Type::Form#width and HexaPDF::Type::Form#height for compatibility with HexaPDF::Type::Image HexaPDF::Layout::ImageBox for displaying an image inside a frame Changed HexaPDF::Revision#each to allow iteration over loaded objects only HexaPDF::Document#each method argument from current to only_current HexaPDF::Object#== and HexaPDF::Reference#== so that
Object and Reference objects can be compared Refactored HexaPDF::Layout::Frame to allow separate fitting, splitting and drawing of boxes HexaPDF::Layout::Style::LineSpacing::new to allow setting of line spacing via a single hash argument Made HexaPDF::Layout::Style copyable Fixed Configuration so that annotation objects are correctly mapped to classes Fix problem with HexaPDF::Filter::Predictor due to behaviour change of Ruby 2.6.0 in String#setbyte Fitting of HexaPDF::Layout::TextBox when the box has padding and/or borders Fitting of HexaPDF::Layout::TextBox when width and/or height has been set Fitting of absolutely positioned boxes in HexaPDF::Layout::Frame Fix bug in variable width line wrapping due to not considering line spacing correctly (HexaPDF::Layout::Line::HeightCalculator#simulate_height return value needed to be changed for this fix) 0.8.0 - 2018-10-26 Added HexaPDF::Layout::Frame for box positioning and easier text layouting inside an arbitrary polygon HexaPDF::Layout::TextBox for displaying text in a rectangular and for flowing text inside a frame HexaPDF::Layout::WidthFromPolygon for getting a width specification from a polygon for use with the text layouting engine HexaPDF::Type::Image#width and HexaPDF::Type::Image#height convenience methods HexaPDF::Type::FontType3 for Type 3 font support HexaPDF::Content::GraphicObject::Geom2D for Geom2D object drawing support HexaPDF::Type::Page#orientation for easy determination of page orientation HexaPDF::Type::Page#rotate for rotating a page HexaPDF::Layout::Style::Quad#set for setting all values at once Changed HexaPDF::Document#validate to also yield the object that failed validation HexaPDF::Type::Page#box to allow setting the value for a box HexaPDF::Layout::TextLayouter#fit to allow fitting text into arbitrarily shaped areas HexaPDF::Layout::TextLayouter to return a new HexaPDF::Layout::TextLayouter::Result structure when #fit is called that includes the #draw method HexaPDF::Layout::TextLayouter#fit to require the height argument Refactored HexaPDF::Layout::Box to make using it a bit easier Fixed Validation and conversion of dictionary fields with multiple possible types Box border drawing when border width is greater than edge length 0.7.0 - 2018-06-19 Changed All Ruby source files use frozen string literal pragma HexaPDF::MalformedPDFError::new method signature HexaPDF::Layout::TextFragment::new and HexaPDF::Layout::TextFragment::create method signatures HexaPDF::Encryption::SecurityHandler#set_up_encryption argument force_V4 to force_v4 HexaPDF::Layout::TextLayouter#draw to return result of #fit if possible Removed Optional leading argument to HexaPDF::Content::Canvas#font_size method Fixed Misspelt variable name in HexaPDF::Layout::TextLayouter::SimpleLineWrapping HexaPDF::Layout::TextLayouter::SimpleTextSegmentation to work if the last character in a text fragment is \\r HexaPDF::Layout::TextLayouter to work if an optional break point (think soft-hyphen) is followed by whitespace HexaPDF::Font::TrueType::Builder to correctly order the entries in the table directory HexaPDF::Font::TrueType::Builder to pad the table data to achieve the correct alignment HexaPDF::Filter::FlateDecode by removing the Zlib pools since they were not thread safe All color space classes to accept the color space definition as argument to ::new 0.6.0 - 2017-10-27 Added HexaPDF::Layout::Box as base class for all layout boxes More styling properties for HexaPDF::Layout::Style Methods for checking whether styling properties in HexaPDF::Layout::Style have been accessed or set HexaPDF::FontLoader::FromFile to allow specifying a font file directly Configuration option ‘page.default_media_orientation’ for settig the default orientation of new pages Convenience methods for getting underline and strikeout properties from fonts Configuration option ‘style.layers_map’ for pre-defining overlay and underlay callback objects for HexaPDF::Layout::Style HexaPDF::Type::Action as well as specific implementations for the GoTo, GoToR, Launch and URI actions HexaPDF::Type::Annotation as well as specific implementations for the Text Link annotations HexaPDF::Layout::Style::LinkLayer for easy adding of in-document, URI and file links Changed HexaPDF::Layout::TextFragment to support more styling properties Cross-reference subsection parsing can handle missing whitespace Renamed HexaPDF::Layout::LineFragment to HexaPDF::Layout::Line Renamed HexaPDF::Layout::TextBox to HexaPDF::Layout::TextLayouter HexaPDF::Layout::TextFragment::new and HexaPDF::Layout::TextLayouter::new to either take a Style object or style options HexaPDF::Layout::TextLayouter#fit method signature HexaPDF::Layout::InlineBox to wrap a generic box HexaPDF::Document::Fonts#load to HexaPDF::Document::Fonts#add for consistency HexaPDF::Document::Pages#add to allow setting the paper orientation when creating new pages HexaPDF::Filter::Predictor to allow correcting some common problems depending on the new configuration option ‘filter.predictor.strict’ Moved configuration options ‘encryption.aes’, ‘encryption.arc4’, ‘encryption.filter_map’, ‘encryption.sub_filter.map’, ‘filter.map’, ‘image_loader’ and ‘task.map’ to the document specific configuration object HexaPDF::Configuration#constantize can now dig into hierarchical values HexaPDF::Document#wrap class resolution and configuration option structure of ‘object.subtype_map’ Removed HexaPDF::Dictionary#to_hash method Fixed HexaPDF::Layout::TextLayouter#fit to split text fragment into parts if the fragment doesn’t fit on an empty line Parsing of PDF files containing a loop with respect to cross-reference tables HexaPDF::Layout::InlineBox to act as placeholder if no drawing block is given Undefined method error in HexaPDF::Content::Canvas by raising a proper error Invalid handling of fonts by HexaPDF::Content::Canvas when saving and restoring the graphics state HexaPDF::Layout::TextLayouter so that text fragments don’t pollute the graphics state HexaPDF::Content::Operator::SetTextRenderingMode to normalize the value HexaPDF::Stream#stream_source to always return a decrypted stream HexaPDF::Layout::TextLayouter to correctly indent all paragraphs, not just the first one One-off error in HexaPDF::Filter::LZWDecode HexaPDF::Configuration#merge to duplicate array values to avoid unwanted modifications HexaPDF::Dictionary#key? to return false if the key is present but nil HexaPDF::DictionaryFields::FileSpecificationConverter to convert hash and dictionaries Field /F definition in HexaPDF::Stream 0.5.0 - 2017-06-24 Added HexaPDF::Layout::TextBox for easy positioning and layouting of text HexaPDF::Layout::LineFragment for single text line layout calculations HexaPDF::Layout::TextShaper for text shaping functionality HexaPDF::Layout::TextFragment for basic text metrics calculations HexaPDF::Layout::InlineBox for fixed size inline graphics HexaPDF::Layout::Style as container for text and graphics styling properties Support for kerning of TrueType fonts via the ‘kern’ table Support for determining the features provided by a font Changed Handling of invalid glyphs is done using the special HexaPDF::Font::InvalidGlyph class Configuration option ‘font.on_missing_glyph’; returns an invalid glyph instead of raising an error Bounding box of TrueType glyphs without contours is set to [0, 0, 0, 0] Ligature pairs for AFM fonts are stored like kerning pairs Use TrueType configuration option ‘font.true_type.unknown_format’ in all places where applicable Allow passing a font object to HexaPDF::Content::Canvas#font Handle invalid entry in TrueType format 4 cmap subtable encountered in the wild gracefully Invalid positive descent values in font descriptors are now changed into negative ones by the validation feature Allow specifying the page media box or a page format when adding a new page through HexaPDF::Document::Pages#add Fixed HexaPDF::Task::Dereference to work correctly when encountering invalid references HexaPDF::Tokenizer and HexaPDF::Content::Tokenizer to parse a solitary plus sign Usage of Strings instead of Symbols for AFM font kerning and ligature pairs Processing the contents of form XObjects in case they don’t have a resources dictionary Deletion of valid page node when optimizing page trees with the hexapdf optimize command HexaPDF::Type::FontType0 to always wrap the descendant font even if it is a direct object 0.4.0 - 2017-03-19 Added HexaPDF::Type::FontType0 and HexaPDF::Type::CIDFont for composite font support Complete support for CMaps for use with composite fonts; the interface for HexaPDF::Font::CMap changed to accomodate this CLI command hexapdf batch for batch execution of a single command for multiple input files CLI option --verbose for more verbose output; also changed the default verbosity level to only display warnings and not informational messages CLI option --quiet for suppressing additional and diagnostic output CLI option --strict for enabling strict parsing and validation; also changed the default from strict to non-strict parsing/validation CLI optimization option --optimize-fonts for optimizing embedded fonts Method #word_spacing_applicable? to font types Support for marked-content points and sequences in HexaPDF::Content::Canvas Support for property lists in a page’s resource dictionary Show file name and size in hexapdf info output HexaPDF::Type::Font#font_file for getting the embedded font file HexaPDF::Font::TrueType::Optimizer for optimizing TrueType fonts Configuration option ‘filter.flate_memory’ for configuring memory use of the HexaPDF::Filter::FlateDecode filter Method HexaPDF::Content::Canvas#show_glyphs_only for faster glyph showing without text matrix calculations Methods for caching expensive computations of PDF objects (HexaPDF::Document#cache and others) Changed Enabled in-place processing of PDF files for all CLI commands Show warning instead of exiting when extracting images with hexapdf images and an image format is not supported Handling of
character code to Unicode mapping: HexaPDF::Font::CMap#to_unicode, HexaPDF::Font::Encoding::Base#unicode and HexaPDF::Font::Encoding::GlyphList#name_to_unicode return nil instead of an empty string Font dictionaries use the new configuration option ‘font.on_missing_unicode_mapping’ in their #to_utf8 method HexaPDF::Configuration#constantize to raise error if constant is not found Extracted TrueType font file building code into new module HexaPDF::Font::TrueType::Builder HexaPDF::Filter::FlateDecode filter to use pools of Zlib inflaters and deflaters to conserve memory Fixed Use of wrong glyph IDs for glyph width entries and unicode mapping for subset TrueType fonts Invalid document reference when importing wrapped direct objects with HexaPDF::Importer Invalid type of /DW key in CIDFont dictionary when embedding TrueType fonts Caching problem in HexaPDF::Document::Fonts which lead to multiple instances of the same font Bug in handling of word spacing with respect to offset calculations when showing or extracting text Incorrect handling of page rotation values in hexapdf merge Missing handling of certain rotation values in hexapdf modify Removal of unused pages in hexapdf modify Handling of invalid page numbers in CLI commands Useless multiple extraction of the same image in hexapdf images Type of /VP entry of HexaPDF::Type::Page Parsing of inline images that contain the end-of-image marker High memory usage due to not closing Zlib::Stream objects in HexaPDF::Filter::FlateDecode 0.3.0 - 2017-01-25 Added TrueType font subsetting support Image extraction ability to CLI via hexapdf images command HexaPDF::Type::Image#write for writing an image XObject to an IO stream or file HexaPDF::Type::Image#info for getting image properties of an image XObject CLI option --[no-]force to force overwriting existing files Changed Refactor hexapdf modify command into three individual commands modify, merge and optimize Rename hexapdf extract to hexapdf files and the option --indices to --extract Show PDF trailer by default with hexapdf inspect Refactor CLI command classes to use specialized superclass HexaPDF::CLI::Command Optimize parsing of PDF files for better performance and memory efficiency Fixed Writing of hybrid-reference PDF files - they are written as standard PDF files since all current applications should be able to handle PDF 1.5 Serialization of self-referential, indirect PDF objects Performance problem for hexapdf inspect --pages when inspecting huge files TrueType compound glyph component offset calculation Parsing of TrueType data type ‘fixed’ Updating a PDF trailer’s ID field when it isn’t an array 0.2.0 - 2016-11-28 Added PDF file merge ability to hexapdf modify, i.e. adding pages from other PDFs Page interleaving support to ‘hexapdf modify’ Step values in pages definitions for CLI commands Convenience class for working with pages through HexaPDF::Document#pages with a more Ruby-like interface Method HexaPDF::Type::Form#canvas Method HexaPDF::Type::Page#index Validation for HexaPDF::Rectangle objects HexaPDF::Font::Type1::FontMetrics#weight_class for returning the numeric weight Changed Refactor document utilities into own classes with a more Ruby-like interface; concern fonts, images and files, now accessible through HexaPDF::Document#fonts, HexaPDF::Document#images and HexaPDF::Document#files Validate nested collection values in HexaPDF::Object Allow HexaPDF::Dictionary#[] to always unwrap nil values Update HexaPDF::Task::Optimize to delete unused objects on :compact Allow HexaPDF::Type::PageTreeNode#delete_page to take a page object or a page index Don’t set /EFF key in encryption dictionary Better error handling for hexapdf CLI commands Show help output when no command is given for hexapdf CLI Set /FontWeight in HexaPDF::Font::Type1Wrapper Use kramdown’s man page support for the hexapdf man page instead of ronn Removed Remove unneeded parts of TrueType implementation Fixed Problem with unnamed classes/modules on serialization Handle potentially indirect objects correctly in HexaPDF::Object::deep_copy HexaPDF::Revisions#merge for objects that appear in multiple revisions Output of --pages option of ‘hexapdf inspect’ command Infinite recursion problem in HexaPDF::Task::Dereference Problem with iteration over images in certain cases HexaPDF::Type::Page#[] with respect to inherited fields Problems with access permissions on encryption Encryption routine of standard security handler with respect to owner password Invalid check in validation of standard encryption dictionary ‘hexapdf modify’ command to support files with many pages Validation of encryption key for encryption revision 6 Various parts of the API documentation 0.1.0 - 2016-10-26 Initial release "},{"loc":"http://hexapdf.gettalong.org/documentation/digital-signatures/index.html","title":"Introduction","tags":"","text":" How Signing WorksCMS and PAdES SignaturesSigning ModesTypes of PDF SignaturesRestricting Changes to a Signed Document Digital Signatures Digital signatures are used to authenticate the content of PDF files and of users. When a digital signature is applied, it stores the state of the document at the signing time as well as information about the signer. The signer is identified by their X.509 certificate and private key. How Signing Works The digital signature and associated information is stored in a signature dictionary. And that signature dictionary is the value of a signature form field. So, to sign a PDF document there must either be an existing signature field to fill in or a new one must be created. Since a signature is associated with a form field, it is possible to visually represent the signature with an appearance stream. When a PDF file is signed, the signature dictionary is filled with all the necessary information, like the signing time, the signing reason or whether the signed document should allow further changes. Then the PDF file is written but it is still incomplete. If there are no existing signatures, one has the choice to either save the complete file or just append a new revision by using the incremental writing feature. Once there are existing signatures only incremental writing may be done because otherwise the existing signatures would be invalidated. The written file is analysed and the offset and length of the placeholder for the actual cryptographic signature is determined. This information is filled back into the written file into the appropriate field of the signature dictionary. Afterwards a digest over the whole file minus the placeholder is taken and this digest is then signed with the provided certificate and private key (or handled via an external signing provider). The resulting signature structure is embedded into the written file and now the PDF file is properly finished. Note: Since the PDF document needs to be written to be properly signed, no changes to it can be made afterwards. So to work with the signed document, one has to load it again. CMS and PAdES Signatures The PDF 2.0 specification defines three types of supported digital signatures: PKCS#1 signatures CMS (Cryptographic Message Syntax a.k.a. PKCS#7) signatures PAdES signatures (CAdES - CMS Advanced Electronic Signatures - signatures as used in PDF) With PDF 2.0 the PKCS#1 signatures are deprecated and therefore creating such signatures is not supported by HexaPDF. While CMS signatures have been supported by PDF for a long time, PAdES signatures are new with PDF 2.0 (although they have been possible with PDF 1.7 through the use of extensions). HexaPDF supports both old-style CMS as well as the newer PAdES signatures through HexaPDF::DigitalSignature::Signing::DefaultHandler. By default CMS signatures are used for backwards-compatibility and PAdES signatures are created when explicitly requested. PAdES signatures are more complicated and have more features/requirements. They support two different profiles called PAdES-BES (Basic Electronic Signature) and PAdES-EPES (Explicit Policy Electronic Signature). HexaPDF supports part of the PAdES-BES profile which has four levels of baseline signatures called B-B, B-T, B-LT, and B-LTA. Of these four levels B-B and B-T are currently supported where the difference between B-B and B-T is that a timestamp signature is incorporated for B-T. While the PDF specification supports creating CMS digital signatures for certificates using the RSA, DSA and ECDSA algorithms, HexaPDF currently only supports certificates using the RSA algorithm. Signing Modes As suggested above there are basically two ways for creating the CMS signatures needed when signing a PDF file (customizable through HexaPDF::DigitalSignature::Signing::DefaultHandler#external_signing): Internal Signing If all the signing certificate and private key are available to HexaPDF, HexaPDF can create the CMS signature itself without relying on anything external. This is the preferred way if is possible. External Signing If the private key is not available to HexaPDF, it cannot (completely) create the CMS signature and has to rely on an external mechanism for signing and/or creating the CMS signature. Depending on whether the signing certificate is available the signing happens differently: If the certificate is available, the CMS signature object itself is created by HexaPDF and only the signing itself is done by the external mechanism. This is useful, for example, if the signing key is only available through a HSM. If the certificate is not available, the external mechanism has to create the complete CMS signature. This is useful for creating CMS signatures that HexaPDF is not yet able to create itself, e.g. when a certificate uses an unsupported algorithm. Asynchrounous Signing This is a variant of external signing where the CMS signature creation happens at a different time than the creation of the prepared PDF file itself. In such a case the PDF is “finished” with a dummy CMS signature and the correct one later replaces the dummy one. Types
of PDF Signatures The PDF specifications also defines different types of signatures: Certification signature (aka author signature) There can be only one certification signature on a PDF document and it has to be the first one. This type of signature allows the author of a PDF document to define what kind of changes may be applied to the signed document so that the signature is not invalidated. See the next section for details. Approval signatures (aka recipient signatures) These are the standard type of signatures and what is normally done when signing an existing document. Such a signature basically says that the signer approves of the signed document. For example, when digitally signing a contract both (or more) parties sign the document, thereby agreeing to it. Timestamp signatures These signatures were introduced with PDF 2.0 and are used when the time of signing is important. They use a trusted timestamp server to receive a signed timestamp token. Restricting Changes to a Signed Document When using a certification signature, it is possible to restrict the changes so that any unallowed change invalidates the signature. This is done via the so called DocMDP transformation method set on the signature dictionary which defines a set of permissions that have to be followed. The following three types of permissions are available: No changes. Filling in forms and signing. Filling in forms, signing and annotation creation, deletion and modification. Preventing any modifications with option 1 is useful, for example, when creating signed invoices. Any and all modifications will be flagged by PDF readers. Option 2 is the default if nothing is specified and allows users to fill out the form fields and sign the PDF. Option 3 allows in addition to the permitted changes of option 2 the creation, deletion and modification of annotations. Note that in this case. it might be possible to change the document in a way that it still validates but misleads the recipients (see the PDF Insecurity website). The default signing handler supports this feature via the HexaPDF::DigitalSignature::Signing::DefaultHandler#doc_mdp_permissions= method. "},{"loc":"http://hexapdf.gettalong.org/documentation/digital-signatures/signing-pdfs-howto.html","title":"How-to: Signing PDFs ","tags":"","text":" Applying a Single SignatureAdding a Visual AppearanceApplying Multiple SignaturesApplying a PAdES SignatureFinalizing a PDF vs Allowing Some ModificationsUsing an External Mechanism for SigningAsynchronous External SigningApplying a Timestamp Signature Signing PDFs This how-to guide provides information and code samples for applying digital signatures to PDF files. It is assumed that you are familiar with digital signatures, if not, have a look at the Digital Signatures key topic. All the examples can be run with or without a PDF file supplied as first argument, e.g. copying the code and pasting it to a running ruby process just works. The examples use the demo certificates that are included with the HexaPDF distribution. For real world usage you have to provide your own signing certificate! Applying a Single Signature A digital signature can be applied to an existing document or to a new one. The steps for applying the digital signature are the same and must be done after everything else. When applying a signature to an existing document, the document itself won’t be changed but a new revision with the signature will be added by default. However, if needed it is also possible to include the digital signature in the original file by setting the incremental: false write option. In this sample code we are using a local signing certificate and the default signing handler to add a non-visual signature. Everything needed for a correct signature (AcroForm signature field and signature object) is automatically created with default values. require 'hexapdf' require HexaPDF.data_dir + '/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - Single Signature', at: [10, 150]) end end doc.sign(\"signed.pdf\", reason: 'Some reason', certificate: HexaPDF.demo_cert.cert, key: HexaPDF.demo_cert.key, certificate_chain: [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca]) Adding a Visual Appearance If a visual signature is needed, we need to create it before signing the document. It is generally possible to construct the document in a way to modify the visual appearance after signing. However, this is a bit more involved and the signature might not show correctly in all viewers. The visual appearance needs to be set on the signature field associated with the signature. This means we need to create the signature field beforehand and create its appearance stream; and then pass that field to the signing method. The following code is nearly the same as the one for applying a single signature, we just add the necessary appearance creation. require 'hexapdf' require HexaPDF.data_dir + '/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - Visual Appearance', at: [10, 150]) end end sig_field = doc.acro_form(create: true).create_signature_field('signature') widget = sig_field.create_widget(doc.pages[0], Rect: [20, 20, 120, 120]) widget.create_appearance.canvas. stroke_color(\"red\").rectangle(1, 1, 99, 99).stroke. font(\"Helvetica\", size: 10). text(\"Certified by signer\", at: [10, 10]) doc.sign(\"signed.pdf\", signature: sig_field, reason: 'Some reason', certificate: HexaPDF.demo_cert.cert, key: HexaPDF.demo_cert.key, certificate_chain: [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca]) Applying Multiple Signatures Applying multiple signatures to a PDF requires performing the same signing steps just multiple times. And the PDF’s permissions set with the first signature must allow such changes so that all prior signatures stay valid. Since the document must be written each time a signature is applied, it has to be reloaded for each additional signature. The following code signs the input document three times with the same signature. One might also use existing signature fields for the signatures if necessary. require 'hexapdf' require 'stringio' require HexaPDF.data_dir + '/cert/demo_cert.rb' in_io = StringIO.new if ARGV[0] in_io.string = File.binread(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - Multiple Signatures', at: [10, 150]) end.write(in_io) end 3.times do |i| doc = HexaPDF::Document.new(io: in_io) out_io = StringIO.new(''.b) doc.sign(out_io, reason: \"Some reason #{i}\", certificate: HexaPDF.demo_cert.cert, key: HexaPDF.demo_cert.key, certificate_chain: [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca]) in_io = out_io end File.binwrite('signed.pdf', in_io.string) Applying a PAdES Signature HexaPDF creates the older CMS signatures by default but also supports the newer PAdES signatures. To create a PAdES compatible signature, the DefaultHandler#signature_type attribute has to be set to :pades. If no timestamp handler is set via DefaultHandler#timestamp_handler, the created signature is a PAdES-BES level B-B signature. Otherwise it is a level B-T signature. The following example creates a level B-T signature: require 'hexapdf' require HexaPDF.data_dir + '/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - PAdES Signature', at: [10, 150]) end end ts_handler = doc.signatures.signing_handler(name: :timestamp, tsa_url: 'http://freetsa.org/tsr') doc.sign(\"signed.pdf\", reason: 'Some reason', signature_type: :pades, timestamp_handler: ts_handler, certificate: HexaPDF.demo_cert.cert, key: HexaPDF.demo_cert.key, certificate_chain: [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca]) Finalizing a PDF vs Allowing Some Modifications When applying the first signature it is possible to finalize the PDF so that no or only some modifications are allowed. This is called creating a certification signature. It is possible to set the following permissions: No changes. Filling in forms and signing. Filling in forms, signing and annotation creation, deletion and modification. The following code creates a signed document that allows no modifications: require 'hexapdf' require HexaPDF.data_dir + '/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - Certification Signature', at: [10, 150]) end end doc.sign(\"signed.pdf\", doc_mdp_permissions: :no_changes, certificate: HexaPDF.demo_cert.cert, key: HexaPDF.demo_cert.key, certificate_chain: [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca]) Using an External Mechanism for Signing Sometimes the built-in mechanism for signing cannot be used because the private key is not readily available. Such situations often arise when a hardware security module (HSM) is used for signing since it doesn’t allow extracting the private key. In such cases signing itself has to be done by the application using HexaPDF. And since HexaPDF doesn’t know anything about the signature, one also has to tell HexaPDF the signature size so that enough space is reserved. The following code uses the demo certificate together with the external signing mechanism for signing the data but let’s HexaPDF handle the CMS signature creation (note the assignment of the certificate): require 'hexapdf' require HexaPDF.data_dir +
'/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - External Signing', at: [10, 150]) end end signing_mechanism = lambda do |digest_method, data| HexaPDF.demo_cert.key.sign_raw(digest_method, data) end doc.sign(\"signed.pdf\", external_signing: signing_mechanism, certificate: HexaPDF.demo_cert.cert, certificate_chain: [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca]) If HexaPDF is not able to create the CMS signature, e.g. because it doesn’t support the certificate’s key algorithm, it is also possible to delegate the CMS signature creation completely to the external signing mechanism (note the absence of the certificate key in HexaPDF::Document#sign): require 'hexapdf' require HexaPDF.data_dir + '/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - External Signing', at: [10, 150]) end end signing_mechanism = lambda do |io, byte_range| # Read the bytes to be signed io.pos = byte_range[0] data = io.read(byte_range[1]) io.pos = byte_range[2] data << io.read(byte_range[3]) # Create the DER encoded CMS signed-data structure OpenSSL::PKCS7.sign(HexaPDF.demo_cert.cert, HexaPDF.demo_cert.key, data, [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca], OpenSSL::PKCS7::DETACHED | OpenSSL::PKCS7::BINARY).to_der end doc.sign(\"signed.pdf\", signature_size: 10_000, external_signing: signing_mechanism) Asynchronous External Signing There are some situations where between the creation of the prepared to-be-signed document and the creation of the digital signature itself lies some time. This might happen in a web application where users can sign PDF documents using a client-local mechanism, for example, by using some citizen ID signature system. In such cases a variant of the external signing mechanism can be used: Pretend to sign the document using the external signing mechanism but really just return an empty string. The written document now contains everything but the actual digital signature. Create the digital signature based on the information (IO object and byte range array) provided to the external signing mechanism. Embed the digital signature into the prepared document, getting the final document. The following code does exactly this: require 'hexapdf' require HexaPDF.data_dir + '/cert/demo_cert.rb' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - Async External Signing', at: [10, 150]) end end # Prepare the document for embedding of the digital signature data = nil # Used for storing the to-be-signed data signing_mechanism = lambda do |io, byte_range| # Store the to-be-signed data in the local variable data io.pos = byte_range[0] data = io.read(byte_range[1]) io.pos = byte_range[2] data << io.read(byte_range[3]) \"\" end doc.sign(\"signed.pdf\", signature_size: 10_000, external_signing: signing_mechanism) # Create the signature signature = OpenSSL::PKCS7.sign(HexaPDF.demo_cert.cert, HexaPDF.demo_cert.key, data, [HexaPDF.demo_cert.sub_ca, HexaPDF.demo_cert.root_ca], OpenSSL::PKCS7::DETACHED | OpenSSL::PKCS7::BINARY).to_der # Embed the signature HexaPDF::DigitalSignature::Signing.embed_signature(File.open('signed.pdf', 'rb+'), signature) Applying a Timestamp Signature Timestamp signatures are similar to standard signatures in that they use the same signing infrastructure. The differences lie in some signature dictionary field values and the structure of the digital signature itself. Therefore it is only necessary to use a special signing handler for creating timestamp signatures. It is mandatory to provide at least the URL of the timestamp authority server (TSA), everything else is optional and uses default values. Note that the server will be contacted twice if you don’t specify the signature size! The following code use the timestamp service from https://freeTSA.org to add a timestamp to a PDF document: require 'hexapdf' doc = if ARGV[0] HexaPDF::Document.open(ARGV[0]) else HexaPDF::Document.new.tap do |hpdoc| hpdoc.pages.add(:A6, orientation: :landscape).canvas. font('Helvetica', size: 18). text('Digital Signature Test - Timestamp Signature', at: [10, 150]) end end doc.sign(\"signed.pdf\", handler: :timestamp, reason: 'Some reason', signature_size: 20_000, tsa_url: 'https://freetsa.org/tsr') "},{"loc":"http://hexapdf.gettalong.org/documentation/document-creation/document-layout.html","title":"Document Layout ","tags":"","text":" IntroductionLayout Class OverviewBoxes for ContentFrames for LayoutFrame ShapeBox PlacementFitting Boxes into FramesConvenience InterfaceAll-in-one Document Composition Document Layout The automatic document layout feature of HexaPDF allows one to easily create complex documents. It works by first defining the space where the content should be placed and then adding content boxes. The layout engine places the boxes into the space according to the their position information and allows, for example, for flowing text around other content. Introduction Defining the contents of a PDF document works a bit differently than what one is used to from word processors like LibreOffice Writer. Word processors usually store the contents, being text, images, graphics or other things, as is together with styling information like font, font size, position information, border style and so on. The word processor itself is responsible for laying out the content according to this information when a file is opened. This is also the reason why different word processor applications might display files differently, for example, if they are not 100% compatible with the used file format. In contrast to this, the contents of a PDF document is stored already layed out. For example, text is not stored as Unicode text but as glyph identifiers together with the exact position for each glyph. A PDF viewer takes this information and just renders this content, without doing any layouting at all. This is still quite a complex task but it ensures – generally – that the display of a PDF document is the same across different PDF viewers. Due to this difference layouting of PDF content is the responsibility of the PDF creation software. Every PDF creation software can do the easy graphics and text operations that map directly to PDF operators, like showing text at a certain position. More complex document layout needs additional work like line wrapping algorithms, hyphenation algorithms, flowing text around other content and more. HexaPDF is naturally able to do the basic document creation tasks. These can be done using the HexaPDF::Content::Canvas class which also provides basic text output. The complex tasks are handled by the classes in the HexaPDF::Layout module. Most classes in the HexaPDF::Layout module are completely decoupled from the PDF-specific parts of HexaPDF. This is because the PDF parts only come into play once text and graphics have been properly laid out and need to be drawn on a canvas. Layout Class Overview The main classes used by the layout engine are HexaPDF::Layout::Box and its subclasses for encapsulating content and defining how to fit, split and draw that content, HexaPDF::Layout::Style for encapsulating all the styling information for boxes (and some other classes), HexaPDF::Layout::Frame for providing the space where to place the boxes, and HexaPDF::Layout::BoxFitter for fitting boxes into one or more frames using their style information. These classes can either be used directly or through HexaPDF::Document::Layout which provides a convenience interface for working with them. However, they are most commonly used through HexaPDF::Composer which ties them neatly together and provides the easiest interface for users. The inner workings and main features of the mentioned classes are discussed below. Boxes for Content Boxes encapsulate content and know how to fit the content into a frame, how to optionally split the content and how to draw the content. Examples of box classes that directly encapsulate content are HexaPDF::Layout::TextBox for drawing text and HexaPDF::Layout::ImageBox for drawing an image. Additionally, there are box classes that act as containers like HexaPDF::Layout::ListBox and HexaPDF::Layout::ColumnBox. Those container classes internally use Frame and BoxFitter objects to do the actual layouting. Each box has at least the following attributes: width, height They define the width and height the box should have. A value of zero means that the value of the attribute is determined during the layouting process. For example, if an image box has a set width but a height of zero, the height will be calculated so that the aspect ratio of the image persists. style The style of a box is an instance of HexaPDF::Layout::Style and encapsulates all the style information for that box. Examples of style attributes are position (describing how to place the box in the frame) and font_size. The base class HexaPDF::Layout::Box already provides some useful properties for all box classes, for example the ability to draw a background and border. By encapsulating content into a box class and not drawing it directly onto the canvas, the drawing logic becomes easily re-usable. Additionally, the box instances can be used together with frames for automatic positioning. Therefore it is best to create new box subclasses whenever something needs to be drawn, even if only one time. Frames for Layout A HexaPDF::Layout::Frame defines the space where content boxes can be placed and provides the methods to place them. Once placed their occupied area (which is different for different
types of positions) is removed from the available space, making the frame ready for the next box placement. Note that placing a box in a frame doesn’t necessarily mean actually drawing the box, e.g. when frames are used inside container boxes. Frame Shape The shape of a frame is initially rectangular. Once boxes are fitted and drawn inside the frame, its available space gets reduced. Due to this the shape of a frame may be a polygon set consisting of arbitrary rectilinear polygons. For example, if a box is placed using absolute coordinates, a hole in the shape may appear. The frame’s shape is used to determine the current placement position (available through the HexaPDF::Layout::Frame#x and HexaPDF::Layout::Frame#y attributes). Together with the HexaPDF::Layout::Frame#available_width and HexaPDF::Layout::Frame#available_height attributes they define a rectangular region inside which the next box is placed. There is one exception though: If the to-be-placed box is to be flown around content (style property position=:flow), this rectangular region is ignored and the frame’s shape is directly used to determine where to place the box’s content. Box Placement The general work flow for placing a box in a frame is like this: Fitting the box The first step is fitting the box using the HexaPDF::Layout::Frame#fit method. This method in turn calls HexaPDF::Layout::Box#fit and lets the box decide whether it fits or not. The result of Frame#fit is a HexaPDF::Layout::Frame::FitResult object, holding the information about whether fitting was successful, where the box in the frame is placed and which area needs to be removed from the frame. If the box fits at the current position, it can either be drawn directly afterwards or the fit result stored for later use. Handling a negative fit result There are two reasons for a box not fitting at the current position: The box is too big to completely fit but a part fits. The box doesn’t fit at all. To determine whether it is 1. or 2. the HexaPDF::Layout::Frame#split method needs to be called. The result is an array where the first item is the current box or nil and the second item is the split-off box or nil. If the first item is not nil, it means that at least a part fits and that the box can be drawn with the already available fit result object. The second item is then nil if the box fit completely (and a call to #split was not really necessary) or another box containing the content that didn’t fit. In case the first item is nil, the box didn’t fit at all and is returned as the second item. In this case the HexaPDF::Layout::Frame#find_next_region method may be called to determine a new region for fitting the box and the process is repeated from the top. Drawing the result and/or removing the box’s occupied area Once a successful fit result has been obtained, the HexaPDF::Layout::Frame#draw method can be called to draw the box and remove the occupied area of the box from the frame’s shape. Alternatively, the HexaPDF::Layout::Frame#remove_area method is called to just remove the box’s occupied area from the frame’s shape without drawing the box. This is useful, for example, when boxes are fitted into a temporary frame inside a container box. To have the most control over this process, one can use the frame class directly. However, in most cases it is easier to use the BoxFitter class. Fitting Boxes into Frames The HexaPDF::Layout::BoxFitter class encapsulates the default logic for laying out boxes into one or more frames. Due to this it is used by container boxes like the HexaPDF::Layout::ColumnBox for doing the actual layouting work. All one needs to do is to provide the frames and then use the #fit method to fit the boxes, one after the other. The logic for placing the boxes uses the flow described above, adjusted for use with multiple frames: Fit the box into the current position of the current frame. If it fits, the area occupied by the box is removed from the frame and the fit result stored. If it doesn’t fit, the box is split. If a part now fits, its area is removed from the frame and the fit result stored. If there is a remaining box, the process is started with it again. Otherwise all is done. If no part of the box fits, a new region of the frame is determined and the process started again. If no space is left on the current frame, the next frame is selected and the process started again. However, it there is no next frame, the box (and any other after it) can’t be fitted anymore and is stored separately from the fit results. After the #fit method is called for every box, the stored fit results can be used to draw the boxes. And the stored remaining boxes can be used during a box splitting operation. Convenience Interface Though the layout classes can be created directly, it is easier to use the convenience interface provided by HexaPDF::Document::Layout. It can be accessed through HexaPDF::Document#layout. This interface provides a central store for styles. Through them it is easy to define document wide styles for paragraphs, headings, and so on. Those styles can then be assigned to boxes created through the interface. There are a few special methods for creating boxes, like HexaPDF::Document::Layout#text_box, and a general method HexaPDF::Document::Layout#box. The latter one uses the configuration option layout.boxes.map to create box instances based on registered box names. This feature allows one to create and register custom box classes and use them like the built-in ones. All-in-one Document Composition All the classes discussed above focus on special aspects of the layouting work. The HexaPDF::Composer class now ties all the classes together to provide a very easy to use interface for creating whole documents: require 'hexapdf' HexaPDF::Composer.create('output.pdf') do |composer| composer.text(\"Hello World\", font_size: 20) composer.image(\"some image.jpg\", text_align: :center, width: 300) end The composer uses the central style store provided by HexaPDF::Document::Layout and also delegates the box creation to that class. In addition to automatically laying out the given boxes and drawing them, it creates new pages when needed. This allows one to just add all the boxes without too much thinking about how and where the boxes will fit. "},{"loc":"http://hexapdf.gettalong.org/documentation/document-creation/how-tos.html","title":"How-tos ","tags":"","text":" Creating Table of Contents EntriesCreating a Link to a WebsiteAutomatically Creating Outline Items Document Creation How-tos This page provides various short how-to guides for accomplishing often needed tasks when creating a PDF document. Creating Table of Contents Entries A table of contents entry usually has the section heading on the left side of the line, followed by e.g. dots and the page number of the right side. The number of dots varies based on the length of the section heading and page number. Using the style property fill_horizontal it is easily possible to create such lines: require 'hexapdf' HexaPDF::Composer.create('toc.pdf', page_size: [0, 0, 300, 100], margin: 10) do |composer| composer.style(:base, margin: [0, 0, 10]) composer.formatted_text(['Heading', {text: '.', fill_horizontal: 1}, '42']) composer.formatted_text(['Some other heading', {text: '_', fill_horizontal: 1}, '96']) overlay = proc {|c, b| c.line(0, 0, b.width, 0).stroke} composer.formatted_text(['Third heading', {text: \"\\u{00a0}\", fill_horizontal: 1, overlays: [overlay]}, '123']) end The third TOC line uses the non-breaking space character to ensure horizontal filling is done since ordinary spaces are handled specially during text layouting. Since the non-breaking spaces won’t show in the PDF, the visual representation is done using an overlay. Creating a Link to a Website It is possible to add a link to a website to any box by using a LinkLayer instance together with the overlay or underlay layers. By default a link has no additional visual clues like a border but this can be customized. Additionally, text fragments can be assigned a link using a formatted_text shortcurt. require 'hexapdf' HexaPDF::Composer.create('links.pdf', page_size: [0, 0, 300, 100], margin: 10) do |composer| composer.formatted_text(['This is some text that contains ', {text: 'a link', link: 'http:/hexapdf.gettalong.org'}, ' to the HexaPDF website.'], margin: [0, 0, 10]) composer.text('This whole paragraph is also a link', overlays: [[:link, uri: 'https://duckduckgo.com', border: true, border_color: 'hp-blue']]) end Automatically Creating Outline Items While creating outline items after building a document is possible, one can also create the outline items when a section heading is drawn. For this to work heading styles for each type of heading have to be defined. Those styles use an underlay (or overlay) that doesn’t draw anything but just builds the respective outline item. By storing the last created item in e.g. a local variable, it is easily possible to nest the items, provided the styles are used correctly. require 'hexapdf' HexaPDF::Composer.create('outline.pdf', page_size: [0, 0, 300, 100], margin: 10) do |composer| main = composer.document.outline level1 = nil layer_heading1 = proc do |canvas, box| next unless box.kind_of?(HexaPDF::Layout::TextBox) dest = {page: canvas.context, type: :xyz, top: canvas.pos(0, box.height)} level1 = main.add_item(box.text, destination: dest) end layer_heading2 = proc do |canvas, box| next unless box.kind_of?(HexaPDF::Layout::TextBox) dest = {page: canvas.context, type: :xyz, top: canvas.pos(0, box.height)} level1.add_item(box.text, destination: dest) end composer.style(:heading1, font_size: 20, underlays: [layer_heading1]) composer.style(:heading2, font_size: 16, underlays: [layer_heading2]) composer.text('Heading 1', style: :heading1) composer.text('Heading 1.2', style: :heading2) composer.text('Heading 2', style: :heading1) composer.text('Heading 2.1', style: :heading2)
composer.text('Heading 2.2', style: :heading2) end "},{"loc":"http://hexapdf.gettalong.org/documentation/document-creation/index.html","title":"Introduction","tags":"","text":" Introduction This documentation section is about creating a new PDF document and its contents from scratch. So think creating an invoice and not combining pages from multiple documents. There are basically two ways to achieve this with HexaPDF: By using the high-level document layout functionality available in the HexaPDF::Layout module standalone or through HexaPDF::Composer. This is the recommend way to create documents. See Document Layout for details. By manually creating and building the contents yourself using the low-level HexaPDF::Content::Canvas API. This is possible but for complex documents you will probably re-implement all the logic that is already available in the document layout functionality of HexaPDF. "},{"loc":"http://hexapdf.gettalong.org/documentation/document-creation/migrating-from-prawn.html","title":"Migrating from Prawn ","tags":"","text":" Code Comparison ExampleCreating a DocumentWorking with Graphics and TextOther Prawn FunctionalityPrawn functionality not yet supported in HexaPDFHexaPDF functionality not supported in Prawn Migrating from Prawn This how-to guide provides information and code samples for Prawn users to get familiar with HexaPDF. While Prawn and HexaPDF are different in their respective capabilities, HexaPDF can do many of the things that Prawn can do and can often be used instead of Prawn. Throughout this guide the following variables are consistently used: doc The Prawn document instance. document The HexaPDF document instance. composer The HexaPDF composer instance. canvas The HexaPDF canvas instance of a page. Code Comparison Example The following example shows the same document, a very simple invoice, being created in Prawn and in HexaPDF. It doesn’t use all available functionality in both libraries but shows general usage. A short comparison of the two code samples can be found after them. Here is the Prawn example, generating this result: require 'prawn' require 'prawn/table' doc = Prawn::Document.new(page_size: \"A4\", margin: [72, 72, 72, 72], compress: true) doc.font(\"Helvetica\") doc.font_size(12) doc.save_graphics_state do doc.canvas do doc.fill_color(\"77C3EC\") doc.fill_rectangle([0, 50], doc.bounds.right, 50) doc.fill_rectangle([0, doc.bounds.top], doc.bounds.right, 50) doc.fill_color(\"000000\") end end doc.float do doc.bounding_box([doc.bounds.right - 150, doc.cursor], width: 150, height: 100) do doc.stroke_bounds doc.text_box(\"Prawn Example Inc.\\nGarnish Street 3a\\n4567 New South East\\nWorld\", at: [5, doc.bounds.top - 5], width: 140, height: 90) end end doc.bounding_box([0, doc.cursor], width: 150, height: 100) do doc.stroke_bounds doc.text_box(\"Customer Here\\nAvailability Arcarde 1\\n 8901 Old North West\\nMoon\", at: [5, doc.bounds.top - 5], width: 140, height: 90) end doc.move_down(40) doc.font_size(24) do doc.text(\"Invoice 1234\") end doc.move_down(40) invoice_data = [[\"Item\", \"Amount\", \"Total Price\"],] 1.upto(10) do |i| invoice_data << [\"Super Dooper #{i}\", i, \"$ #{10*i}\"] end invoice_data << [\"\", \"\", \"$ 450\"] doc.table(invoice_data, width: doc.bounds.width, cell_style: {padding: 5, height: 25}, column_widths: [250, 80]) do |table| table.row(0).font_style = :bold table.row(0).background_color = \"EEEEEE\" table.row(-1).font_style = :bold table.row(-1).background_color = \"EEEEEE\" table.column(-2..-1).align = :right end doc.move_down(40) doc.formatted_text([{text: \"Please transfer the money to the following bank account:\\n\"}, {text: \"IBAN: \", styles: [:bold]}, {text: \"AT65 1234 1234 5678 9012 3456, \"}, {text: \"BIC: \", styles: [:bold]}, {text: \"ABCDAT12345\\n\"}, {text: \"Thank you for choosing us!\", styles: [:italic], size: 8}], align: :center) doc.render_file(\"invoice-prawn.pdf\") And here is the HexaPDF code with its result: require 'hexapdf' composer = HexaPDF::Composer.new(skip_page_creation: true) composer.page_style(:default, page_size: :A4) do |canvas, style| box = canvas.context.box(:media) canvas.save_graphics_state do canvas.fill_color(\"77C3EC\"). rectangle(0, 0, box.width, 50). rectangle(0, box.height - 50, box.width, 50). fill end style.frame = style.create_frame(canvas.context, 72) end composer.style(:base, font: \"Helvetica\", font_size: 12, line_spacing: 1.2) composer.new_page composer.text(\"HexaPDF Example Inc.\\nGarnish Street 3a\\n4567 New South East\\nWorld\", width: 150, height: 100, padding: 5, border: {width: 1}, position: :float, align: :right) composer.text(\"Customer Here\\nAvailability Arcarde 1\\n 8901 Old North West\\nMoon\", width: 150, height: 100, padding: 5, border: {width: 1}) composer.text(\"Invoice 1234\", font_size: 24, margin: [40, 0]) invoice_data = [[\"Item\", \"Amount\", \"Total Price\"],] 1.upto(10) do |i| invoice_data << [\"Super Dooper #{i}\", i, \"$ #{10*i}\"] end invoice_data << [\"\", \"\", \"$ 450\"] composer.table(invoice_data, column_widths: [250, 80], margin: [0, 0, 40]) do |args| args[0, 0..-1] = {font: [\"Helvetica\", variant: :bold], cell: {background_color: \"EEE\"}} args[-1, 0..-1] = {font: [\"Helvetica\", variant: :bold], cell: {background_color: \"EEE\"}} args[0..-1, 1..-1] = {text_align: :right} end composer.formatted_text([\"Please transfer the money to the following bank account:\\n\", {text: \"IBAN: \", font: [\"Helvetica\", variant: :bold]}, \"AT65 1234 1234 5678 9012 3456, \", {text: \"BIC: \", font: [\"Helvetica\", variant: :bold]}, \"ABCDAT12345\\n\", {text: \"Thank you for choosing us!\", font: [\"Helvetica\", variant: :italic], font_size: 8}], text_align: :center) composer.write(\"invoice-hexapdf.pdf\", optimize: true) Short comparison: The use of the HexaPDF::Composer#text method makes creating the text boxes with styling for the sender and recipient rather easy. Prawn’s bounding boxes are more versatile but also more verbose when doing this task. Use of the #formatted_text methods in Prawn and HexaPDF is quite similar which is no coincidence since the idea was taken from Prawn. What HexaPDF doesn’t allow but Prawn does is using HTML-like inline formatting. Both examples use the default method for optimizing the size of the output file. The PDF file created by HexaPDF is about 11% smaller than the one from Prawn. Creating a Document Document creation in Prawn and HexaPDF is very similar. The usual flow is to create a document instance at the beginning and to write the result at the end: # Prawn doc = Prawn::Document.new doc.text(\"Hello World\") # Do something doc.render_file(\"hello-prawn.pdf\") # HexaPDF document = HexaPDF::Document.new document.pages.add.canvas. font(\"Helvetica\", size: 10). text(\"Hello World\", at: [100, 500]) # Do something document.write(\"hello-hexapdf.pdf\") # HexaPDF Composer composer = HexaPDF::Composer.new composer.text(\"Hello World\") # Do something composer.write(\"hello-composer.pdf\") With HexaPDF there are two possible ways when creating a document: The first one shown creates a new document instance and is intended for small scale creation task. The reason for this is that it doesn’t really provide convenient document creation facilities out of the box. Have a look at the Canvas Tutorial to get started. The second one uses the HexaPDF::Composer class which is similar to Prawn’s document class in that it provides convenience methods for creating the contents of a document. Since one can access the document instance, it is also possible to do low-level stuff when needed. This is what one would usually use. Have a look at the Composer Tutorial to get started. Additionally, there is also the possibility to use a block form when creating a document: # Prawn Prawn::Document.generate(\"hello-prawn.pdf\") do |doc| # Do something with the document end # HexaPDF Composer HexaPDF::Composer.create(\"hello-composer.pdf\") do |composer| # Do something with the composer end Working with Graphics and Text When working with Prawn one is really mostly working with the Prawn::Document instance which is the catch-all object doing everything. It also provides the graphics methods that directly map to PDF operators as well as some convenience methods for more complex tasks, like drawing circles. When these methods are invoked, they are applied to the content stream of the current page. Once the page is changed to a new page, new invocations apply to the new page. Another thing to take into account is the default use of a document bounding box in Prawn that influences the position of these operations. To explicitly disable this bounding box one needs to use the Prawn::Document#canvas method. HexaPDF has an explicit canvas class that is associated with a page. Any operation on such a canvas instance will only ever apply to that single page. And there is no bounding box whatsoever; so all coordinates are relative to the page’s origin at the bottom left. The canvas methods are intentionally low-level as this class should just be a thin layer of convenience methods above the respective PDF operators. The HexaPDF composer class provides high-level methods for working with text, images, … and is more in line with what one would expect coming from Prawn. The current canvas object can be accessed via HexaPDF::Composer#canvas and through this all graphical operations are available. The following lists show the HexaPDF equivalents of common operations: Basic path construction methods directly supported by PDF doc.move_to, doc.line_to, doc.curve_to, doc.rectangle canvas.move_to, canvas.line_to, canvas.curve_to, canvas.rectangle canvas.close_subpath canvas.end_path These methods are basically the same in Prawn and HexaPDF but have slightly different interfaces. E.g. doc.curve_to uses a :bounds argument where as canvas.curve_to allows specifying either of the two bezier points :p1 and/or :p2, for a complete mapping to
PDF operators. Additional path construction methods doc.line, doc.vertical_line, doc.horizontal_line, doc.curve, doc.rounded_rectangle, doc.polygon, doc.rounded_polygon, doc.circle, doc.ellipse canvas.line, canvas.polyline, canvas.polygon, canvas.circle, canvas.ellipse, canvas.arc canvas.graphic_object canvas.draw HexaPDF also supports rounded variants of rectangles and polygons, just provide the radius argument to the methods. The #arc method works similar to #curve_to but is actually implemented in a separate class as a so called graphic object. These graphic objects provide an easy way to extend the available shapes. Built-in are, for example, implementations for arcs in center and endpoint parameterizations as well as an implementation of solid arcs. Path painting methods doc.fill, doc.stroke, doc.fill_and_stroke, doc.close_and_stroke canvas.fill, canvas.stroke, canvas.fill_stroke, canvas.close_stroke, canvas.close_fill_stroke, canvas.clip_path The methods practically work the same in Prawn and HexaPDF. Note that Prawn doesn’t have an explicit method for defining a clipping path. In addition to these methods that directly map to a PDF operator, Prawn also defines helper methods for applying filling or stroking operations to a single shape, like a rectangle. Since HexaPDF doesn’t define such methods, one needs to invoke the appropriate path painting method after drawing the shape(s): doc.fill_rectangle([100, 100], 200, 50) # Prawn canvas.rectangle(100, 100, 200, 50).fill # HexaPDF Path property methods doc.line_width=, doc.cap_style=, doc.join_style=, doc.dash canvas.line_width, canvas.line_cap_style, canvas.line_join_style, canvas.line_dash_pattern, canvas.miter_limit Color methods doc.fill_color, doc.stroke_color canvas.fill_color, canvas.stroke_color Prawn supports setting an RGB color using a hex color string and a CMYK color using four values. HexaPDF supports those two methods as well as color strings of the form ‘RGB’ (in addition to of ‘RRGGBB’), three values for an RGB color, CSS Color Module Level 3 color names and one value for grayscale colors. Canvas transformation methods doc.translate, doc.rotate, doc.scale canvas.transform, canvas.translate, canvas.scale, canvas.rotate, canvas.skew Text drawing and positioning methods doc.cursor, doc.move_cursor_to, doc.move_down, doc.move_up, doc.pad_top, doc.pad_bottom, doc.draw_text, doc.text, doc.text_box, doc.formatted_text, doc.formatted_text_box canvas.begin_text, canvas.end_text, canvas.text, canvas.show_glyphs, canvas.show_glyphs_only, canvas.text_cursor, canvas.move_text_cursor, canvas.text_matrix composer.x, composer.y, composer.text, composer.formatted_text Prawn has the notion of a cursor which is the current vertical position on a page. Most operations will be done at the current cursor position, with the horizontal position being the left side of the current bounding box. HexaPDF’s canvas object has no notion of a cursor but the composer has something similar, exposed through the composer.x and composer.y methods. These coordinates indicate the position of the next box placement. Most of the text drawing methods of Prawn support various options like :character_spacing to style the text itself. It is also possible to use HTML-like inline formatting tags. The only real low-level method for text output is doc.draw_text. HexaPDF canvas’ methods are intentionally low-level to allow the full spectrum of PDF functionality. One would normally only use canvas.text or the high-level facilities provided by the composer and its associated classes. Text property methods doc.font, doc.font_size, doc.default_leading, doc.text_rendering_mode canvas.font, canvas.font_size, canvas.character_spacing, canvas.horizontal_scaling, canvas.text_rise, canvas.word_spacing, canvas.leading, canvas.text_rendering_mode While HexaPDF supports text properties on the canvas class using dedicated methods, Prawn mostly supports them through options passed to e.g. doc.text. This way kerning, character spacing, leading and text color can be specified. When using the HexaPDF::Composer class and its box system, styling of text works through an explicit style object of class HexaPDF::Layout::Style. Such a style object can be applied to a whole text box (e.g. for text alignment, padding, margin, border, …) as well as to text fragments (e.g. for font, text color, character spacing, …). Other methods doc.save_graphics_state, doc.restore_graphics_state, doc.transparency, doc.image canvas.save_graphics_state, canvas.restore_graphics_state, canvas.opacity, canvas.rendering_intent, canvas.image, canvas.xobject, canvas.marked_content_point, canvas.marked_content_sequence, canvas.end_marked_content_sequence composer.image Other Prawn Functionality Tables (doc.table) This functionality is not part of Prawn itself but part of the official prawn-table gem. Creating tables with Prawn is very easy and straightforward, with advanced functionality also available. HexaPDF also has a table box implementation which is quite similar: # Prawn doc.table([['Cell 1', 'Cell 2'], ['Row 2 Cell 1', 'Row 2 Cell 2']]) # HexaPDF composer.table([['Cell 1', 'Cell 2'], ['Row 2 Cell 1', 'Row 2 Cell 2']]) Both, Prawn and HexaPDF, support defining cell borders and background colors as well as column and row spans, can selectively apply styling to certain cell ranges, and split the table. In addition, HexaPDF’s implementation allows any kind of content in a cell while Prawn is limited to text, images or sub-tables. Column box (doc.column_box) HexaPDF also has the notion of a column box: # Prawn doc.column_box([0, doc.cursor], columns: 2, width: doc.bounds.width) do doc.text(\"Some content here\") end # HexaPDF composer.column(columns: 2, gaps: 10) do |column| column.text(\"Some content here\") end The column box works like any other box. It can use position: :flow for using the shape of the current frame instead of just a rectangular region. And it can make all column heights (roughly) equal if specified to do so. Repeatable content (doc.repeat) This can be done in HexaPDF by iterating over the pages, getting their canvas objects and drawing on them: # Prawn doc.repeat(:all) do doc.draw_text(\"All pages\", at: [0, 0]) end # HexaPDF document.pages.each do |page| page.canvas.text(\"All pages\", at: [0, 0]) end Granted, this doesn’t look as nice but it allows for more flexibility. Want to put that repeated content into the background? Use the underlay canvas. Stamps (doc.create_stamp, doc.stamp, doc.stamp_at) These are just Form XObjects and those are directly supported by HexaPDF: # Prawn doc.create_stamp(\"pdf\") do doc.draw_text(\"PDF software\", at: [50, 0]) end doc.stamp_at(\"pdf\", [200, 100]) # HexaPDF stamp = document.add({Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 50]}) stamp.canvas.text(\"PDF software\", at: [0, 0]) canvas.xobject(stamp, at: [200, 100]) # HexaPDF Composer stamp = composer.create_stamp(100, 50) do |canvas| canvas.text(\"PDF software\", at: [0, 0]) end composer.image(stamp) The HexaPDF::Composer#create_stamp method allows creating such stamps but currently only provides a canvas to draw on (and not a composer-like interface). Document encryption Encrypting a document in Prawn (doc.encrypt_document) is possible but should not be done. The reason for this is that it only allows for a very weak encryption scheme (40bit RC4). In contrast, HexaPDF supports all standard encryption schemes, up to the latest one from PDF 2.0 (AES 256bit): # Prawn doc.encrypt_document(user_password: 'foo') # HexaPDF document.encrypt(user_password: 'foo') Document outline Prawn supports defining a document outline (a.k.a. bookmarks) for a document. This can also be done by HexaPDF. Additionally, it supports setting the text color for an outline item as well as whether the text should appear in bold and/or italic, and actions instead of destinations are also supported. # Prawn 5.times { doc.start_new_page } doc.outline.define do section(\"Section 1\", destination: 1) do page(title: \"Page 2\", destination: 2) page(title: \"Page 3\", destination: 3) section(\"Section 1.1\") do page(title: \"Page 3\", destination: 4) end end end # HexaPDF 5.times { document.pages.add } document.outline.add_item(\"Section 1\", destination: 0) do |sec1| sec1.add_item(\"Page 2\", destination: document.pages[1]) sec1.add_item(\"Page 3\", destination: 2) sec1.add_item(\"Section 1.1\", text_color: \"red\", flags: [:bold]) do |sec11| sec11.add_item(\"Page 4\", destination: 3) end end Prawn functionality not yet supported in HexaPDF There are some things that are not yet supported in HexaPDF via convenience methods: Bounding boxes (doc.bounding_box, doc.span, doc.indent). This functionality will most probably not be incorporated into HexaPDF in this way due to a different approach in document layouting using the HexaPDF::Composer class and the box system. Gradients (doc.fill_gradient, doc.stroke_gradient) Soft masks (doc.soft_mask) Grids (doc.define_grid, doc.grid) HexaPDF functionality not supported in Prawn Since HexaPDF is a full-blown PDF library, it can do many more things than just creating a document, for example: Advanced boxes In addition to the column box HexaPDF also supports bullet and numbered lists. Existing PDF file as template Granted, there is prawn-template but it is very restricted in which files it can load/work with. Since HexaPDF is a fully-featured PDF library it can load any PDF file (even most damaged ones) as template and add content. Advanced file compression HexaPDF is built to create small files by default. The additional optimize: true option when writing a document activates some more features to achieve even better results. Compared to Prawn the PDF files created by HexaPDF are about 15% to 25% smaller. Interactive forms HexaPDF integrates functionality for the creation and pre-rendering of interactive forms a.k.a. AcroForms. This functionality is not yet integrated into the composer but can manually be combined
with it. See the topic “Interactive Forms” and the interactive form example for what’s possible. Digital signatures HexaPDF supports adding one or more digital signatures to a document. Such signed documents will be visually flagged in supported PDF readers. See the topic “Digital Signatures” and HexaPDF::DigitalSignature::Signatures#add for more information on this. "},{"loc":"http://hexapdf.gettalong.org/documentation/encryption/index.html","title":"Encryption","tags":"","text":" How Encryption WorksSecurity Handlers Encryption PDF documents have built-in support for securing them by encrypting the content and assigning usage rights. The main access point to this facility in HexaPDF is HexaPDF::Document#encrypt. How Encryption Works The PDF specification defines the algorithms that are used for encrypting, namely RC4 or AES, and how the encryption should be done. RC4 is an old and nowadays insecure algorithm and should be avoided. AES is much better. Both algorithms can be used with various key length: RC4 from 40bit to 128bit and AES 128bit and 256bit. The latter, AES 256bit, was only standardized with PDF 2.0. Prior to this it was an Adobe extension. So for now the best option is AES 128bit to get good security with the broadest compatibility. This is the default setting for HexaPDF. When a PDF is encrypted, all strings and byte streams (e.g. the page contents) are encrypted. Meta data streams in XMP format can be exempt from the encryption so that tools that parse the PDF file can still locate and extract them. This means that without the proper password viewing of the PDF is not possible. The encryption key itself is provided by a so called security handler (see next section). This means that the “how”, i.e. how the encryption is done, is always the same, only the derivation of the encryption key is different. Security Handlers Security handlers provide the encryption key to the encryption facility and can specify additional information. The standard security handler as defined by the PDF specification needs to be implemented by every PDF reader application and calculates the encryption key from a password. Actually, one can define two passwords: The user password is needed for opening the PDF document and is the one provided to users of the PDF document. The owner password also allows opening the PDF document but without any restrictions. In addition to deriving the encryption key from the passwords, the standard security handler provides a way to set usage rights, e.g. printing allowed, copying allowed, and so on. These usage rights should be enforced by a PDF reader application if the document was opened with the user password but not when opened with the owner password. See HexaPDF::Encryption::StandardSecurityHandler::Permissions for a list of all available permissions. It is also possible to just assign usage rights. Then the PDF document is still encrypted but a user doesn’t need to enter a password for viewing the PDF document. However, the usage rights are still applied. In addition to the standard security handler there is also a security handler for creating the encryption key using certificates. However, this functionality is probably only used in enterprise settings where a certain PDF reader application is mandated. "},{"loc":"http://hexapdf.gettalong.org/documentation/getting-started/index.html","title":"Getting Started","tags":"","text":" InstallationUsageFeature OverviewDocumentation Organization Getting Started Installation HexaPDF is a PDF library written in the Ruby programming language. To use it you first need to install a Ruby interpreter for your operating system (Linux, Windows, macOS and many others are supported). Please consult the official documentation for the required steps - don’t worry, it is very easy! Just ensure that you have Ruby version 2.6 or above (better is 3.0 or above) installed as prior versions are not supported. If you are new to Ruby, you might wanna have a look at a Ruby tutorial first, to get acquainted with the language. HexaPDF is 100% Ruby and provides a very idiomatic interface. So once you know Ruby, you should feel right at home with HexaPDF! At the Ruby website you will find all the necessary materials, whether you are new to programming entirely or you already know a few other languages. Once the Ruby interpreter is available, installing HexaPDF as a Rubygems package is as easy as executing gem install hexapdf from the command line. This will install HexaPDF and its few dependencies. To make sure that HexaPDF is correctly installed, you can run the following command which returns the installed version: hexapdf version Usage The HexaPDF package contains the library as well as the hexapdf CLI application. The application can be used to perform common tasks like merging PDF files, decrypting or encrypting PDF files and so on. See the CLI manual page for details. When HexaPDF is used as a library, it can be used to do all the tasks that the command line application does and much more. Here is a simple “Hello World” example that shows how to create a PDF file: require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas canvas.font('Helvetica', size: 50). fill_color(0, 128, 255) canvas.text(\"Hello World\", at: [150, 396]) doc.write(\"hello-world.pdf\") To get more information on what is going on in this code example, have a look at the Creating a PDF from Scratch tutorial page. Feature Overview Pure Ruby Minimal dependencies (‘cmdparse’ for hexapdf binary, ‘geom2d’ for document layout) Easy to use, Ruby-esque API Fully tested with 100% code coverage Low-level API with high-level convenience interface on top Complete canvas API which directly maps to PDF internal operators Path drawing operations like lines, polylines, rectangles, bézier curves, arcs, … Embedding images in JPEG (lossy), PNG (lossless) and PDF (vector) format with support for transparency UTF-8 text via TrueType fonts and support for font subsetting High-level document composition engine with automatic content layout Flowing text around other content Pre-define styles and assign to multiple content boxes Automatic page breaks (Un)ordered lists Multi-column layout PDF forms (AcroForm) with Adobe Reader like appearance generation Annotations Document outline Attaching files to the whole PDF or individual pages, extracting files Image extraction Encryption including PDF 2.0 features (e.g. AES256) Digital signatures File size optimization PDF object validation hexapdf binary for most common PDF manipulation tasks Documentation Organization The main documentation is organized by topic and those topics are visible in the sidebar. So let’s say you are a newcomer, then you would usually start at Basics. You need to work with interactive forms? Head over to Interactive forms. Each topic section contains basic information about the topic itself. Furthermore, it may also contain additional in-depth and background information, tutorials, how-tos and examples, all pertaining to the topic at hand. The reason for organizing the documentation by topic is that working with PDFs can entail many different things. Some need to create new PDF documents while others need to fill out forms or add digital signatures. Through organizing by topic users can get quickly up to speed with what they need. Additional documentation that doesn’t belong to a topic, like the API reference or the changelog can be found at the bottom of the side menu. If you don’t find what you are looking for in the available topic sections, use the search field at the top of the website to search for keywords. You will usually get some results pointing to parts of the API reference which might be of help. If you need still need help, open an issue or contact me. "},{"loc":"http://hexapdf.gettalong.org/documentation/hexapdf.1.html","title":"hexapdf CLI Manual","tags":"","text":" SYNOPSISDESCRIPTIONOPTIONSOptimization OptionsEncryption OptionsCOMMANDSbatchfilesfontsformhelpimagesimage2pdfinfoinspectmergemodifyoptimizesplitwatermarkversionPAGES SPECIFICATIONEXAMPLESmergemodifyoptimizesplitwatermarkformfilesimagesimage2pdfinfoinspectbatchEXIT STATUSSEE ALSOAUTHOR hexapdf - A Versatile PDF Manipulation Application SYNOPSIS hexapdf [OPTIONS] command [COMMAND OPTIONS]… DESCRIPTION hexapdf is an application for PDF manipulation. It is part of the hexapdf library which also allows PDF creation, among other things. Using the hexapdf application the following tasks can be performed with PDF files: Modifying an existing PDF file (see the modify command) Merging multiple PDF files into one (see the merge command) Splitting a PDF file into subsets (see the split command) Optimizing the file size of a PDF file (see the optimize command) Watermarking/Stamping a PDF onto another one (see the watermark command) Filling out an interactive PDF form (see the form command) Extracting embedded files (see the files command) Extracting images (see the images command) Converting images to PDF (see the image2pdf command) Showing general information of a PDF file (see the info command) Listing all fonts of a PDF file (see the fonts command) Batch execution of a command on multiple PDF files (see the batch command) Inspecting the internal structure of a PDF file (see the inspect command) The application contains a built-in help command that can be used to provide a quick reminder of a command’s purpose and its options. OPTIONS The following options can only be used when no command is specified: -v, --version Show the version of the hexapdf application and exit. These options are available on every command (except if they are overridden): --[no-]force Force overwriting existing files. Default: false. --strict Enable strict parsing and validation. By default, correctable parse error and validation problems are treated as warnings which allows processing most PDF files, even many corrupt ones and ones not strictly following the PDF
specifcation. If this option is used, correctable parse errors and uncorrectable validation problems are treated as errors. Note that a PDF file may have validation errors and still be usable since most viewing applications are very forgiving. --verbose, -v Enable more verbose output. There are three verbosity levels: 0 (no output), 1 (warning output) and 2 (warning and informational output). The default level is 1, specifying this option increases it to 2. --quiet Suppress any output by setting the verbosity level to 0. Also see the description of --verbose above. -h, --help Show the help for the application if no command was specified, or the command help otherwise. Optimization Options Theses options can only be used with the merge, modify and optimize commands and control optimization aspects when writing an output PDF file. Note that the defaults maybe different depending on the command. --[no-]compact Delete unnecessary PDF objects. This includes merging the base revision and all incremental updates into a single revision. Default: yes. --object-streams MODE Defines how object streams should be treated: generate will remove all exisiting object streams and generate new ones, delete will only remove existing object streams and preserve will do nothing. Default: preserve. --xref-streams MODE Defines how cross-reference streams should be treated: generate will add them, delete will remove them and preserve will do nothing. Default: preserve. --streams MODE Defines how streams should be treated: compress will compress them when possible, uncompress will uncompress them when possible and preserve will do nothing to them. Default: preserve. --[no-]compress-pages Recompress page content streams. This is a very expensive operation in terms of processing time and won’t lead to great file size improvements in many cases. Default: no. --[no-]prune-page-resources Removes unused objects from the page resources dictionaries. This is a very expensive operation in terms of processing time but can yield drastic size reductions in certain cases (e.g. for PDFs that contain pages from other PDFs). Default: no. --[no-]optimize-fonts Optimize embedded font files by removing normally unneeded font data. Note that this may have a negative effect on PDFs with forms since form entry usually requires fully embedded font files. Default: no. Encryption Options These options can only be used with the merge and modify commands and control if and how an output PDF file should be encrypted. All options except --decrypt automatically enable --encrypt. Note that if a password is needed to open the input file and if encryption parameters are changed, the provided password is not automatically used for the output file! --decrypt Remove any encryption. If neither --decrypt nor --encrypt are specified, the existing encryption configuration is preserved. --encrypt Encrypt the OUTPUT. If neither --decrypt nor --encrypt are specified, the existing encryption configuration is preserved. --owner-password PASSWORD The owner password to be set on the output file. This password is needed when operations not allowed by the permissions need to be done. It can also be used when opening the PDF file. If an owner password is set but no user password, the output file can be opened without a password but the operations are restricted as if a user password were set. Use - for PASSWORD for reading it from standard input. --user-password PASSWORD The user password to be set on the output file. This password is needed when opening the PDF file. The application should restrict the operations to those allowed by the permissions. Use - for PASSWORD for reading it from standard input. --algorithm ALGORITHM The encryption algorithm to use on the output file. Allowed algorithms are aes and arc4 but arc4 should only be used if it is absolutely necessary for compatibility reasons. Default: aes. --key-length BITS The length of the encryption key in bits. The allowed values differ based on the chosen algorithm: A number divisible by eight between 40 to 128 for arc4 and 128 or 256 for aes. Default: 128. Note: Using 256bit AES encryption can lead to problems viewing the PDF in many applications on various platforms! --force-V4 Force the use of PDF encryption version 4 if key length is 128 and algorithm is arc4. This option is probably only useful for testing the implementation of PDF libraries’ encryption handling. --permissions PERMS A comma separated list of permissions to be set on the output file: print allow printing modify_content allow modification of the content of pages copy_content allow text extraction and similar operations modify_annotation allow creation and modification of annotations and filling in of forms fill_in_forms allow filling in of forms even if modify_annotation is not set extract_content allow text and graphics extraction in accessibility cases assemble_document allow page modifications and bookmark creation high_quality_print allow high quality printing COMMANDS hexapdf uses a command-style interface. This means that it provides different functionalities depending on the used command, and each command can have its own options. There is no need to write the full command name for hexapdf to understand it, the only requirement is that is must be unambiguous. So using b for the batch command is sufficient. The same is true for long option names and option values. Any command that reads and writes a PDF file may do in-place processing of the file. This is automatically done if an input file name is the same as the output file name. Note that the option --force has to be used in this case. batch Synopsis: batch COMMAND FILES… This command allows executing a single command for multiple input files, thereby reducing the overall execution time. The first argument COMMAND is used as a hexapdf command line and must not contain the binary name, just everything else. The rest of the arguments are the input files. The specified command will be executed for each input file, with all occurences of {} being replaced by the file name. files Synopsis: files [OPTIONS] PDF This command extracts embedded files from the PDF. If the --extract option is not specified, the indices and names of the embedded files are just listed. -e [A,B,C,…], --extract [A,B,C,…] The indices of the embedded files that should be extracted. The value 0 can be used to extract all embedded files. -s, --[no-]search Search the whole PDF file instead of the standard locations, that is files attached to the document as a whole or to an individual page. Defaults to false. -p PASSWORD, --password PASSWORD The password to decrypt the PDF. Use - for PASSWORD for reading it from standard input. fonts Synopsis: fonts [OPTIONS] PDF This command list fonts of the PDF file. If the --pages option is not specified, all fonts in the whole file are listed. Otherwise all fonts occuring on the specified pages are listed (fonts may be listed multiple times, i.e. for each page). -i PAGES, --pages PAGES The pages from the PDF for which the fonts should be listed. See the PAGES SPECIFICATION below for details on the allowed format of PAGES. -p PASSWORD, --password PASSWORD The password to decrypt the PDF. Use - for PASSWORD for reading it from standard input. The following information is shown for each font: page The page number on which the font appears. name The name of the font as found in the PDF. type The type of the font. Can be ‘Type 1, ‘Type 1C’ (Type 1 font in Compact Font Format [CFF]), ‘Type 3’, ‘Truetype’, ‘CID CFF’ or ‘CID TrueType’. encoding The font’s encoding. emb ‘yes’ if the font is embedded sub ‘yes’ if the font is subset size The size of the embedded font file. Only valid if the font file is actually embedded. oid The PDF internal object identifier consisting of the object and generation numbers. form Synopsis: form [OPTIONS] INPUT [OUTPUT] This command allows working with interactive forms. If the OUTPUT file is not specified, all form fields are listed in page order. By default the field name followed by a help text in parentheses (if available) is shown, followed on the next line by the current value. Using the global --verbose option will show additional information like field type and location on the page. If OUTPUT is provided, the fields can be filled out interactively, via a template file or the fields can just be flattened. Form field flattening can also be activated in addition to filling out the form. When filling out the form interactively (the default), the command prompts for the values of the form fields and stores the updated PDF file in OUTPUT. The values for the form fields are asked in the same order as when listing the fields. If no input for a field is given, the field’s value is not changed from its current value. By using the --template option, the data for the fields is read from the given template file instead of the standard input. See the --template option for details. If the --flatten is specified but neither --fill nor --template, the form is just flattened. Otherwise the form is filled out and flattened in addtion. There exist two different types of PDF forms: The standard interactive forms (AcroForm) and the more advanced but proprietary and in PDF 2.0 deprecated XFA forms. HexaPDF only supports the standard AcroForm forms. It is possible to work with XFA forms to a certain degree but since the advanced features are not supported, the result may not be correct. --fill Fill out the form fields interactively. This is also the default if neither --fill nor --template nor --flatten is specified. -t TEMPLATE_FILE, --template TEMPLATE_FILE Use the given template file for filling out the values of the PDF form. This can be used to fill out a form without any further interaction. The TEMPLATE_FILE has to be a text file following a simple format: Field names have to start at the first column and have to be followed by a colon. If a field name contains a colon, prefix it
with a backslash. Everything after the colon until a line with a non-whitespace character in the first column is considered the field’s value. Leading and trailing whitespace as well as whitespace at the beginning of lines is stripped from the value. Here is an example for a template file: page1.field1: A simple value page1.field3: Another value spanning more than on line. Another form field: Value for this form field. --flatten Flattens the form fields by making them part of the content of the page. This option can be used standalone or in addition to --fill or --template. --[no-]viewer-override Specifies whether the PDF viewer should override the generated visual appearance. Note that not all viewers respect this setting. Defaults to using the setting from input PDF. --[no-]incremental-save Specifies whether an incremental save should be done instead of a full save. When using incremental save, the INPUT is written as is to OUTPUT and only the changes are appended. Defaults to true. -p PASSWORD, --password PASSWORD The password to decrypt the INPUT. Use - for PASSWORD for reading it from standard input. help Synopsis: help [COMMAND…] This command prints the application help if no arguments are given. If one or more command names are given as arguments, these arguments are interpreted as a list of commands with sub-commands and the help for the innermost command is shown. images Synopsis: images [OPTIONS] PDF This command extracts images from the PDF. If the --extract option is not specified, the images are listed with their indices and additional information, sorted by page number. Note that if an image is used multiple times on a page, only the first occurence of it will be included. The --extract option can then be used to extract one or more images, saving them to files called PREFIX-N.EXT where the prefix can be set via --prefix, N is the image index and EXT is either png, jpg or jpx. -e [A,B,C,…], --extract [A,B,C,…] The indices of the images that should be extracted. Use 0 or no value to extract all images. --prefix PREFIX The prefix to use when saving images. May include directories. Defaults to image. -s, --[no-]search Search the whole PDF file instead of the standard locations, that is, images referenced by pages. Defaults to false. -p PASSWORD, --password PASSWORD The password to decrypt the PDF. Use - for PASSWORD for reading it from standard input. The following information is shown for each image when listing images: index The image index needed when this image should be extracted. page The page number on which this image appears. oid The PDF internal object identifier consisting of the object and generation numbers. width The width of the image in pixels. height The height of the image in pixels. color The color space used for the image. Either gray, rgb, cmyk or other. comp The number of color components. bpc The number of bits per color component. x-ppi The pixels per inch (PPI) of the x-direction of the image, as found on the page. y-ppi The pixels per inch (PPI) of the y-direction of the image, as found on the page. size The file size of the image as stored in the PDF. type The image type. Either jpg (JPEG), jp2 (JPEG2000), ccitt (CCITT Group 3 or 4 Fax), jbig2 (JBIG2) or png (PNG). writable Either true or false depending on whether hexapdf supports the image format. image2pdf Synopsis: image2pdf [OPTIONS] [IMAGES…] OUTPUT This command converts one or more images into a single PDF file, one image per page. The various options allow setting a page size, scaling the images and defining margins. Images are always centered on the pages. Supported image formats are JPEG, PNG and PDF. Images in PNG format may take longer to process due to the way they are stored inside a PDF. -p PAGE_SIZE, --page-size PAGE_SIZE The PDF page size. The default value of auto chooses the page size based on the image dimensions. Either auto which chooses a size based on the image size or a valid page size like A4, A4-landscape or 595x842. The -landscape suffix can be added to any predefined page size. Common page sizes are A4, A5, A3, Letter and Legal. --[no-]auto-rotate If enabled (the default) pages are automatically rotated so that the pages and images always have the same orientation. I.e. landscape-oriented images go on landscape page, portrait-oriented images on portrait pages. Note that pages won’t be rotated if scaling is used and the image would fit into the requested page size. -s SCALE, --scale SCALE Defines how the images should be scaled. The default value of fit scales the images so that they optimally fit the pages. Otherwise SCALE is interpreted as the minimum number of pixels per inch (PPI) that the images should have. -m MARGINS, --margins MARGINS Defines the margins around the images. The argument MARGINS can either be a single number specifying the margin on all four sides, or four numbers separated by commas (like 10,20,30,40) specifying the top, right, bottom and left margins. Default: 0. Additionally, the Optimization Options and Encryption Options can be used. info Synopsis: info [OPTIONS] FILE This command reads the FILE and shows general information about it, like author information, PDF version used, encryption information and so on. -c, --check Checks the PDF FILE for parse and validation errors and prints them out. If the process doesn’t abort, HexaPDF is still able to handle the file by correcting the errors. This means that the other commands can use the FILE as input although it is damaged. -p PASSWORD, --password PASSWORD The password to decrypt the PDF FILE. Use - for PASSWORD for reading it from standard input. inspect Synopsis: inspect [OPTIONS] FILE [[CMD [ARGS]]…] This command is useful when one needs to inspect the internal object structure or a stream of a PDF file. If no arguments are given, the interactive mode is started. This interactive mode allows you to execute inspection commands without re-parsing the PDF file, leading to better performance for big PDF files. Otherwise the arguments are interpreted as interactive mode commands and executed. It is possible to specify more than one command in this way by separating them with semicolons, or whitespace in case the number of command arguments is fixed. -p PASSWORD, --password PASSWORD The password to decrypt the PDF FILE. Use - for PASSWORD for reading it from standard input. If an interactive mode command or argument is OID[,GEN], object and generation numbers are expected. The generation number defaults to 0 if not given. PDF objects are always shown in the native PDF syntax. The available commands are: OID[,GEN] | o[bject] OID[,GEN] Print the given indirect object. r[ecursive] OID[,GEN] Print the given indirect object recursively. This means that all references found in the object are resolved and the resulting objects themselves recursively printed. To make it easier to compare such structures between PDF files, the entries of dictionaries are printed in sorted order and the original references are replaced by custom ones. Once an indirect object is first encountered, it is preceeded by either {obj INDEX} or {obj page PAGEINDEX} where INDEX is an increasing number and PAGEINDEX is the index of the page. Later references are replaced by {ref INDEX} and {ref page PAGEINDEX} respectively. Here is a simplified example output: << /Info {obj 1} << /Producer (HexaPDF version 0.9.3) >> /Root {obj 2} << /Pages {obj 3} << /Count 1 /Kids [{obj page 1} << /MediaBox [0 0 595 842] /Parent {ref 3} /Type /Page >>] /Type /Pages >> /Type /Catalog >> /Size 4 >> On line 2 the indirect object for the key /Info is shown, preceeded by the custom reference. On line 8 is an example for a page object with the special reference key. And on line 10 there is a back reference to the object with index 3 which is started on line 6. s[tream] OID[,GEN] Print the filtered stream, i.e. the stream with all filters applied. This is useful, for example, to view the contents of content streams. raw[-stream] OID[,GEN] Print the raw stream, i.e. the stream as it appears in the file. This is useful, for example, to extract streams into files. rev[ision] [NUMBER] If no argument is given, prints information about all revisions of the document. The information includes the number of objects in the revision, whether it was signed and the byte range. A PDF document contains at least one revision but may contain more if it was updated incrementally. If NUMBER is specified, the specified revision is output. This is useful, for example, to extract a signed revision to view it in the state as it has been signed. x[ref] OID[,GEN] Print the cross-reference entry for the given indirect object. c[atalog] Print the catalog dictionary. t[railer] Print the trailer dictionary. p[ages] [RANGE] Print the pages with their object and generation numbers and their associated content streams. If a range is specified, only those pages are listed. See the PAGES SPECIFICATION below for details on the allowed format of RANGE. po PAGE Print the dictionary object for the given page. See the PAGES SPECIFICATION below for details on the allowed format of PAGE. Note that only the first page is printed, even if a page range is specified. ps PAGE Print the whole content stream for the given page. If the content stream consists of mulitple stream objects, all will be printed. See the PAGES SPECIFICATION below for details on the allowed format of PAGE. Note that only the content stream of the first page is printed, even if a page range is specified. psd PAGE Print the content stream for the given page in decoded form, i.e. using more descriptive operator names as well as decoding the text parts. Otherwise it works the same as ps. pc | page-count Print the number of pages. search REGEXP Print all objects matching the pattern. Each object is preceeded by obj OID GEN and followed by endobj to make it easier to further explore the data. h[elp] Print the available commands with a short description.
q[uit]Quit Quit the interactive mode. merge Synopsis: merge [OPTIONS] { INPUT | --empty } [INPUT]… OUTPUT This command merges pages from multiple PDFs into one output file which can optionally be encrypted/decrypted and optimized in various ways. The first input file is the primary file from which meta data like file information, outlines, etc. are taken from. Alternatively, it is possible to start with an empty PDF file by using --empty. The order of the input files is important as the pages are added in that order. Note that the --password and --pages options always apply to the last preceeding input file. An input file can be specified multiple times, using a different --pages option each time. The --password option, if needed, only needs to be used the first time. -p PASSWORD, --password PASSWORD The password to decrypt the last input file. Use - for PASSWORD for reading it from standard input. -i PAGES, --pages PAGES The pages (optionally rotated) from the last input file that should be included in the OUTPUT. See the PAGES SPECIFICATION below for details on the allowed format of PAGES. Default: 1-e (i.e. all pages with no additional rotation applied). -e, --empty Use an empty file as primary file. This will lead to an output file that just contains the included pages of the input file and no other data from the input files. --interleave Interleave the pages from the input files: Takes the first specified page from the first input file, then the first specified page from the second input file, and so on. After that the same with the second, third, … specified pages. If fewer pages were specified for an input file, the input file is just skipped for the rest of the rounds. Additionally, the Optimization Options and Encryption Options can be used. modify Synopsis: modify [OPTIONS] INPUT OUTPUT This command modifies a PDF file. It can be used to select pages that should appear in the output file and/or rotate them. The output file can also be encrypted/decrypted and optimized in various ways. -p PASSWORD, --password PASSWORD The password to decrypt the INPUT. Use - for PASSWORD for reading it from standard input. -i PAGES, --pages PAGES The pages (optionally rotated) from the INPUT that should be included in the OUTPUT. See the PAGES SPECIFICATION below for details on the allowed format of PAGES. Default: 1-e (i.e. all pages with no additional rotation applied). -e FILE, --embed FILE Embed the given file into the OUTPUT using built-in features of PDF. This option can be used multiple times to embed more than one file. --annotations MODE Handle the annotations of the included pages by either removing them (remove) or flattening them (flatten). Either way there are no annotations left afterwards. Additionally, the Optimization Options and Encryption Options can be used. optimize Synopsis: optimize [OPTIONS] INPUT OUTPUT This command uses several optimization strategies to reduce the file size of the PDF file. By default, all strategies except page compression are used since page compression may take a very long time without much benefit. -p PASSWORD, --password PASSWORD The password to decrypt the INPUT. Use - for PASSWORD for reading it from standard input. The Optimization Options can be used with this command. Note that the defaults are changed to provide good compression out of the box. split Synopsis: split [OPTIONS] INPUT [OUTPUT_SPEC] This command splits the input file into multiple output files, using different strategies: The default strategy is to split the input file into output files with each containing one page. So splitting is done by page number. The other available strategy is to split by page size where pages with the same page size get put into the same output file. The OUTPUT_SPEC argument defines the naming scheme for the output files. If it is not provided, the default value of INPUT_WITHOUT_EXT_%04d.pdf is used where INPUT_WITHOUT_EXT is the INPUT without the file extension. A printf-style format string like the default ‘%04d’ can (should) be included so that different output files are created. How the printf-style format string is interpreted depends on the strategy: When splitting into individual pages (i.e. per page number), the format string is replaced by the formatted page number. So with the default OUTPUT_SPEC files of the form INPUT_0001.pdf, INPUT_0002.pdf, … and so on are created. When splitting by page size, the format string itself is ignored and is replaced with the name of the page size, e.g. A4 or Letter. If the name of the page size can’t be determined, the name WIDTHxHEIGHT is used. -s STRATEGY, --strategy STRATEGY Defines how the PDF file should be split: page_number (the default) splits into individual pages and page_size splits by page size. -p PASSWORD, --password PASSWORD The password to decrypt the INPUT. Use - for PASSWORD for reading it from standard input. Additionally, the Optimization Options and Encryption Options can be used. Those options are applied to each output file. watermark Synopsis: watermark [OPTIONS] INPUT OUTPUT This command uses one ore more pages from a PDF file and applies them as background or stamp (depending on the --type option) on another PDF file. If multiple pages are selected from the watermark PDF, the --repeat option can be used to specify how they should be applied. -w WATERMARK, --watermark-file WATERMARK The PDF file that should be used for watermarking. -i PAGES, --pages PAGES The pages from the WATERMARK PDF that should be used. The first WATERMARK page is applied to the first INPUT page, the second WATERMARK page to the second INPUT page and so on. If there are fewer WATERMARK pages than INPUT pages, the --repeat option comes into play. See the PAGES SPECIFICATION below for details on the allowed format of PAGES. Default: 1. -r REPEAT_MODE, --repeat REPEAT_MODE Specifies how the WATERMARK pages should be repeated: last (the default) will only repeat the last WATERMARK page whereas all will cyclically repeat all WATERMARK pages. -t WATERMARK_TYPE, --type WATERMARK_TYPE Specifies how the WATERMARK pages are applied to the INPUT pages: background (the default) applies them below the page contents and stamp applies them above the page contents. -p PASSWORD, --password PASSWORD The password to decrypt the INPUT. Use - for PASSWORD for reading it from standard input. Additionally, the Optimization Options and Encryption Options can be used. version This command shows the version of the hexapdf application. It is an alternative to using the global --version option. PAGES SPECIFICATION Some commands allow the specification of pages using a PAGES argument. This argument is expected to be a comma separated list of single page numbers or page ranges of the form START-END. The character ‘e’ represents the last page and can be used instead of a single number or in a range. If a number is preceded by an ‘r’, the pages are counted from the end (i.e. r1 would be the last page). The pages are used in the order in which the are specified. If the start number of a page range is higher than the end number, the pages are used in the reverse order. Single page numbers that are not valid are ignored. If a page number in a page range is higher than the page number of the last page, the page number of the last page is used instead. Step values can be used with page ranges. If a range is followed by /STEP, STEP - 1 pages are skipped after each used page. Additionally, the page numbers and ranges can be suffixed with a rotation modifier: l Rotate the page left, that is 90 degrees counterclockwise r Rotate the page right, that is 90 degrees clockwise d Rotate the page 180 degrees n Remove any set page rotation Note that this additional functionality may not be used by all commands (it is used, for example, by the modify command). Examples: 1,2,3: The pages 1, 2 and 3. 11,4-9,1,e,r3: The pages 11, 4 to 9, 1, the last page and the third last page, in exactly this order. 1-e: All pages of the document. 1-r1: Same as above. 1-r4: All pages of the document except the last three. e-1: All pages of the document in reverse order. 1-5/2: The pages 1, 3 and 5. 10-1/3: The pages 10, 7, 4 and 1. 1l,2r,3-5d,6n: The pages 1 (rotated left), 2 (rotated right), 3 to 5 (all rotated 180 degrees) and 6 (any possibly set rotation removed). EXAMPLES merge hexapdf merge input1.pdf input2.pdf input3.pdf output.pdf hexapdf merge -e input1.pdf input2.pdf input3.pdf output.pdf Merging: In the first case use input1.pdf as primary input file and merge the pages from input2.pdf and input3.pdf into it. In the second case an empty PDF file is used for merging the pages from the three given input files into it; the resulting output file will not have an meta data or other additional data from the first input file. hexapdf merge odd.pdf even.pdf --interleave combined.pdf Page interleaving: Takes alternately a page from odd.pdf and even.pdf to create the output file. This is very useful if you only have a simplex scanner: First you scan the front sides, creating odd.pdf, and then you scan the back sides, creating even.pdf. With the command the pages can be ordered in the correct way. modify hexapdf modify input.pdf -i 1,7-10 output.pdf Page selection: Select only the pages 1 and 7 to 10 from the input.pdf. hexapdf modify input.pdf -i 1-5,7-10,12-e output.pdf Page removal: Remove the pages 6 and 11 from the input.pdf. hexapdf modify input.pdf -i 1r,2-ed output.pdf Page rotation: Rotate the first page to the right, that is 90 degrees clockwise, and all other pages 180 degrees. hexapdf modify input.pdf --user-password my_pwd --permissions print output.pdf Encryption: Create the output.pdf from the input.pdf so that a password is needed to open it, and only allow printing. hexapdf modify input.pdf -p input_password --decrypt output.pdf Encryption removal: Create the output.pdf as copy of input.pdf but with the encryption removed. If the --decrypt was not used, the output file would retain
the encryption specification of the input file. optimize hexapdf optimize input.pdf output.pdf Optimization: Compress the input.pdf to get a smaller file size. split hexapdf split input.pdf out_%02d.pdf Split the input.pdf into individual pages, naming the output files out_01.pdf, out_02.pdf, and so on. hexapdf split input.pdf --strategy page_size Split the input.pdf into files based on their page size, with output file names like input_A4.pdf or input_Letter.pdf. watermark hexapdf watermark -w watermark.pdf -t stamp input.pdf output.pdf Applies the first page of the watermark.pdf as stamp on input.pdf. hexapdf watermark -w watermark.pdf -i 2-5 -r all input.pdf output.pdf Cyclically applies the pages 2 to 5 of the watermark.pdf as background on input.pdf. form hexapdf form input_form.pdf -v List all form fields of the input_form.pdf with additional information. hexapdf form input_form.pdf output.pdf Interactively fill out the input_form.pdf PDF form and save the result in output.pdf. hexapdf form --flatten --fill input_form.pdf output.pdf Interactively fill out the input_form.pdf PDF form, flatten it and save the result in output.pdf. files hexapdf files input.pdf hexapdf files input.pdf -e 1 Embedded files: The first command lists the embedded files in the input.pdf, the second one then extracts the embedded file with the index 1. images hexapdf images input.pdf hexapdf images input.pdf -e --prefix images/image Image info and extraction: The first command lists the images of the input.pdf, the second one then extracts the images into the subdirectory images with the prefix image. image2pdf hexapdf image2pdf image1.jpg image2.pdf image3.png output.pdf Create a PDF file output.pdf containing three pages with one image per page and the image fitted to the page. info hexapdf info input.pdf File information: Show general information about the PDF file, like PDF version, number of pages, creator, creation date and encryption related information. inspect hexapdf inspect input.pdf -o 3 Show the object with the object number 3 of the given PDF file. hexapdf inspect input.pdf Start the interactive inspection mode. batch hexapdf batch 'info {}' input1.pdf input2.pdf input3.pdf Execute the info command for all input files. hexapdf batch 'optimize --object-streams delete {} done-{}' input1.pdf input2.pdf input3.pdf Optimize the given input files, creating the three output files done-input1.pdf, done-input2.pdf and done-input3.pdf. EXIT STATUS The exit status is 0 if no error happened. Otherwise it is 1. SEE ALSO The hexapdf website for more information. AUTHOR hexapdf was written by Thomas Leitner t_leitner@gmx.at. This manual page was written by Thomas Leitner t_leitner@gmx.at. "},{"loc":"http://hexapdf.gettalong.org/documentation/implementation-status.html","title":"Implementation Status","tags":"","text":" Implementation Status This page gives an overview of which features of the PDF 2.0 specification are implemented in HexaPDF. The PDF 2.0 specification is freely available courtesy of the PDF Association and corporate sponsors, see https://www.pdfa-inc.org/product/iso-32000-2-pdf-2-0-bundle-sponsored-access/. In addition to the implemented parts of the specification, there also many work-arounds for dealing with damaged or invalid files. PDF 2.0 Feature Status Comment 1 Scope Just info 2 Normative references A list of reference docs 3 Terms and definitions A list of PDF related terms 4 Notation Just info 5 Version designations Just info 6 Conformance Just info 7 Syntax 7.1 General ☑ Just info 7.2 Lexical conventions ☑ 7.3 Objects ☑ 7.4 Filters 7.4.1 General ☑ 7.4.2 ASCIIHexDecode filter ☑ 7.4.3 ASCII85Decode filter ☑ 7.4.4 LZWDecode and FlateDecode filters ☑ Parameter “EarlyChange” is not supported 7.4.5 RunLengthDecode filter ☑ 7.4.6 CCITTFaxDecode filter ☑ Implemented as pass-through 7.4.7 JBIG2Decode filter ☑ Implemented as pass-through 7.4.8 DCTDecode filter ☑ Implemented as pass-through 7.4.9 JPXDecode filter ☑ Implemented as pass-through 7.4.10 Crypt Filter ☐ 7.5 File Structure ☑ 7.6 Encryption 7.6.1 General ☑ Just info 7.6.2 Application of encryption ☑ EFF is not supported 7.6.3 General encryption algorithm ☑ 7.6.4 Standard security handler ☑ 7.6.5 Public-key security handler ☐ 7.6.6 Crypt filters ☐ Don’t seem to be used much 7.6.7 Unencrypted wrapper document ☐ 7.7 Document structure ☑ 7.8 Content streams and resources ☑ 7.9 Common data structures ☑ 7.10 Functions ☐ 7.11 File specifications ☑ 7.12 Extensions dictionary ☐ 8 Graphics 8.1 General ☑ Just info 8.2 Graphics objects ☑ 8.3 Coordinate systems ☑ 8.4 Graphics state ☑ 8.5 Path construction and painting ☑ 8.6 Colour spaces 8.6.1 General ☑ Just info 8.6.2 Colour values ☑ 8.6.3 Colour space families ☑ 8.6.4 Device colour spaces ☑ 8.6.5 CIE-Based colour spaces ☐ 8.6.6 Special colour spaces ☐ 8.6.7 Overprint control ☑ Not applicable 8.6.8 Colour operators ☑ 8.7 Patterns ☐ 8.8 External objects ☑ 8.9 Images 8.9.1 General ☑ Just info 8.9.2 Image parameters ☑ 8.9.3 Sample representation ☑ 8.9.4 Image coordinate system ☑ 8.9.5 Image dictionaries ☑ 8.9.6 Masked images ☐ 8.9.7 Inline images ☑ Only parsing 8.10 Form XObjects ☑ 8.11 Optional content ☑ 9 Text No support for vertical writing 9.1 General ☑ Just info 9.2 Organization and use of fonts ☑ 9.3 Text state parameters and operators ☑ 9.4 Text objects ☑ 9.5 Introduction to Font Data Structures ☑ 9.6 Simple fonts 9.6.1 General ☑ Just info 9.6.2 Type 1 fonts 9.6.2.1 General ☑ Just info 9.6.2.2 Standard Type 1 fonts (standard 14 fonts) (PDF 1.0-1.7) ☑ 9.6.2.3 Multiple master fonts ☐ 9.6.3 TrueType fonts ☑ 9.6.4 Type 3 fonts ☐ 9.6.5 Character encoding ☑ 9.7 Composite fonts 9.7.1 General ☑ Just info 9.7.2 CID-Keyed fonts overview ☑ Just info 9.7.3 CIDSystemInfo dictionaries ☑ 9.7.4 CIDFonts ☑ Partially 9.7.5 CMaps ☑ Partially 9.7.6 Type 0 font dictionaries ☑ 9.8 Font descriptors ☑ 9.9 Embedded font programs ☑ TrueType fonts only 9.10 Extraction of text content ☑ No CMap support for composite fonts 10 Rendering ☐ HexaPDF does not support rendering PDFs 11 Transparency 11.1 General ☑ Just info 11.2 Overview of transparency ☑ Just info 11.3 Basic compositing computations ☑ Just info 11.4 Transparency groups ☑ Just info 11.5 Soft masks ☑ Just info 11.6 Specifying transparency in PDF 11.6.1 General ☑ Just info 11.6.2 Specifying source and backdrop colours ☑ Just info 11.6.3 Specifying blending colour space and blend mode ☐ 11.6.4 Specifying shape and opacity 11.6.4.1 General ☑ Just info 11.6.4.2 Object shape and opacity ☑ Just info 11.6.4.3 Mask shape and opacity ☐ 11.6.4.4 Constant shape and opacity ☑ 11.6.5 Specifying soft masks 11.6.5.1 Soft-mask dictionaries ☐ 11.6.5.2 Soft-mask images ☐ 11.6.6 Transparency group XObjects ☐ 11.6.7 Patterns and transparency ☐ 11.7 Colour space and rendering issues ☐ 12 Interactive Features 12.1 General ☑ Just info 12.2 Viewer Preferences ☑ 12.3 Document-Level Navigation 12.3.1 General Just info 12.3.2 Destinations ☑ 12.3.3 Document Outline ☑ 12.3.4 Thumbnail Images ☑ 12.3.5 Collections 12.4 Page-Level Navigation 12.4.1 General ☑ Just info 12.4.2 Page Labels ☑ 12.4.3 Articles 12.4.4 Presentations 12.5 Annotations 12.5.1 General 12.5.2 Annotation Dictionaries ☑ 12.5.3 Annotation Flags Just manipulation, not used/respected yet 12.5.4 Border Styles ☑ Just for widgets 12.5.5 Appearance Streams ☑ Just for widgets 12.5.6 Annotation Types 12.5.6.1 General ☑ Just info 12.5.6.4 Text Annotation ☑ 12.5.6.5 Link Annotation ☑ 12.5.6.19 Widget Annotation ☑ 12.6 Actions 12.7 Interactive Forms 12.7.1 General ☑ Just info 12.7.2 Interactive Form Dictionary ☑ 12.7.3 Field Dictionaries 12.7.3.1 General ☑ 12.7.3.2 Field Names ☑ 12.7.3.3 Variable Text ☑ 12.7.3.4 Rich Text Strings 12.7.4 Field Types 12.7.4.1 General ☑ Just info 12.7.4.2 Button Fields ☑ No appearance generation for push buttons 12.7.4.3 Text Fields ☑ 12.7.4.4 Choice Fields ☑ 12.7.4.5 Signature Fields 12.8 Digital Signatures 12.8.1 General ☑ Just info 12.8.2 Transform Methods 12.8.2.1 General ☑ Just info 12.8.2.2 DocMDP ☑ 12.8.3 Signature Interoperability 12.8.3.1 General ☑ Just info 12.8.3.2 PKCS#1 Signatures ☑ 12.8.3.3 PKCS#7 Signatures as used in ISO 32000 ☑ 14 Document Interchange 14.1 General ☑ Just info 14.2 Procedure Sets ☑ 14.3.3 Document Information Dictionary ☑ 14.4 File Identifiers ☑ 14.6 Marked Content ☑ 14.7 Logical Structure 14.7.1 General ☑ 14.7.2 Structure Hierarchy ☑ 14.7.3 Structure Types 14.7.4 Structure Content 14.7.5 Structure Attributes 14.7.6 Example of Logical Structure 14.11.2 Page Boundaries ☑ "},{"loc":"http://hexapdf.gettalong.org/documentation/interactive-forms/index.html","title":"Interactive Forms","tags":"","text":" AcroForm vs XFA FormsInteractive Forms (AcroForm)Main Interactive Form DictionaryForm FieldsWidget AnnotationsForm FlatteningGeneral Sequence When Creating a Form Interactive Forms PDF is mainly used as format that provides consistent output regardless of the output device. However, it also provides various interactive features, one of them being support for forms. AcroForm vs XFA Forms The PDF specification provides two different ways for representing forms: AcroForm and XFA forms: AcroForms are static forms where each form field is predefined with respect to its size, possible values and so on. These types of forms have been in the PDF specification since PDF 1.2 and have broad support among PDF reader applications. When speaking of an interactive form we always mean an AcroForm. XFA forms (Adobe XML Forms Architecture) were introduce with PDF 1.5 and are much more advanced. They allow, for example, that fields are dependent on other fields and that text fields can vary in
size, possibly adding pages to the document. XFA forms have been deprecated with PDF 2.0. XFA forms need much more functionality in a PDF reader application than AcroForm forms. Due to this support for XFA forms is only available in certain commercial software applications. Since XFA forms are already deprecated, HexaPDF only has support for interactive forms. Interactive Forms (AcroForm) An interactive form consists of the main form dictionary, form fields and widget annotations. Together they define the structure and visible appearance of the form. The main form dictionary references the root fields which in turn can reference child fields. This allows one to build a hierarchy of fields and to inherit attributes from parent fields. Fields without child fields are called terminal fields. These terminal fields can have a visible appearance which is provided by a widget annotation. Each field can have zero, one or more associated widgets. Main Interactive Form Dictionary The main form dictionary can be referenced from the document catalog via the /AcroForm key (see HexaPDF::Type::Catalog#acro_form). It is implemented by the HexaPDF::Type::AcroForm::Form class. It only provides a few entries, the most important of which are: /Fields contains the array of root fields. See the various methods on the form class on how to access and modify form fields. /NeedAppearances defines whether appearances should be constructed by the PDF reader application. This is useful for libraries/applications which can’t do this due to the added complexity. They just set this key to true and the reader application constructs all appearances. See #need_appearances!. /DR//DA: The former is a dictionary containing the default resources (like fonts, color spaces, …) that should be used when constructing appearances. The latter defines a “default appearance string” that defines, at least, the font and font size to be used when creating text field appearances. The two keys together allow a PDF reader application to convert text input by a user into a proper PDF content stream. See #set_default_appearance_string. The form dictionary object is the main entry point for handling interactive forms with HexaPDF. It allows you to list, modify, create and delete the form fields. By relying on the provided convenience methods all the tedious but needed book-keeping is done behind the scenes. Form Fields A form field dictionary contains, among other things, the type of the field, its name and its value. There are four main types of fields which are further sub-divided: Button fields These fields represent interactive controls that a user can manipulate with a mouse. A button field may be a push button (something to click which produces a result immediately), a check box (for toggling between two states) or a radio button (typically one button in a set can be turned on). See HexaPDF::Type::AcroForm::ButtonField. Text fields These fields allow the user to input text from the keyboard. The text can be entered into a single-line or multi-line field and there is also the possibility for rich text strings which allow inline formatting of the text. See HexaPDF::Type::AcroForm::TextField. Choice fields These fields contain several text items of which the user can select one or more. A choice field may be presented as a scrollable list box or a combo box. The latter also allows the user to input a value other than the predefined ones. See HexaPDF::Type::AcroForm::ChoiceField. Signature fields These fields represent digital signatures and optional data for authenticating the signer name and the document’s contents. Each field has a unique full name consisting of all the partial names connected with dots, i.e. “parent.child.terminal”. This is possible because fields may be nested and the leafs of this field tree are called terminal fields. All other fields are non-terminal fields. It is possible that two different field instances have the same full field name. In such a case those two field instances actually represent the same field. This is most often the case when the widget annotation is embedded in the field instances instead of using the /Kids. The visual appearance is defined by associated widget annotations. Each terminal field can have zero, one or more associated widgets. For example, each widget annotation of a radio button field describes one possible selection value. Another use for multiple widget annotations is on a multi-page form where a name entered by the user should appear in a header or footer on every page. Text and choice fields are so called variable text fields whose visual appearance mainly consists of their text value. To create such an appearance it must be known what font and font size should be used. This is handled by the /DA dictionary field of the field or, if not set, by the /DA dictionary field of the main AcroForm dictionary. The value of the /DA key has to at least specify the font name and font size, with the font name being resolved to a font object through the /DR key of the main AcroForm dictionary. HexaPDF currently cannot handle variable text fields using an arbitrary font. The reason for this is that HexaPDF only uses the font information stored in the PDF itself and does not reference or load fonts stored on the host in case the font is not usable (e.g. because the character to glyph mapping was removed from the embedded font program). The standard PDF fonts Helvetica, Times and Courier work correctly and those are used in most interacctive forms. For all other fonts a fallback font configured through the ‘acro_form.fallback_font` configuration option will be used. It is also possible to use Javascript actions together with form fields, for example for calculating the value of a form field based on the values of other form fields. As HexaPDF does not support Javascript those calculations won’t work when filling out a form. However, HexaPDF does support some special Javascript based formatting methods, for example, for formatting numbers. Widget Annotations A widget annotation describes the visual appearance of a form field on a page. It is implemented by HexaPDF::Type::Annotations::Widget. As with all other annotations the widgets placement on the page is specified by the /Rect key and the visual appearance by the /AS and /AP keys. Additionally, each widget can specify a background color and border style and, depending on the type of the associated field, other properties. When using HexaPDF you don’t have to worry about the visual appearance. HexaPDF creates the needed appearance streams automatically using a default style similar to those found in popular PDF reader applications (see HexaPDF::Type::AcroForm::AppearanceGenerator). This is done by setting the needed widget annotation and field properties when the widget is created. Later these properties are used during the creation of the appearance (like some PDF readers would do when the /NeedAppearances key on the main form object is set). You can naturally provide the appearance streams yourself if needed since those are just Form XObjects. It is also possible to force the creation of appearance streams even if there are existing ones. This is useful, for example, if an interactive form was filled out with a PDF reader that created bad or invalid visual appearances. Note that existing appearances for button fields are not deleted because they could potentially be reused somewhere. Form Flattening Form flattening is the process of converting the whole interactive form or only some fields into a static representation that is not changable anymore. When a field is flattened all its widget annotations are flattened, meaning, their appearances are embedded into the page’s content and the widget annotations themselves are removed. Furthermore, the field itself is removed from the field tree. Flattening can be achieved via HexaPDF::Type::AcroForm::Form#flatten. General Sequence When Creating a Form If you want to create a PDF containing an interactive form, the general sequence of instructions is describe below. Whether you create the non-form parts of the pages before, during or after form creation is your choice. Most commenly, however, the form fields and their widgets are created together with the rest of the document because that makes it easier to get the needed information like the annotation rectangle. The sequence: First you create the main form dictionary using HexaPDF::Type::Catalog#acro_form(create: true). Either store the form object somewhere or just use the same method call to retrieve it later. Next, use one of the various #create_<FIELD> methods of the form object to create a field. Some often needed properties can be set directly with this invocation. Set additionally needed field properties using the various field methods. Create a widget using the #create_widget method of the field. When creating a button field, some properties are set by default to style the button field with a default appearance (otherwise it would be invisible). By using HexaPDF::Type::Annotations::Widget#background_color, HexaPDF::Type::Annotations::Widget#border_style and HexaPDF::Type::Annotations::Widget#marker_style you can change the widget’s appearance. Set the field’s value which will update all associated widgets to reflect that value. If you add additional widgets later, either manually call the field’s #update_widgets method afterwards or rely on the validation pass when writing out the PDF. Note, however, that if you change the appearance settings of a widget later, you need to force the creation of new appearance streams as this is not done automatically. "},{"loc":"http://hexapdf.gettalong.org/documentation/metadata/index.html","title":"Metadata","tags":"","text":" IntroductionUsage Metadata Introduction A PDF document can contain metadata in various locations. The main locations are the information dictionary in the trailer (accessible via document.trailer.info
and the XMP metadata stream in the document catalog (accessible via document.catalog[:Metadata]). Among the supported metadata are the title and author(s) of the document, the application creating the original document from which the PDF was converted, the PDF processor creating the PDF itself, and the creation and modification dates. Up to and including PDF 1.7 the information dictionary was as important as the main metadata stream. However, with PDF 2.0 all metadata keys except /CreationDate and /ModDate in the information dictionary have been deprecated in favor of the metadata stream. The metadata stream is the more standard way of defining metadata since it can be read by any XMP processor. This is even possible if the XMP processor doesn’t understand the PDF file format since the metadata stream is always written without any PDF filters and may also be exempted from being encrypted. HexaPDF fully supports the information dictionary as source and destination of metadata. Howver, it only supports the XMP metadata stream as destination, not as source. Usage There are two ways to access the metadata: manually or through a dedicated interface. Manually accessing the information dictionary can be done via document.trailer.info for the information dictionary and document.catalog[:Metadata] for the metadata stream. As mentioned above, the metadata stream has to be parsed manually to extract the needed information. require 'hexapdf' doc = HexaPDF::Document.open(ARGV[0]) puts doc.trailer.info[:Title] The dedicated interface is available via document.metadata. Once this method is invoked the metadata is read from the information dictionary and stored internally where it can be read and changed. When writing the PDF document, the stored information is written back to the information dictionary and the main metadata stream. Note that this will overwrite any metadata manually changed in the information dictionary and a possibly existing metadata stream. Whether the information dictionary and/or the XMP metadata stream are written can be controlled by using the appropriate methods. The convenience interface supports all metadata from the information dictionary. Additionally, it supports adding custom XMP metadata, albeit not to the full extent possible with XMP. For this, the used XMP namespaces as well as property types need to be registered beforehand. That additional XMP metadata is only written to the metadata stream. require 'hexapdf' doc = HexaPDF::Document.open(ARGV[0]) puts doc.metadata.title doc.metadata.author(['Author1', 'Author2']) doc.metadata.register_property_type('dc', 'contributor', 'UnorderedArray') doc.metadata.property('dc', 'contributor', ['Name1', 'Name2']) doc.encrypt(owner_password: 'Some password here', encrypt_metadata: false) doc.write('encrypted_with_XMP_metadata.pdf', optimize: true) "},{"loc":"http://hexapdf.gettalong.org/documentation/optional_content/index.html","title":"Optional Content / Layers","tags":"","text":" IntroductionDictionary TypesUsage Optional Content Introduction Optional content, also known as layers, provides the means to document authors and viewers to selectively show or hide contents. The content to be shown or hidden is marked up using optional content groups (OCGs). Those groups provide a name for the content they mark up and that name can optionally be shown in a user interface. This allows viewers to show or hide the content. It is also possible to show or hide individual groups using actions, for example, when clicking on a link. The visual representation in a user interface allows creating a tree like structure showing the groups. This structure does not necessarily represent nesting of groups inside each other, though nesting groups is possible. When creating a document the author can define the initial (i.e. default) state of all optional content groups, i.e. whether they are shown (“on”) or hidden (“off”). Additionally, the visual representation of the optional content group can be defined as well as the possibility to show or hide groups based on the current state of the viewer (e.g. based on the zoom level). That later functionality, though, is not supported by all PDF viewers. Sometimes it is necessary to define more complex requirements for showing or hiding optional content. By using optional content membership dictionaries it is possible to show or hide content based on one or more optional content group. This allows, for example, to show content if a group is off instead of on. Membership dictionaries are, however, not supported by all PDF viewers. Dictionary Types Optional content properties This is the main dictionary for working with optional content. It is implemented by HexaPDF::Type::OptionalContentProperties and accessible via HexaPDF::Document#optional_content. The properties dictionary provides convenience methods for listing all groups, creating them as well as membership dictionaries and returning the default configuration dictionary. It is important to note that only groups added to the properties dictionary are used by viewers. All groups that are used for marking up content but are not added to the properties dictionary, are ignored by viewers. Optional content configuration The configuration dictionaries describe the state of the groups and how that state may be changed automatically through external factors, like changing zoom levels. It is implemented by HexaPDF::Type::OptionalContentConfiguration. The PDF specification allows the definition of more than one configuration dictionary. The default configuration that is applied when the document is opened is accessible via HexaPDF::Type::OptionalContentProperties#default_configuration and it mandates that all OCGs are on by default. Next to setting and getting the state of groups the dictionary also provides convenience methods for defining the visual representation. Optional content group This dictionary represents an optional content group and is implemented by the class HexaPDF::Type::OptionalContentGroup. The class provides various convenience methods to define the default state of the group, like whether it is on or off. Optional content group dictionaries can either be created through the main optional content properties dictionary or when marking up content. Anytime a group is needed as argument, the name of the group or the group dictionary itself can be provided. Note that it is possible to define multiple groups with the same name. When this is done and a group is specified via a name the first group found in the list of groups in the optional content properties dictionary is used. Optional content membership A membership dictionary describes a more complex visibility policy for content. It is implemented by HexaPDF::Type::OptionalContentMembership. Content may be assigned directly to a group or to a membership dictionary which itself relies on the state of groups to define the visibility. Usage HexaPDF provides the HexaPDF::Content::Canvas#optional_content method for wrapping a part of a content stream inside the necessary instructions: canvas.optional_content('Hints') do # drawing instructions end This will automatically create an optional content group with the given name and add it to the list of known OCGs, or use the first found OCG with that name. Once an OCG is created, it can be accessed through the content properties dictionary and modified: hints_ocg = document.optional_content.ocg('Hints') hints_ocg.off! hints_ocg.add_to_ui(path: 'Debug') Optional content can also be used together with the document layout system. By specifying the property “optional_content” for a box, the content of that box can be controlled via the provided OCG: require 'hexapdf' HexaPDF::Composer.create('ocg.pdf', page_size: [0, 0, 300, 100]) do |composer| composer.text(\"This text can be toggled via the 'Text' layer.\", properties: {\"optional_content\" => 'Text'}) composer.document.optional_content.ocg('Text').add_to_ui end Lastly, it is possible to control the state of optional content groups via the SetOCGState action. Such an action can be triggered via a link, see the optional content example. "},{"loc":"http://hexapdf.gettalong.org/documentation/outline/index.html","title":"Outline / Bookmarks","tags":"","text":" IntroductionUsage Document Outline Introduction The document outline, also knows as bookmarks, provides a way for a user to interactively navigate through a document. The outline is structured as a tree and usually shown similar to this: - Root level item 1 - Another item - Sub item 4 - Another sub item 5 + Third root item 9 The above outline shows a few things: The outline has 5 visible items. From those 5 items 3 are at the root level without a parent item. And the other 2 are sub items of “Another item”. The numbers to the right of the items are the page numbers (viewers usually use the page labels instead of the page numbers). When clicking on an item with a page number, the viewer changes to that page. The second item “Another item” just acts as a container since it doesn’t have an associated page number. The last item “Third root item” is closed which means that its items are not shown. When clicking on the item text, the viewer changes to page 9. However, when clicking on the plus symbol, the hidden outline items would be shown. Some of the changeable properties of outline items have been mentioned above, here is the full list: Title This is the only mandatory property and it specifies the text of the outline item. Destination/Action An outline item usually has an associated destination or action that gets activated when clicking on the item’s text. It is possible to omit the destination/action. However, this is only useful if the item acts as a container, i.e. when it has sub items. Open or closed An outline item that has sub items may initially be open or closed. If it is open, its sub items are visible. Otherwise the sub items are not visible. Color of the item text
The default color of an outline item is black. However, it can be changed to any RGB color. Style characteristics of the item text The item text is normally shown with a regular style font variant. However, it is possible to use a bold, italic or bold italic font variant. Usage A PDF outline is represented by two dictionary types: Main outline dictionary This dictionary is referenced from the catalog via the /Outlines entry and is implemented by the class HexaPDF::Type::Outline. To make accessing it still easier there is the HexaPDF::Document#outline method which also automatically creates it if it does not exist. It just contains the list of root level items and only has two methods #add_item and #each_item. These two methods work like the ones in the outline item dictionary implementation. Outline item dictionary This dictionary represents a single outline item and is implemented by the HexaPDF::Type::OutlineItem class. It contains convenience methods for all things, like adding a sub item, iterating over all child items or setting the title. Items are either added to the main outline dictionary (root level items) or to an already created item: doc.outline.add_item(\"Section 1\") do |section1| # add root level item section1.add_item(\"Header 1.1\", destination: 0) # add sub item end # or section1 = doc.outline.add_item(\"Section 1\") section1.add_item(\"Header 1.1\", destination: 0) When creating an item it is possible to provide all outline item properties. Alternatively, the properties can be set later: section = doc.outline.add_item(\"Section\", destination: 0, open: false) section.text_color(\"red\") section.flag(:bold) "},{"loc":"http://hexapdf.gettalong.org/examples/index.html","title":"Examples","tags":"","text":" Examples Here you will find some examples of how HexaPDF can be used as a library. All example files are shipped with HexaPDF in the example/ directory. Use the menu to display an example. If you are looking for examples on how to use the hexapdf application, have a look at the examples section of its manual page. "},{"loc":"http://hexapdf.gettalong.org/index.html","title":"Home","tags":"","text":""},{"loc":"http://hexapdf.gettalong.org/news/2016/initial_release.html","title":"Initial Release of HexaPDF","tags":"","text":" Initial Release of HexaPDF Published on Wednesday, 26 October 2016 The code of HexaPDF is now available on Github and the first version 0.1.0 can be downloaded from Rubygems. This release provides the basic functionalities for reading and writing PDFs as well as low-level support for creating PDFs. A command line application for often needed tasks is also available. Bugs and issues can be reported at HexaPDF’s issue tracker. The roadmap shows what features will be implemented next and the Wiki page can also be used to request features. "},{"loc":"http://hexapdf.gettalong.org/news/2016/second-release-further-improvements.html","title":"Second Release - Further Improvements","tags":"","text":" Second Release - Further Improvements Published on Monday, 28 November 2016 The second release of HexaPDF is now available. The most promiment changes concern the hexapdf application which gained, among other things, support for merging PDF files. However, the internal library structure has also been adapted and various bugs fixed. See the changelog for details. The website has also seen some enhancements, from an added explanation on the landing page regarding what the AGPL as license means to a new documentation section providing the manual page of the hexapdf application and an HTML version of the changelog. Plans for the near future include TrueType font subsetting and image extraction support. If you like to see certain features in HexaPDF, have a look at the roadmap which is used for tracking them. "},{"loc":"http://hexapdf.gettalong.org/news/2017/third-release.html","title":"HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements","tags":"","text":" HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements Published on Wednesday, 25 January 2017 This third release is about two major features: TrueType font subsetting support and CLI enhancements. But before we come to them I want to ask you for your help: I launched a Patreon site to fund further development of HexaPDF. Especially if you are a company interested in the prospects of HexaPDF, you might want to sponsor HexaPDF because I intend to change the license to MIT once I reach a certain goal! So help me reach that goal — Become a Patron! With the introduction of TrueType font subsetting, PDF files using the HexaPDF::Content::Canvas API will now be much smaller when TrueType fonts are used. HexaPDF does font subsetting by default now but this can be disabled on a font-by-font basis, see HexaPDF::FontLoader::FromConfiguration::call. The other major overhaul was with respect to the hexapdf application. The hexapdf modify command was split into three individual commands to allow easier use: hexapdf modify for modifying an existing file, hexapdf merge for merging multiple PDF files into a single PDF file, and hexapdf optimize for easily optimizing PDF files. Additionally, the hexapdf extract command was renamed to hexapdf files since a new hexapdf images command was added. The later can be used to list or extract images embedded in a PDF file. The HexaPDF library itself also gained some new features, the most important one being the correct handling of hybrid-reference PDF files. Most of you won’t know what these special PDF files are but if you have used HexaPDF before and a file was corrupted when writing, there is a good chance that the input file was such a hybrid-reference file. As always, have a look at the changelog for an overview of the changes. "},{"loc":"http://hexapdf.gettalong.org/news/2017/fourth-release.html","title":"HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements","tags":"","text":" HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements Published on Sunday, 19 March 2017 HexaPDF continues to grow and mature, with this release bringing composite font support and many CLI enhancements. Support HexaPDF — Become a Patron! Texts in PDF can be created using simple fonts or composite fonts where composite fonts are much more capable, allowing the use of fonts in the OpenType font format and vertical writing. HexaPDF already produced text using the composite font PDF structures and with this release it is also able to handle composite fonts for text extraction and such. On the CLI side I got requests for better verbosity control and batch processing. Therefore I created a new hexapdf batch command that can be used to execute a command on several PDF files. This is especially useful when dealing with small files since the startup overhead is gone: When running hexapdf batch 'info {}' on my set of test files, it takes only about 14 seconds compared to 150 seconds running hexapdf info the usual way! Additionally, in-place processing of PDF files is now possible and embedded TrueType fonts can be optimized, sometimes leading to big file size improvements. Memory usage and text generation performance has been improved, too. HexaPDF is now about as fast as Prawn in raw text output when using the standard PDF fonts, and much faster when using TrueType fonts, while generating smaller files. Have a look at the text rendering benchmark to see the whole comparison and some caveats. As always, have a look at the changelog for an overview of the changes. For the next release I will concentrate on bringing more advanced text features to HexaPDF, like box layouting and support for kerning. If you have a request, drop me an e-mail or open an issue! "},{"loc":"http://hexapdf.gettalong.org/news/2017/advanced-text-layout-is-coming.html","title":"Advanced Text Layout is Coming","tags":"","text":" Advanced Text Layout is Coming Published on Friday, 28 April 2017 Since HexaPDF 0.4.0 was released, I focused on becoming more knowledgeable in the area of text layout and the role font files play in this regard. Therefore not much coding was done in the last few weeks. The reason for this foray is that one of the next features to land in HexaPDF is advanced text layout. This means that one can specify a (for the time being) rectangular area in which text should be placed as well as formatting options (like text alignment, font and font size, color, …) and HexaPDF does the rest. Additionally, kerning, ligatures and such will also be supported. Such a feature may sound easy to implement for anyone having worked with GUI interfaces. However, with GUI interfaces one doesn’t need to concern oneself with font details like glyphs (more or less a visual representation of a character), glyph spacing, ascenders, descenders, ligatures, kerning, right-to-left text and much more. Strictly speaking, much of this (like ligatures and kerning) is not necessary for the box layouting of text. When I started creating the Canvas class for drawing on a page, I started with the easy things, the vector graphics directly supported by the PDF format. These are easy because there is no need for deep knowledge about graphics rendering (e.g. Bézier curve drawing or anti-aliasing) because the rendering is done by the PDF reader application, not the writer. However, with text it is exactly the other way around. The writer application has to do everything and the reader application just needs to draw the glyphs at the given positions. This certainly leads to a more consistent appearance of PDF files across different platforms and reader applications but makes implementing a good writer application that much harder. One positive effect of this approach, though, is that embedded font files can be stripped down to the minimum information needed (note that sometimes this doesn’t seem to be wildly known…). You might say: “But HexaPDF already supports text output in the Canvas class!”. And you would be right. However, currently only the very low-level
functionality is implemented which can be used for text output but doesn’t lead to nice results. I.e. there is no automatic line-wrapping, fitting into a pre-defined box, automatic kerning, support for ligatures, … Since some of the features like kerning and ligatures are orthogonal to the box layouting facility, they will be implemented separately and in a way to customize each step. For example, it will be possible to do box layouting without other advanced text layout features like automatic kerning when this is not needed. To give you a small idea of the problems that have to be dealt with: Some characters can be represented in multiple ways in in Unicode. For example, “ä” may be represented using the single codepoint 0x00E4 or two codepoints 0x0061 (“a”) and 0x0308 (combining diaeresis). If such differences are not taken into account, the output will not look correct. Kerning describes how the spacing between two characters need to be adjusted to achieve a better visual result. This information is available in most TrueType fonts. However, some font files use a ‘kern’ table while others use the new OpenType table ‘GPOS’. Due to the fact that kerning must be done in addition to everything else, some PDF writers do not implement kerning due to performance concerns. For example, whereas Prawn does support kerning, ReportLab does not. Ligatures are sometimes used to provide nicer visual results, like combining ‘fi’ into a single character. However, some languages like Arabic more or less (I’m not an expert) need ligatures to be correctly displayed. Again, this information is available in modern font files, for example in the ‘GSUB’ table of OpenType fonts. Speaking of Arabic, some languages are laid out from right to left. To do this correctly with Unicode the Unicode Bidirectional Algorithm has to be used. And correctly combined with glyph substitution (e.g. ligatures) and positioning (e.g. kerning). Oh, and some are laid out vertically. There are already may algorithms for line breaking and layouting text in a box. One classic algorithm is the Knuth-Plass line breaking algorithm. So in this area one only has to choose the needed sophistication of the line breaking and layouting algorithm. These are just some things I’m currently thinking about with regards to HexaPDF. And to give you another idea of the complexity behind all this: iText, one of the biggest players in the PDF area with their product written in Java and therefore even able to use many external libraries, only implemented full support for complex text layout with version 7, released last year. So I will keep it small and simple for the time being and build the more complex parts later on. I will start with support for kerning and a simple box layouting algorithm. If you have a request, drop me an e-mail or open an issue! "},{"loc":"http://hexapdf.gettalong.org/news/2017/simple-text-metrics.html","title":"Simple Text Metrics","tags":"","text":" Simple Text Metrics Published on Wednesday, 10 May 2017 The first simple step for HexaPDF to gain advanced text functionality is to use the available font and glyph metrics to correctly determine the width and height of a piece of text. Note that I will only talk about text laid out horizontally, not vertically. Each font provides for each glyph its advance width (i.e. the distance between the current origin of the text coordinate system and the origin for the next glyph; note that when positioning glyphs the text coordinate system is transformed so that its origin coincides with the origin of the glyph coordinate system) and its bounding box (i.e. the tightest box around the visible glyph outlines). All these metrics are defined for a glyph of unit proportions. To make a text larger or smaller the font size is used. In addition the PDF specification provides four text modification operators that influence the width and height of text: character spacing (additional spacing between characters) word spacing (like character spacing but only for ASCII spaces, i.e. this additional spacing is applied only to glyphs that have a single byte encoding equal to ASCII space) horizontal scaling (a stretch factor applied to all horizontal measurements, so not only to glyphs but also to character spacing, for example. text rise (the vertical offset from the baseline) Finally, kerning values (which work similar to character spacing but only for adjacent glyphs) can change the width of text. With this information it is possible to determine the width and height of a piece of text. Once this information is available, it is possible to use box and text layouting algorithms to create lines of text laid out in a rectangular area. Here is an image of what can currently be done (see the gist for details): The green boxes show the text boxes themselves. The red boxes are the tightest boxes around all glyphs of each text. And the blue lines show the baselines of the texts. The first row is just text, with no additional modifications or kerning. The second row shows the application of some text modification operators. The third row shows text with kerning values within the text and at the boundaries. This also shows that the text can spill over the text box boundaries. The fourth row shows the result of applying various positive and negative text rise values, as indicated by the different positions of the baseline. Finally, the last row shows how these text metrics can be used to correctly position text fragments along a continuous baseline. Next step: Use the functionality of the now implemented text fragments to implement line fragment objects, and implement a basic text shaping class. "},{"loc":"http://hexapdf.gettalong.org/news/2017/fifth-release.html","title":"HexaPDF 0.5.0 - Advanced Text Layout","tags":"","text":" HexaPDF 0.5.0 - Advanced Text Layout Published on Saturday, 24 June 2017 HexaPDF continues to grow and mature, with this release bringing advanced text layout as first step into providing full document layout features. Support HexaPDF — Become a Patron! Advanced text layout means that HexaPDF is now able to: Apply kerning and ligatures to text, with the possibility to easily add other positioning or substitution steps (e.g. for correctly positioning diacritical marks) Apply different styles to different parts of the text of a paragraph (example) Wrap lines while supporting special characters like non-breaking spaces, soft-hyphens and zero-width spaces (example) Use arbitrarily shaped boxes for text layout (example) Align text horizontally and vertically, e.g. left, center, right and justify; and top, center, bottom (example) Mix text and inline boxes, e.g. for showing images or arbitrary drawings together with text (example) Calculate the height of a text box without drawing it, or limiting the height and retrieving the overflowing items In essence HexaPDF::Layout::TextBox together with the other classes in HexaPDF::Layout is similar to Prawn’s formatted text box implementation. However, HexaPDF still lacks some text box features like text colors, links or underlining. This will be fixed with a future release. To see how HexaPDF’s implementation compares to Prawn’s in terms of performance I adapted the text rendering benchmark to use the text box implementations. The results (see the text box benchmark for details and caveats) are rather promising, with HexaPDF being about 10 times faster than Prawn! HexaPDF’s text box implementation can already be used to compose whole documents but it is still only another stepping stone on the way to full document layout features. There are major parts missing for this, like automatic page breaking, tables, column layout and a composition class to make using all these parts easier. As always, have a look at the changelog for an overview of all changes. And if you have a request, drop me an e-mail or open an issue! "},{"loc":"http://hexapdf.gettalong.org/news/2017/hexapdf-0-6-0-code-refinements.html","title":"HexaPDF 0.6.0 - Code Refinements","tags":"","text":" HexaPDF 0.6.0 - Code Refinements Published on Friday, 27 October 2017 The last release brought some cool new features with respect to advanced text layout. This release builds on that and refines the implementation for future features. Support HexaPDF — Become a Patron! The supported text and box styling properties have been greatly expanded (also see the expanded styling example): Boxes now support CSS-like padding, margins and borders as well as background colors. And since the inline boxes are now based on a proper box implementation, they can use these new styles, too! Text fragments now support text color and opacity, text rendering modes (e.g. only showing the text outlines), superscript, subscript, underlining and strikeout. Additonally, boxes as well as text fragments now support pre-defined and custom underlays/overlays. This is the basis for the implemented support for links to other pages, external files and URIs. Apart from these layout related changes, support for some types of PDF actions and annotations has been added, e.g. the action for opening an URI and the link annotation type. As always, have a look at the changelog for an overview of all changes. And if you have a request, drop me an e-mail or open an issue! Last but not least, I have not yet decided on which parts I will be working on in the coming months. So if you need some functionality sooner than later, head over to my patreon page to fill out the poll! And while you are already there, you might wanna become a patron! 😉 "},{"loc":"http://hexapdf.gettalong.org/news/2018/hexapdf-0-9-0.html","title":"HexaPDF 0.9.0 - Document Layout","tags":"","text":" Document CompositionIncremental WritingSplitting PDF FilesOther Changes HexaPDF 0.9.0 - Document Layout Published on Monday, 31 December 2018 With the ground work for document layout management done in the 0.8.0 release the focus was shifted to the refinement of these features and to the
actual document layout functionality. The major changes for this release are the document composition functionality, incremental PDF writing, a CLI command for splitting PDF files and compatibility with Ruby 2.6. Document Composition One of the goals of HexaPDF is to provide high-level functionality for document composition. With this release the initial working version of this goal has been achieved with the new HexaPDF::Composer class. This class uses the functionality introduced in the last release (e.g. frames, text boxes, …) to make creating a PDF document as easy as it is with other libraries, for example Prawn. Here is a simple example: require 'hexapdf' HexaPDF::Composer.create('hello-world.pdf') do |pdf| pdf.text(\"Hello World!\", font_size: 50, align: :center, valign: :center) end Text (or more generally every box) is layed out from top-to-bottom and can be flown around objects that have been placed on the page before. This makes it easy, for example, to flow text around images (see the new composer example). Also, if some box doesn’t fit on a page or can’t be split, a new page is automatically created. Arbitrary drawing operations can still be performed by using the HexaPDF::Content::Canvas object that is provided by the composer. Incremental Writing Starting with this version HexaPDF supports incremental writing. Writing a PDF document in incremental mode means that the new or changed content is just appended to the original PDF. This is used, for example, if the original document was cryptographically signed so as to not invalidate the signature. Incremental writing in HexaPDF is not perfect in the sense that it doesn’t completely minimize the amount of data that gets written. The reason for this is HexaPDF’s automatic conversion of hash values. For example, PDF dates (which are stored as strings) are automatically converted to Ruby date objects on access, making the comparison fail even though there are no differences when serializing. Splitting PDF Files The hexapdf command line application already has a command for merging files but the reverse was missing. So this version brings the split command that can do exactly that. As an example, consider the following: hexapdf split input.pdf out_%02d.pdf. This would split the input.pdf file page by page and generate files of the form out_01.pdf, out_02.pdf and so on. Other Changes There were some other changes and bug fixes, the most noteworthy are: Usage of some non-described stdlib behaviour was fixed to make HexaPDF compatible with Ruby 2.6. Text boxes now respect width/height/padding/border when fitting. Variable width line wrapping now correctly considers line spacing when determining line width. As always, have a look at the changelog for an overview of all changes. And Happy New Year! "},{"loc":"http://hexapdf.gettalong.org/news/2018/hexapdf-0-8-0-box-layout.html","title":"HexaPDF 0.8.0 - Box Layout","tags":"","text":" HexaPDF 0.8.0 - Box Layout Published on Friday, 26 October 2018 The last release, 0.7.0, was done to fix some issues and didn’t include any of the major changes since 0.6.0. With the 0.8.0 release these major changes are now incorporated into HexaPDF and lay the groundwork for document layouting. So what is new for HexaPDF? The 0.6.0 release enhanced the base box layout class with many more styling properties but it still wasn’t possible to easily position such boxes. So naturally the next step was to design how they would be layed out on a page. In HexaPDF layout boxes represent all things that should be put on a page, be it text (like headings and paragraphs), images or other content. Typically (at least with western languages), the boxes are layed out from top to bottom and left to right. So the easiest thing would be to define a “cursor” position that represents the vertical position to place the current box and after placing it, move the cursor downwards. However, with such a model you cannot easily do things like having a picture and flowing text around it. Or putting a box into the middle of the page and then flowing the boxes around this hole. Or having non-rectangular regions to put boxes in. Therefore I decided to do things differently: To layout boxes HexaPDF uses frames where a frame is a set of rectilinear polygons (i.e. only consisting of vertical and horizontal lines). When a box gets placed in a frame, the occupied region is subtracted from the frame’s polygons, resulting in new polygons for the frame. Each frame knows how to find the position where the next box should be placed (the top-most, left-most point) and how big the available rectangular region at that position is. If a box doesn’t fit, the frame also knows how to calculate the next possible position and region. Doing things in this way seems very complicated at first but it certainly makes some things very easy: A frame can have any form and can contain holes. This is the reason a frame can potentially consist of multiple polygons. Boxes can be styled using the new position and position_hint style properties to remove the whole vertical stripe in which they are in, imitating the basic cursor model. And these style properties can also make a box “float” to the left or right, like blocks in HTML, removing only their occupied region. I also hope that this design will make future additions straightforward (like, for example, multi column layout). To make working with the frame’s polygons easier, I created a new rubygem called geom2d. There were some Ruby libraries available that define basic 2D geometric objects and some algorithms but none really fit the needs. The goal of geom2d was to provide a polygon class and an algorithm for intersecting two polygons. To this end I read several papers on boolean operations on polygons and then implemented one of them. The HexaPDF::Layout::TextLayouter class has been enhanced as well to allow placing text in an arbitrary polygon. This is needed because otherwise placing text in a frame and flowing it according to the frame’s polygon wouldn’t be possible. So, now that I have bored you with the technical details, have a look at the new examples to see how this can be put to good use: The automatic box placement example shows how to use a frame to place multiple boxes. The text flow example shows how text is automatically flown around floating boxes. Mind you that doing things like this is still not really “high level” since there are some essential things missing, like splitting a box if it doesn’t fit (think of text at the bottom of a page), not to mention high level constructs like tables. The next step is to provide a class that abstracts the composition aspects so that one can say: Here are N styled boxes, here are the definitions of the frames that should be used (e.g. a special frame definition for the first page and a common definition for all other pages), lay out the boxes while creating pages as needed. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2019/hexapdf-0-10-0-and-new-website.html","title":"HexaPDF 0.10.0 and New Website","tags":"","text":" HexaPDF 0.10.0 and New Website Published on Wednesday, 02 October 2019 This minor release brings some enhancements to the hexapdf command line application: more information when listing images with the hexapdf images command and a completely revamped hexapdf inspect command with much more functionality. If you wanna see the inspection command in action, have a look the “Analysing PDFs” how-to guide. There are also bug fixes for various reported problems, most notably for loading and saving of encrypted and signed PDFs and for handling unknown/wrongly structured PDF objects better. As always, have a look at the changelog for an overview of all changes. In addition to these changes to the library, you might have noticed already that HexaPDF also got a new website: HexaPDF now finally has a logo that was inspired by Adobe’s PDF logo as well as hexagons (naturally) - yeah! The documentation part of the website has been restructured and extended to make it easier to find what you need. There are now tutorials, key topics and how-to guides well as a reference section (n.b. restructured in 2022). These sections will be filled with more content in the future. The styling of the website has also been adjusted. For example, there are now table of content menus for most pages and a breadcrumb trail for navigation. All in all the website should provide a better experience now. If you find problems or have suggestions, please report them - thank you! "},{"loc":"http://hexapdf.gettalong.org/news/2019/hexapdf-0-11-0.html","title":"HexaPDF 0.11.0","tags":"","text":" HexaPDF 0.11.0 Published on Tuesday, 19 November 2019 This minor release brings two new commands to the hexapdf command line application, basic AcroForm support and some other changes and fixes. It may break things, so please test before upgrading! The possibly breaking change is the addition of the HexaPDF::PDFArray class. This new class is used for a similar purpose like HexaPDF::Dictionary and wraps arrays when they are indirect objects or when instructed to do so by dictionary field annotations. The main benefit is that references to indirect object are automatically resolved on access: doc.pages[0][:Annots].each {|a| a = doc.deref(a); a.do_some_thing } # before doc.pages[0][:Annots].each {|a| a.do_some_thing } # now Since the new class doesn’t implement the whole Array interface existing code may need to be adapted! The hexapdf command line gains two new commands: One for watermarking/stamping a PDF onto another and one for converting images to a PDF. The former is a standard operation implemented by many PDF tools whereas the latter was added because many people ask about this on various forums. Another addition under the hood is the basic AcroForm support by implementing the form, field and widget types. Not much can be done currently
(finding form fields, querying basic information). However, it is planned to bring full AcroForm support with the next release! If you have any use cases that you want to see covered, please open an issue - thanks! And as always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2020/hexapdf-0-12-0-acroform.html","title":"HexaPDF 0.12.0 - Interactive Forms","tags":"","text":" HexaPDF 0.12.0 - Interactive Forms Published on Wednesday, 12 August 2020 Following up on the basic AcroForm support of the 0.11.0 release, this release adds support for nearly all interactive form parts. It is now possible to easily create the main interactive form object using HexaPDF::Document#acro_form. This form object provides convenience methods for creating the individual fields. There is full support, including the generation of the visual appearances, for check boxes, radio buttons, single line text fields and combo boxes. This will cover many of the PDF forms out in the wild. Partial support, meaning without appearance generation, is available for push buttons and list boxes. Signature fields are not yet implemented. The default visual appearance tries to mimic what Adobe Acrobat does. It is close but there are still small differences. However, those should not be problematic. In addition there is a new hexapdf form command that allows listing form fields and filling out a form, either interactively or via a provided template file. You can see it here in action: If you find something missing or too hard to do with regards to interactive forms, please open an issue. The plan is to add the missing interactive form parts for the next release and iron out problems. Aside from these code changes the HexaPDF website has seen some updates. The documentation for classes implementing PDF objects now provides an overview of the defined object fields, together with additional information like the supported field types and if the field is required. See HexaPDF::Type::AcroForm::Field for an example. And there are two new key topic pages: One on how encryption works and one with information on interactive forms. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2020/hexapdf-0-13-0.html","title":"HexaPDF 0.13.0 - Cross-reference Table Reconstruction","tags":"","text":" HexaPDF 0.13.0 - Cross-reference Table Reconstruction Published on Sunday, 15 November 2020 There are two big changes in this release. The more user-visible one is that HexaPDF gained the ability to recover a damaged PDF by reconstructing the cross-reference table (i.e. the part of a PDF which stores which objects are located at which offset in the file). This new feature together with the already existing recovery features allows HexaPDF to parse a wide variety of invalid and/or damaged PDF files. Repairing a damaged file is now as easy as executing hexapdf modify damaged.pdf repaired.pdf, making HexaPDF a good tool for PDF file recovery. The other big and breaking change is the overhaul of the PDF document/object validation feature. By making the interfaces more similar, it is now easier to use from an API perspective. Furthermore, the new internal structure allows reporting of mulitple validation problems in one go. In relation to these changes, the hexapdf info command also gained a new --check flag which points out parse and validation problems. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2020/hexapdf-0-14-0.html","title":"HexaPDF 0.14.0 - Interactive Forms Improvements","tags":"","text":" HexaPDF 0.14.0 - Interactive Forms Improvements Published on Wednesday, 30 December 2020 This release mainly improves the already existing AcroForm support. Creating appearances for list boxes, multiline text fields and comb text fields is now supported. So only the appearance creation for push buttons is still missing. The AcroForm API was also improved to make it easier and simpler to create new form fields. Behind the scenes the automatic creation of appearances where needed was improved to avoid creating unnecessary PDF objects. There were also a few fixes and changes to improve the handling of damaged or invalid PDF files. So now a still wider range of those files can be processed successfully. And the hexapdf split command gained support for splitting by page size. Based on questions asked in online forums this functionality seems to be needed especially in the legal field to separate the pages of a PDF into one with only Letter and one with only Legal pages. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2021/hexapdf-0-14-1.html","title":"HexaPDF 0.14.1 - Performance Work","tags":"","text":" HexaPDF 0.14.1 - Performance Work Published on Thursday, 21 January 2021 This smaller release mostly contains performance enhancements. Due to them being especially benefical in long running processes that handle a lot of PDFs, updating is still very recommended. The following script was used to evaluate TrueType font and serialization related optimizations: require 'hexapdf' font_path = '/usr/share/fonts/truetype/liberation/LiberationSans-BoldItalic.ttf' font_file = HexaPDF::Font::TrueType::Font.new(File.open(font_path, 'rb')) 1000.times do doc = HexaPDF::Document.new font = doc.fonts.add(font_path) doc.pages.add.canvas. font(font, size: 10). text(\"The quick brown fox jumps over the lazy dog\", at: [200, 200]) doc.write('/tmp/out.pdf') end In HexaPDF 0.14.0 this script allocated about 2.74 million objects and took 4.20 seconds to run. With this release object allocation was reduced by around 33% to 1.85 million and runtime by around 23% to 3.21 seconds. These benefits are without any changes to existing code. By using the new font loader to load the TrueType font object only once (e.g. in the code above use font_file instead of font_path), we can further reduce the object allocation to 1.29 million and runtime to 2.41 seconds. Furthermore, the HexaPDF::Importer class has been modified to avoid problems with memory retention. If you have had problems with that, you should definitely try out this new version! Here is a before and after comparison for the “raw_text” benchmark: |--| | || Time | Memory | File size | |--| | hexapdf | 1x | 558ms | 34.280KiB | 452.602 | |--| | hexapdf | 5x | 1.859ms | 45.296KiB | 2.258.904 | |--| | hexapdf | 10x | 3.553ms | 57.376KiB | 4.517.825 | |--| | hexapdf | 1x ttf | 588ms | 33.288KiB | 549.526 | |--| | hexapdf | 5x ttf | 2.305ms | 48.916KiB | 2.687.121 | |--| | hexapdf | 10x ttf | 4.492ms | 63.636KiB | 5.360.945 | |--| vs. |--| | || Time | Memory | File size | |--| | hexapdf | 1x | 562ms | 34.556KiB | 452.598 | |--| | hexapdf | 5x | 1.883ms | 45.268KiB | 2.258.904 | |--| | hexapdf | 10x | 3.634ms | 56.628KiB | 4.517.827 | |--| | hexapdf | 1x ttf | 557ms | 33.392KiB | 546.390 | |--| | hexapdf | 5x ttf | 2.113ms | 43.408KiB | 2.670.953 | |--| | hexapdf | 10x ttf | 4.174ms | 63.360KiB | 5.328.382 | |--| And here the one for the “line_wrapping” benchmark: |--| | || Time | Memory | File size | |--| | hexapdf L | 400 | 1.237ms | 101.112KiB | 361.690 | | hexapdf C | 400 | 1.387ms | 109.072KiB | 361.692 | |--| | hexapdf L | 200 | 1.353ms | 94.572KiB | 408.710 | | hexapdf C | 200 | 1.565ms | 100.992KiB | 408.708 | |--| | hexapdf L | 100 | 1.541ms | 89.644KiB | 464.256 | | hexapdf C | 100 | 1.847ms | 97.432KiB | 464.256 | |--| | hexapdf L | 50 | 2.482ms | 200.512KiB | 569.798 | | hexapdf C | 50 | 3.004ms | 220.296KiB | 569.807 | |--| | hexapdf L | 400 ttf | 1.305ms | 89.352KiB | 445.395 | | hexapdf C | 400 ttf | 1.468ms | 108.136KiB | 445.418 | |--| | hexapdf L | 200 ttf | 1.481ms | 84.948KiB | 508.007 | | hexapdf C | 200 ttf | 1.701ms | 99.004KiB | 508.035 | |--| | hexapdf L | 100 ttf | 1.817ms | 91.772KiB | 611.460 | | hexapdf C | 100 ttf | 2.163ms | 96.568KiB | 611.481 | |--| | hexapdf L | 50 ttf | 4.547ms | 260.596KiB | 772.065 | | hexapdf C | 50 ttf | 5.392ms | 281.268KiB | 772.078 | |--| vs. |--| | || Time | Memory | File size |
--| | hexapdf L | 400 | 1.274ms | 98.812KiB | 361.689 | | hexapdf C | 400 | 1.397ms | 108.092KiB | 361.689 | |--| | hexapdf L | 200 | 1.349ms | 91.496KiB | 408.708 | | hexapdf C | 200 | 1.588ms | 100.076KiB | 408.708 | |--| | hexapdf L | 100 | 1.520ms | 88.728KiB | 464.257 | | hexapdf C | 100 | 1.886ms | 96.052KiB | 464.255 | |--| | hexapdf L | 50 | 2.563ms | 207.776KiB | 569.797 | | hexapdf C | 50 | 2.981ms | 221.416KiB | 569.807 | |--| | hexapdf L | 400 ttf | 1.317ms | 104.032KiB | 442.909 | | hexapdf C | 400 ttf | 1.485ms | 104.380KiB | 442.931 | |--| | hexapdf L | 200 ttf | 1.439ms | 97.984KiB | 505.202 | | hexapdf C | 200 ttf | 1.652ms | 95.064KiB | 505.224 | |--| | hexapdf L | 100 ttf | 1.766ms | 94.324KiB | 607.750 | | hexapdf C | 100 ttf | 2.105ms | 92.756KiB | 607.768 | |--| | hexapdf L | 50 ttf | 4.413ms | 282.288KiB | 769.931 | | hexapdf C | 50 ttf | 5.272ms | 283.920KiB | 769.952 | |--| The larger TrueType benchmarks are all between 3% and 7% faster than before. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2021/hexapdf-0-14-3.html","title":"HexaPDF 0.14.3","tags":"","text":" HexaPDF 0.14.3 Published on Tuesday, 16 February 2021 This release fixes a critical bug introduced in 0.14.2 which lead to invalid text output when using TrueType fonts. Updating is highly recommended! Aside from that there are several fixes for parsing and processing invalid PDF files. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2021/hexapdf-0-15-0.html","title":"HexaPDF 0.15.0","tags":"","text":" HexaPDF 0.15.0 Published on Monday, 12 April 2021 This release brings support for flattening annotations, i.e. making the appearances of annotations part of the page content itself. Since AcroForm fields also use annotations for their visual display, this functionality also allows flattening of form fields. Form field flattening can now also be done with the hexapdf form CLI command. Additionally, basic support for the AcroForm signature field was added. However, this does not allow signing a PDF yet. There is also a breaking change with respect to how annotation appearances are accessed. The change simplifies getting the correct appearance stream. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2021/hexapdf-0-17-0.html","title":"HexaPDF 0.17.0","tags":"","text":" HexaPDF 0.17.0 Published on Thursday, 21 October 2021 This release brings a breaking change, a variety of small updates as well as the new hexapdf fonts CLI command. Due to the way AcroForm check boxes were handled a breaking change was necessary to fully fix check box handling and support multiple check box widgets with different values. Aside from that breaking change there were many updates and bug fixes to the AcroForm implementation to make it more consistent and robust against invalid PDF files. The new hexapdf fonts command enables listing of the fonts used by a PDF file. It can list either all fonts in a PDF or just those used on specific pages. On the documentation side of things I started updating the API documentation and providing more examples. By hooking into RDoc and using HexaPDF itself most of these examples are now also executed during the generation of the API documentation. What this means is that you will find an image of the resulting PDF as well as a link to the PDF underneath the example code! The HexaPDF::Content::Canvas class was a natural place to start this documentation update. See HexaPDF::Content::Canvas#polygon or HexaPDF::Content::GraphicObject::Arc#cy for how this makes the documentation better. I will update the rest of the classes in the coming months, so expect more changes in this regard. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2021/hexapdf-0-18-0.html","title":"HexaPDF 0.18.0","tags":"","text":" HexaPDF 0.18.0 Published on Thursday, 04 November 2021 This release fixes a critical bug that lead to the creation of invalid PDF documents in rare cases. So updating is highly recommended! Aside from that, the release also feature some bug fixes and minor improvements As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2021/hexapdf-0-20-0.html","title":"HexaPDF 0.20.0 - Digital Signatures","tags":"","text":" HexaPDF 0.20.0 - Digital Signatures Published on Thursday, 30 December 2021 The big, new feature of this release is the support for digital signatures! Signing a document is now as easy as invoking HexaPDF::Document#sign and providing the few necessary arguments like the certificate and private key. Also have a look at the Signing PDFs howto guide for getting started! In addition to adding one or more digital signatures to a PDF document, reading and validating - in a very basic way - of signatures is also supported. And information about digital signatures is shown when invoking the hexapdf info command on a PDF. Aside from digital signatures there were some improvements when working with interactive forms and annotations, like a convenience method for creating an appearance. Since working with digital signatures involves stressing the incremental writing facilities, some bugs were fixed and the output optimized (i.e. the number of objects needed for the added revision was further reduced). There was one bug that led to creating invalid PDF files when using incremental writing together with the optimize: true option; so updating is recommended! As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2022/hexapdf-0-23-0.html","title":"HexaPDF 0.23.0","tags":"","text":" HexaPDF 0.23.0 Published on Thursday, 26 May 2022 This release contains changes and additions across many different parts of HexaPDF. It also includes breaking changes with respect to the main HexaPDF::Document class as well as for HexaPDF::Layout::TextBox: During the reworking of the revision handling it became clear that a breaking change for the main document class was necessary so as to make it harder to create an invalid PDF document. The text box now uses the whole available width/height when aligning to the center or right/bottom. If this was not done, the text would not appear to be correctly aligned. Among the other changes are the new ability of hexapdf modify to remove or flatten annotations and a new convenience class for creating and working with destination objects (think: in-document links). The documentation side saw the addition of a howto page on migrating from Prawn. This howto shows, among other things, a full example in Prawn and HexaPDF and a mapping from Prawn methods to equivalent HexaPDF methods. And also with respect to the documentation the HexaPDF::Layout::Style documentation has been updated to include visual examples. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2022/hexapdf-0-24-0.html","title":"HexaPDF 0.24.0 - Document Layout Update","tags":"","text":" Column and List BoxesMore Convenient Box and Document CreationOther Changes HexaPDF 0.24.0 - Document Layout Update Published on Monday, 01 August 2022 The focus of this release was to provide a major improvement in document layout and creation. Nearly all classes in HexaPDF::Layout were adapted or refactored which also resulted in some breaking changes. Column and List Boxes The most user visible changes are the addition of HexaPDF::Layout::ColumnBox for laying out boxes in columns and HexaPDF::Layout::ListBox for creating ordered or unordered lists: These two new box classes represent a major step forward since they are container boxes, i.e. boxes that contain other boxes. For such classes to work flawlessly with the rest of the layout engine, the class HexaPDF::Layout::BoxFitter was introduced. It allows fitting multiple boxes into one or more (temporary) frames and storing the results for later use; exactly what is needed for container boxes. The container boxes can be used like any other box which means they can also be split. And they can be nested in one another, like having a column box inside a list box inside a column box: Since the container boxes internally rely on the same layout engine that is used everywhere else, they can also recognize and flow around cut-outs, like the black box in the image above. One of the nice advantages of having this system of individual box classes which represent certain parts of a document is that it allows for adding additional information later on. For example, adding support for tagged PDF (i.e. providing accessibility related information) should not be much of a problem in the future. More Convenient Box and Document Creation There was also much work done to improve the document layout API to make it easier to use. The new HexaPDF::Document::Layout class, accessible through HexaPDF::Document#layout, is now the central hub for creating box objects. It allows for the easy instantiation of all built-in box classes as well as user-provided ones. Additionally, that class contains a central style registry which allows one to associate names to specific box styles and reference those styles
later by their given name. The HexaPDF::Composer class from which most of the methods in HexaPDF::Document::Layout came from, uses this new class and can now concentrate on the special behaviour needed when creating whole documents. It is now also possible to easily define the children of container boxes: require 'hexapdf' HexaPDF::Composer.create(\"list.pdf\") do |composer| composer.text(\"Hello World!\", font_size: 30, align: :center, padding: [0, 0, 20]) composer.box(:list, item_spacing: 20) do |list| list.lorem_ipsum_box list.image('examples/machupicchu.jpg', height: 100) list.box(:list, item_type: :decimal) do |sub_list| sub_list.text(\"Item 1\") sub_list.text(\"Another item\") end end end Other Changes The code base and test suite have been adapted so that all tests now pass on Linux, macOS and Windows using Ruby versions 2.6, 2.7, 3.0, 3.1 and the current Ruby head version. There were also some other, smaller changes, like the ability to move pages around in a document. And as usual there were several bug fixes As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2022/hexapdf-0-27-0.html","title":"HexaPDF 0.27.0 - Timestamp Signatures","tags":"","text":" HexaPDF 0.27.0 - Timestamp Signatures Published on Friday, 18 November 2022 This release features many diverse additions, (breaking) changes and fixes. Notable ones are: Support for timestamp signatures Support for external signatures Better support for destinations Better support for outlines There have been many fixes throughout the code base, from fixes for parsing and writing to fixes for interactive forms, outlines and digital signatures. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2022/hexapdf-0-28-0.html","title":"HexaPDF 0.28.0","tags":"","text":" HexaPDF 0.28.0 Published on Friday, 30 December 2022 This is another release with many small additions, a few breaking changes and fixes. Here is an overview: Interactive Forms (AcroForm) gained the ability to correctly format numbers by implementing the Javascript AFNumber_Format method. Note that only this one method is currently supported and there is no general Javascript support. You can see this in action in the AcroForm example. Additionally, iterating over all form field widgets was greatly sped up by relying on the validation feature to combine same-name fields. This means that, in some cases, you will need to run doc.acro_form.validate before working with individual fields. There are also several fixes to avoid creating appearances if there are already existing ones. And rotated form fields are now also supported. Annotation handling was improved in two ways: By rotating annotations in case a page gets rotated. And by enhancing the flattening of annotations to work for rotated annotations. Fully-embedded TrueType fonts can now be used, e.g. when filling out interactive forms. HexaPDF can now tell whether a PDF file is a linearized PDF. That information is also shown in the output of hexapdf info. And the two revisions of a linearized PDF are now treated as a single revision. Importing objects from other documents has been simplified to allow the import of arbitrary objects. Additionally, the HexaPDF documentation has been restructured to provide a more topic oriented structure. For example, there is a section Interactive forms which contains everything related to interactive forms. Additionally, a Getting started section has been added as well as a section for Outline. The new documentation structure should make it easier for newcomers to find what they need since most people come to the HexaPDF website with a specific goal in mind, for example, creating documents or filling out interactive forms. Finally, with the new Ruby 3.2.0 release which marks the YJIT just in time compiler as production ready, HexaPDF gets a nice performance boost and compares very well against the C++ library qpdf when optimizing PDF files: Here are the raw numbers: |--| | || Time | Memory | File size | |--| | hexapdf CS | a.pdf | 194ms | 30,100KiB | 49,225 | | hexapdf CS YJIT | a.pdf | 278ms | 35,184KiB | 49,225 | | qpdf CS | a.pdf | 17ms | 8,112KiB | 49,287 | |--| | hexapdf CS | b.pdf | 744ms | 50,024KiB | 11,045,208 | | hexapdf CS YJIT | b.pdf | 752ms | 57,572KiB | 11,045,208 | | qpdf CS | b.pdf | 328ms | 22,980KiB | 11,126,861 | |--| | hexapdf CS | c.pdf | 1,390ms | 54,304KiB | 13,180,713 | | hexapdf CS YJIT | c.pdf | 1,120ms | 59,652KiB | 13,180,713 | | qpdf CS | c.pdf | 1,177ms | 95,548KiB | 13,228,102 | |--| | hexapdf CS | d.pdf | 3,012ms | 77,724KiB | 6,418,481 | | hexapdf CS YJIT | d.pdf | 2,498ms | 83,852KiB | 6,418,481 | | qpdf CS | d.pdf | 1,655ms | 69,220KiB | 6,703,374 | |--| | hexapdf CS | e.pdf | 717ms | 109,732KiB | 21,751,181 | | hexapdf CS YJIT | e.pdf | 744ms | 114,452KiB | 21,751,180 | | qpdf CS | e.pdf | 388ms | 31,376KiB | 21,787,558 | |--| | hexapdf CS | f.pdf | 42,854ms | 549,772KiB | 117,545,254 | | hexapdf CS YJIT | f.pdf | 31,712ms | 553,196KiB | 117,545,254 | | qpdf CS | f.pdf | 25,788ms | 975,180KiB | 118,114,521 | |--| Have a look at the last section for f.pdf in the results above: Without YJIT HexaPDF takes around 42 seconds, with YJIT only 31 seconds! qpdf is still faster with around 25 seconds but uses nearly twice the memory. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2023/hexapdf-0-29-0.html","title":"HexaPDF 0.29.0 - PAdES Compatible Digital Signatures","tags":"","text":" HexaPDF 0.29.0 - PAdES Compatible Digital Signatures Published on Monday, 30 January 2023 This release features major internal changes for the support of digital signatures. The whole code was refactored and now HexaPDF itself creates the necessary CMS signed-data structures. Due to this changes HexaPDF is now able to support PAdES-BES level B-B and B-T signatures! Additionally, it is now very easy to create digital signatures via HSM calls: require 'hexapdf' # Set up client for HSM module client = ... doc = HexaPDF::Document.open(ARGV[0]) signing = lambda {|digest_method, data| client.sign_raw(digest_method, data) } doc.sign(\"signed.pdf\", external_signing: signing, certificate: client.signing_certificate, certificate_chain: client.certificate_chain) As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2023/hexapdf-0-33-0.html","title":"HexaPDF 0.33.0 - Table Support","tags":"","text":" Table ImplementationWebsite OverhaulOther Notable Changes HexaPDF 0.33.0 - Table Support Published on Thursday, 03 August 2023 This release contains many different changes and fixes. The highlight, however, is the support for tables. Table Implementation The biggest change in this release is the addition of HexaPDF::Layout::TableBox which allows the creation of fixed width tables: With this addition creating a table becomes very easy: require 'hexapdf' HexaPDF::Composer.create('table.pdf') do |composer| composer.table([['This', 'is'], ['a', 'table']], column_widths: [100, 100]) end The table implementation supports one or more boxes of any type inside a table cell, header and footer rows, column and row spans, as well as easy styling of the whole table, rows, columns or individual cells. There is also a new table benchmark which shows that HexaPDF is outperforming Prawn with the prawn-table gem. Website Overhaul The website got an overhaul and looks a bit (just a bit) different now. The changes were made to make the website feel more coherent in terms of styling and colors. Here are before and after images where this can be seen: The documentation pages have also been enhanced with more sample PDFs. While the former version had 183 PDFs created with HexaPDF during the website generation, the current version has 237, so about 30% more! Other Notable Changes There was a bit of work making HexaPDF faster and use less memory. This can be seen in the line wrapping benchmark where the low-level version and the HexaPDF::Composer version are now nearly on par. Another change reduced the number of Fiber instances which greatly improves HexaPDF performance on TruffleRuby. The API documentation of many classes has also been updated and enhanced. This is an ongoing process which will see all API documentation being updated. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2023/hexapdf-0-34-0.html","title":"HexaPDF 0.34.0 - Optional Content aka Layers","tags":"","text":" HexaPDF 0.34.0 - Optional Content aka Layers Published on Sunday, 22 October 2023 The highlight of this release is the support for optional content aka layers. Optional content allows one to selectively show or hide content. It is most often used to provide something akin to layers, think a building plan with separate layers for the walls, electrical infrastructure, furniture and so on. However, it can also be used for something more mundane, like hiding the answers of a quiz. Apart from this larger change there is a new style property HexaPDF::Layout::Style#fill_horizontal which allows a text fragment to fill the remaining space of a line. This is very useful when creating table of content entries. There is new documentation for the optional content feature and the document creation section got a new how-tos section
which will be expanded in the future. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/2024/hexapdf-0-35-0.html","title":"HexaPDF 0.35.0 - Fallback Fonts","tags":"","text":" HexaPDF 0.35.0 - Fallback Fonts Published on Sunday, 07 January 2024 This release contains many small features and fixes and breaking changes. So make sure you read the changelog before upgrading! The most notable additions and changes are: The document layout engine gained support for fallback fonts. Just define the fallback fonts using the new configuration option ‘font.fallback’ and you are set. The fallback font support is also used when generating appearances for AcroForm text fields. It is now possible to use the document layout functionality for a single canvas/page via the new HexaPDF::Content::CanvasComposer class, easily instantiated via canvas.composer. The style properties ‘align’ and ‘valign’ have been renamed (breaking change) to ‘text_align’ and ‘text_valign’ so that the old names can be used for box placement. With the addition of the style property ‘mask_mode’ one has now even more control over box placement, e.g. overlaying boxes is now possible (see the added example). The new ‘psd’ command for hexapdf inspect provides easier to read output for page content streams, e.g. by decoding the text output parts and showing the nesting levels. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/news/index.html","title":"News","tags":"","text":" HexaPDF 0.35.0 - Fallback Fonts Published on Sunday, 07 January 2024 This release contains many small features and fixes and breaking changes. So make sure you read the changelog before upgrading! The most notable additions and changes are: The document layout engine gained support for fallback fonts. Just define the fallback fonts using the new configuration option ‘font.fallback’ and you are set. The fallback font support is also used when generating appearances for AcroForm text fields. It is now possible to use the document layout functionality for a single canvas/page via the new HexaPDF::Content::CanvasComposer class, easily instantiated via canvas.composer. The style properties ‘align’ and ‘valign’ have been renamed (breaking change) to ‘text_align’ and ‘text_valign’ so that the old names can be used for box placement. With the addition of the style property ‘mask_mode’ one has now even more control over box placement, e.g. overlaying boxes is now possible (see the added example). The new ‘psd’ command for hexapdf inspect provides easier to read output for page content streams, e.g. by decoding the text output parts and showing the nesting levels. As always, have a look at the changelog for an overview of all changes. HexaPDF 0.34.0 - Optional Content aka Layers Published on Sunday, 22 October 2023 The highlight of this release is the support for optional content aka layers. Optional content allows one to selectively show or hide content. It is most often used to provide something akin to layers, think a building plan with separate layers for the walls, electrical infrastructure, furniture and so on. However, it can also be used for something more mundane, like hiding the answers of a quiz. Apart from this larger change there is a new style property HexaPDF::Layout::Style#fill_horizontal which allows a text fragment to fill the remaining space of a line. This is very useful when creating table of content entries. There is new documentation for the optional content feature and the document creation section got a new how-tos section which will be expanded in the future. As always, have a look at the changelog for an overview of all changes. HexaPDF 0.33.0 - Table Support Published on Thursday, 03 August 2023 This release contains many different changes and fixes. The highlight, however, is the support for tables. Table Implementation The biggest change in this release is the addition of HexaPDF::Layout::TableBox which allows the creation of fixed width tables: With this addition creating a table becomes very easy: require 'hexapdf' HexaPDF::Composer.create('table.pdf') do |composer| composer.table([['This', 'is'], ['a', 'table']], column_widths: [100, 100]) end The table implementation supports one or more boxes of any type inside a table cell, header and footer rows, column and row spans, as well as easy styling of the whole table, rows, columns or individual cells. There is also a new table benchmark which shows that HexaPDF is outperforming Prawn with the prawn-table gem. Website Overhaul The website got an overhaul and looks a bit (just a bit) different now. The changes were made to make the website feel more coherent in terms of styling and colors. Here are before and after images where this can be seen: The documentation pages have also been enhanced with more sample PDFs. While the former version had 183 PDFs created with HexaPDF during the website generation, the current version has 237, so about 30% more! Other Notable Changes There was a bit of work making HexaPDF faster and use less memory. This can be seen in the line wrapping benchmark where the low-level version and the HexaPDF::Composer version are now nearly on par. Another change reduced the number of Fiber instances which greatly improves HexaPDF performance on TruffleRuby. The API documentation of many classes has also been updated and enhanced. This is an ongoing process which will see all API documentation being updated. As always, have a look at the changelog for an overview of all changes. "},{"loc":"http://hexapdf.gettalong.org/documentation/basics/creating-a-pdf-from-scratch.html","title":"Creating a PDF from Scratch ","tags":"","text":" Installing HexaPDFRequiring HexaPDFCreating the PDF DocumentThe Complete Code and Result PDF Creating a PDF from Scratch In this tutorial you will create a simple PDF document from scratch with HexaPDF. It only assumes that you have the Ruby interpreter already installed. Installing HexaPDF The first step is installing HexaPDF itself as a Rubygem: $ gem install hexapdf This will install HexaPDF as well as its dependencies. Afterwards the HexaPDF library and the hexapdf command line tool are available. Requiring HexaPDF If you want to use HexaPDF in a Ruby program, you need to include the following statement: require 'hexapdf' This will only require the base HexaPDF library parts but also sets everything up so that all functionality will be auto-loaded if needed. Creating the PDF Document To create a PDF document you will first need an empty document instance: doc = HexaPDF::Document.new Now that you have that empty document, let’s add a page: page = doc.pages.add In this simplest form an empty A4-sized page is created. Once the page is available, you can use HexaPDF’s drawing API to put something on it. To access the drawing API you need the canvas: canvas = page.canvas The canvas provides many methods for drawing lines, rectangles, curves, text, … and for changing drawing aspects like the stroke color. For now, you will just draw the text “Hello World” on it (head over to the canvas tutorial if you want to know more). Set the font and font size as well as the fill color like this: canvas.font('Helvetica', size: 50). fill_color(0, 128, 255) Setting the stroke color can be done in various ways, here an RGB (red, green, blue) value is used. Before drawing the text onto the canvas you need to know two things: The coordinate system of a PDF page has its origin at the lower-left corner, positivie x-axis is to the right, positive y-axis up, so just like the mathematical notation of the 2D space. Coordinates are specified in PDF points where 72 PDF points are one inch. Now you can draw the text in roughly the center of the page (A4 is 595x842 points): canvas.text(\"Hello World\", at: [150, 396]) The page has some contents now; the last thing to do is to write the PDF document to a file: doc.write(\"hello-world.pdf\") Save the code and run it. It will create the hello-world.pdf file with the “Hello World” page in it! If you followed the tutorial without having access to a computer, you can also view the PDF file here. You might wanna play around a bit with different HexaPDF::Content::Canvas methods, for example, to draw lines or bezier curvers with different line width and colors. When you are ready, head on to the next tutorial about modifying a PDF document. The Complete Code and Result PDF Here is the complete code generating this result PDF: require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas canvas.font('Helvetica', size: 50). fill_color(0, 128, 255) canvas.text(\"Hello World\", at: [150, 396]) doc.write(\"hello-world.pdf\") "},{"loc":"http://hexapdf.gettalong.org/documentation/basics/modifying-a-pdf-document.html","title":"Modifying a PDF Document ","tags":"","text":" Opening an Existing DocumentDrawing onto an Existing PageRe-Using Content on Multiple PagesInserting New PagesWriting the PDF and ExperimentsThe Complete Code and Result PDF Modifying a PDF Document In this tutorial you will learn how to open an existing PDF document and modify it by adding pages and changing existing pages. If you didn’t do the previous tutorial, grab this PDF file and save it in your working directory. Opening an Existing Document Similar to File.open HexaPDF also provides an #open method to easily open local files: require 'hexapdf' doc = HexaPDF::Document.open('hello-world.pdf') The variable doc now contains a HexaPDF::Document instance with the data from hello-world.pdf. Drawing onto an Existing Page Since PDF is a complex file format, HexaPDF provides convenience methods so that looking at the PDF specification is not necessary for many things. One of these methods is HexaPDF::Document#pages that allows you to access existing pages as well as add or
delete them. Now we get the first page: page1 = doc.pages[0] The page class also provides convenience methods. We alrady uesd the #canvas method in the previous tutorial. Now we use it again to draw beneath and atop the existing page: underlay_canvas = page1.canvas(type: :underlay) underlay_canvas.fill_color(50). rectangle(0, 0, page1.box.width, page1.box.height). fill This draws a gray background. Note that this will only work if the page doesn’t already have a background (as is the case with our sample PDF) because later drawing operations always draw over any existing drawings. We utilize this drawing order to also draw something atop the page: overlay_canvas = page1.canvas(type: :overlay) overlay_canvas.fill_color(129, 192, 255). font('Helvetica', size: 50). save_graphics_state. translate(170, 330).rotate(30). text(\"Hello World\", at: [0, 0]). restore_graphics_state. translate(170, 470).rotate(-30). text(\"Hello World\", at: [0, 0]) This code uses several methods of the canvas object to draw rotated versions of the text “Hello World”. Note how we first translate and then rotate the canvas before drawing the text at the – new – origin. Re-Using Content on Multiple Pages The PDF format has a mechanism for using the same content on multiple pages called “Form XObjects”. Note that these form XObjects have nothing to do with interactive PDF forms! We will use such a form XObject to create the background layout of the content pages. First we create the needed form XObject and get its canvas object: form = doc.add({Type: :XObject, Subtype: :Form, BBox: HexaPDF::Type::Page.media_box(:A4)}) form_canvas = form.canvas In this case we create the form XObject directly by specifying all the properties; the returned object provides the appropriate convenience methods. Since the form XObject has the same size as the document’s pages, we don’t have to scale it later. Then we will use the canvas object to draw our background layout: form_canvas. fill_color(0, 102, 204). rectangle(0, 0, form.width, 50). rectangle(0, form.height - 50, form.width, 50). fill. fill_color(255). font('Helvetica', size: 30, style: :italic). text('Tutorial 2', at: [15, form.height - 35]) Note how we chained two drawing operations before calling #fill. Now that our form XObject is ready we use the underlay canvas to add it to the existing page: underlay_canvas.xobject(form, at: [0, 0]) Inserting New Pages Now that we have updated our existing page, it is time to add new pages. To insert a page at a specific (zero-based) page index, just use the doc.pages.insert method: front_page = doc.pages.insert(0) front_page.canvas. font('Helvetica', variant: :bold, size: 50). text(\"Tutorial 2\", at: [100, 600]). font_size(30).text(\"Modifying a PDF Document\", at: [100, 550]). fill_color(0, 102, 204). rectangle(0, front_page.box.height - 50, front_page.box.width, 50). rectangle(0, 0, front_page.box.width, 50). fill This code inserts a title page as first page of the PDF document. Let’s add some more pages with some simple content: 1.upto(10) do |number| canvas = doc.pages.add.canvas canvas.xobject(form, at: [0, 0]) canvas.translate(70, 700).rotate(-55). fill_color(0, 128, 255). font('Helvetica', size: 90). text(\"Sample Page #{number}\", at: [0, 0]) end Writing the PDF and Experiments At last, we write the PDF document to a file: doc.write('modified.pdf') If you have followed the tutorial, you can now run the program to get the modified PDF. That is all for now but for further experiments you might wanna try: Before writing the document delete pages 3 and 6 through 8 (hint: HexaPDF::Document::Pages). Insert an additional, letter sized page and scale the form XObject appropriately (hint: HexaPDF::Content::Canvas#xobject). Modify the document meta information (hint: HexaPDF::Type::Trailer#info). The Complete Code and Result PDF Here is the complete code generating this result PDF: require 'hexapdf' doc = HexaPDF::Document.open('hello-world.pdf') page1 = doc.pages[0] underlay_canvas = page1.canvas(type: :underlay) underlay_canvas.fill_color(50). rectangle(0, 0, page1.box.width, page1.box.height). fill overlay_canvas = page1.canvas(type: :overlay) overlay_canvas.fill_color(129, 192, 255). font('Helvetica', size: 50). save_graphics_state. translate(170, 330).rotate(30). text(\"Hello World\", at: [0, 0]). restore_graphics_state. translate(170, 470).rotate(-30). text(\"Hello World\", at: [0, 0]) form = doc.add({Type: :XObject, Subtype: :Form, BBox: HexaPDF::Type::Page.media_box(:A4)}) form_canvas = form.canvas form_canvas. fill_color(0, 102, 204). rectangle(0, 0, form.width, 50). rectangle(0, form.height - 50, form.width, 50). fill. fill_color(255). font('Helvetica', size: 30, style: :italic). text('Tutorial 2', at: [15, form.height - 35]) underlay_canvas.xobject(form, at: [0, 0]) front_page = doc.pages.insert(0) front_page.canvas. font('Helvetica', variant: :bold, size: 50). text(\"Tutorial 2\", at: [100, 600]). font_size(30).text(\"Modifying a PDF Document\", at: [100, 550]). fill_color(0, 102, 204). rectangle(0, front_page.box.height - 50, front_page.box.width, 50). rectangle(0, 0, front_page.box.width, 50). fill 1.upto(10) do |number| canvas = doc.pages.add.canvas canvas.xobject(form, at: [0, 0]) canvas.translate(70, 700).rotate(-55). fill_color(0, 128, 255). font('Helvetica', size: 90). text(\"Sample Page #{number}\", at: [0, 0]) end doc.write('modified.pdf') "},{"loc":"http://hexapdf.gettalong.org/documentation/document-creation/canvas-tutorial.html","title":"Canvas Tutorial ","tags":"","text":" BasicsCreating a CanvasCoordinate SystemGraphics StateDrawing GraphicsDrawing TextReusing GraphicsThe Complete Code and Result PDF Using the Canvas In this tutorial you will get to know the HexaPDF::Content::Canvas class which is the low-level class for drawing on a page. You might want to open the resulting PDF to more easily understand the operations. Basics The canvas class provides access to all PDF drawing instructions. The available instructions are quite similar to other canvas implementations, like the HTML <canvas> element. So you can style and draw graphics as well as text. The main difference between e.g. the HTML canvas and the PDF canvas is that the PDF canvas methods result in a stream of text instructions that define the content of a PDF page. Whereas the result of HTML canvas methods is an image. This means that one could write the text instructions themselves instead of using the canvas methods. However, since certain rules have to be followed, it is not advised to do so. With that out of the way, let’s draw some things! Creating a Canvas An instance of the canvas class is always tied to one of two PDF objects: a page or a Form XObject. The reason is that the content needs to be associated with such an object to be usable/displayable and that sometimes during drawing operations PDF objects need to be created and correctly assigned. Therefore the two type classes provide a #canvas method for getting the appropriate canvas instance: require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas form = doc.add({ Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 100]}) form_canvas = form.canvas Note that we need to define the bounding box for the Form XObject. The bounding box of a page is its crop box which defaults to the page size by default (which is A4 by default). Anything drawn outside the bounding box/crop box will not be visible. To access the bounding box of the underlying PDF object we can use the #box method: page_box = canvas.context.box Coordinate System The coordinate system of the canvas follows the mathematical model. This means that the positive x-axis is to the right and the positive y-axis to the top. The origin is at (0, 0) which usually coincides with the lower-left corner of the bounding box (but doesn’t need to). Coordinates are specified in PDF points where 72 PDF points are one inch (= 25.4mm). It is possible to transform the coordinate system using various methods, like the general #transform method or the more specific #translate method. Let’s move the origin to somewhere else and draw a rectangle inside which we will draw things: canvas.translate(100, 100) canvas.rectangle(0, 0, page_box.width - 200, page_box.height - 200, radius: 15).stroke Since we translated the origin to the point (100, 100), the rectangle’s lower-left corner will actually be at (100, 100) instead of (0, 0). Graphics State The canvas (and also later the PDF application rendering the instructions) keeps track of the so called graphics state. The graphics state contains properties like the fill and stroke colors, the line width, the font, the character spacing and the current transformation matrix. It is accessible via the #graphics_state method of the canvas. Let’s use the current transformation matrix of the graphics state to find out the real position of the current origin: # Note that one would normally use canvas.pos(0, 0) for this p canvas.graphics_state.ctm.evaluate(0, 0) # prints [100, 100] Since some changes to the graphics state can’t be undone, like certain coordinate system transformations or clipping operations, it is possible to save and restore the graphics state: canvas.save_graphics_state do canvas.rectangle(-50, -50, 100, 100).clip_path.end_path # restricts drawing operations canvas.fill_color(\"lightgreen\").opacity(fill_alpha: 0.5). rectangle(-100, -100, 1000, 1000).fill end The above instructions fill a rectangle of size 100x100 instead of 1000x1000. If we hadn’t saved the graphics state before and restored it afterwards, we wouldn’t be able to draw anywhere else from this point onwards. Drawing Graphics As already said the canvas class provides methods for all PDF drawing instructions. Since those are only low-level constructs there are also some methods that can draw more common graphics like circles. Let’s draw some basic shapes. We start at the top left, so the
y-coordinates are initially high and will get lower: canvas.fill_color(\"blue\").stroke_color(\"red\"). rectangle(20, 550, 100, 30).fill_stroke canvas.line_width(10). move_to(150, 550).curve_to(200, 630, p1: [100, 610]). line_to(220, 550).close_subpath.stroke canvas.polygon(300, 550, 300, 630, 360, 590, 270, 580, radius: 10).stroke Note that we first change parts of the graphics state, setting the fill color to blue and the stroke color to red. Although it might seem that this change is restricted to the rectangle, it is actually not. The same happens with the line width which stays changed for the rounded polygon. To restrict graphics state changes to only a part of the drawing operations, either use the block form of the methods or explicitly save and restore the graphics state: canvas.line_width(1) do canvas.line(10, 520, 200, 520).stroke end canvas.save_graphics_state do canvas.stroke_color(\"green\").line(200, 520, 370, 520).stroke end The canvas also features an extension system which allows one to easily draw more complex things, like a pie chart: pie = canvas.graphic_object(:solid_arc, cx: 100, cy: 450, outer_a: 50, outer_b: 50) canvas.fill_color('aaaaff') canvas.draw(pie, start_angle: 30, end_angle: 110).fill canvas.fill_color('ffaaaa') canvas.draw(pie, start_angle: 110, end_angle: 130).fill canvas.fill_color('aaffaa') canvas.draw(pie, start_angle: 130, end_angle: 30).fill Drawing Text Before any text can be drawn, one has to define at least the font and font size since there is no default value for both values. PDF has built-in support for the fonts Helvetica, Times and Courier (all tree in normal, bold, italic and bold-italic variants) as well as Symbol and Zapf Dingbats (which are symbolic fonts). Those are called the 14 standard PDF fonts. Note that those fonts only contain a limited set of glyphs, see the standard PDF fonts example for a full list. Let’s write some text in all standard non-symbolic PDF fonts: canvas.fill_color(\"black\") ['Helvetica', 'Times', 'Courier'].each_with_index do |font, x| [:none, :bold, :italic, :bold_italic].each_with_index do |variant, y| canvas.font(font, variant: variant, size: 12) canvas.text('HexaPDF Canvas', at: [20 + 120 * x, 360 - 20 * y]) end end Besides the standard PDF fonts it is also possible to use any TrueType font with HexaPDF: canvas.font('/usr/share/fonts/truetype/lato/Lato-Regular.ttf', size: 12) canvas.text(\"HexaPDF Canvas with\\nTrueType font\", at: [20, 270]) Either specify the font file directly, as above, or configure and reference it by name later: doc.config['font.map'] = { 'Lato' => { none: '/usr/share/fonts/truetype/lato/Lato-Regular.ttf', italic: '/usr/share/fonts/truetype/lato/Lato-Italic.ttf', } } canvas.font('Lato', variant: :italic) canvas.text(\"Lato Italic font variant\", at: [200, 270]) The #text method used here for drawing recognizes line breaks but nothing more. For more complex text output one would need to use HexaPDF::Layout::TextLayouter (low-level) or HexaPDF::Composer (high-level)a. Reusing Graphics At the beginning we introduced Form XObjects as the other PDF object type supporting a canvas. Form XObjects are used to define graphics once and use them multiple times. One thing to remember is that Form XObjects do not reset the graphics state. So all the graphics state set when drawing a Form XObject will be used for the drawing operations of the Form XObject. Let’s draw something on our Form XObject and then draw it twice: form_canvas.rectangle(10, 10, 80, 80, radius: 10).stroke form_canvas.ellipse(0, 0, a: 40, b: 25, inclination: 30).fill_stroke canvas.xobject(form, at: [20, 120]) canvas.line_width(5).stroke_color(\"black\").opacity(stroke_alpha: 0.5). fill_color(\"blue\") canvas.xobject(form, at: [220, 120]) As expected anything outside of the form’s bounding box is clipped and not visible when drawing the form. And it can clearly be seen that the change in the graphics state between the invocations influences the form’s drawing operations. Now we just need to write the document doc.write(\"canvas-tutorial.pdf\") which will conclude this tutorial! The Complete Code and Result PDF Here is the complete code generating this result PDF: require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas form = doc.add({ Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 100]}) form_canvas = form.canvas page_box = canvas.context.box canvas.translate(100, 100) canvas.rectangle(0, 0, page_box.width - 200, page_box.height - 200, radius: 15).stroke # Note that one would normally use canvas.pos(0, 0) for this p canvas.graphics_state.ctm.evaluate(0, 0) # prints [100, 100] canvas.save_graphics_state do canvas.rectangle(-50, -50, 100, 100).clip_path.end_path # restricts drawing operations canvas.fill_color(\"lightgreen\").opacity(fill_alpha: 0.5). rectangle(-100, -100, 1000, 1000).fill end canvas.fill_color(\"blue\").stroke_color(\"red\"). rectangle(20, 550, 100, 30).fill_stroke canvas.line_width(10). move_to(150, 550).curve_to(200, 630, p1: [100, 610]). line_to(220, 550).close_subpath.stroke canvas.polygon(300, 550, 300, 630, 360, 590, 270, 580, radius: 10).stroke canvas.line_width(1) do canvas.line(10, 520, 200, 520).stroke end canvas.save_graphics_state do canvas.stroke_color(\"green\").line(200, 520, 370, 520).stroke end pie = canvas.graphic_object(:solid_arc, cx: 100, cy: 450, outer_a: 50, outer_b: 50) canvas.fill_color('aaaaff') canvas.draw(pie, start_angle: 30, end_angle: 110).fill canvas.fill_color('ffaaaa') canvas.draw(pie, start_angle: 110, end_angle: 130).fill canvas.fill_color('aaffaa') canvas.draw(pie, start_angle: 130, end_angle: 30).fill canvas.fill_color(\"black\") ['Helvetica', 'Times', 'Courier'].each_with_index do |font, x| [:none, :bold, :italic, :bold_italic].each_with_index do |variant, y| canvas.font(font, variant: variant, size: 12) canvas.text('HexaPDF Canvas', at: [20 + 120 * x, 360 - 20 * y]) end end canvas.font('/usr/share/fonts/truetype/lato/Lato-Regular.ttf', size: 12) canvas.text(\"HexaPDF Canvas with\\nTrueType font\", at: [20, 270]) doc.config['font.map'] = { 'Lato' => { none: '/usr/share/fonts/truetype/lato/Lato-Regular.ttf', italic: '/usr/share/fonts/truetype/lato/Lato-Italic.ttf', } } canvas.font('Lato', variant: :italic) canvas.text(\"Lato Italic font variant\", at: [200, 270]) form_canvas.rectangle(10, 10, 80, 80, radius: 10).stroke form_canvas.ellipse(0, 0, a: 40, b: 25, inclination: 30).fill_stroke canvas.xobject(form, at: [20, 120]) canvas.line_width(5).stroke_color(\"black\").opacity(stroke_alpha: 0.5). fill_color(\"blue\") canvas.xobject(form, at: [220, 120]) doc.write(\"canvas-tutorial.pdf\") "},{"loc":"http://hexapdf.gettalong.org/documentation/document-creation/composer-tutorial.html","title":"Composer Tutorial ","tags":"","text":" Creating a ComposerAdding ContentStyling ContentPlacement of ContentPage StylesThe Complete Code and Result PDF The Composer In this tutorial you will get to know the HexaPDF::Composer class which is the high-level class for creating PDF documents. You might want to open the resulting PDF to more easily understand and see the results. Creating a Composer The composer class makes it easy to create nice-looking PDF documents. It does this by providing a high-level interface for creating and styling content. First you need to create a composer instance: require 'hexapdf' composer = HexaPDF::Composer.new There is also a block-form using HexaPDF::Composer::create which comes in handy if the document is not that complex. Behind the scenes the composer creates a HexaPDF::Document instance and the first page. Both can be accessed via the respective instance methods #document and #page. We use the document instance to define a TrueType font: composer.document.config['font.map'] = { 'Lato' => { none: '/usr/share/fonts/truetype/lato/Lato-Regular.ttf', bold: '/usr/share/fonts/truetype/lato/Lato-Bold.ttf', italic: '/usr/share/fonts/truetype/lato/Lato-Italic.ttf', bold_italic: '/usr/share/fonts/truetype/lato/Lato-BoldItalic.ttf', } } Everytime a page is created by the composer, an accompanying HexaPDF::Layout::Frame instance is also created. This frame defines the space used for laying out the content. We will come back to that later. Adding Content Content for the composer is defined via boxes. A box defines its content (e.g. text, image, other boxes, …), how that content is styled and how it should be layed out. See Document Layout for details. Let’s output some basic text: composer.text('Composer Tutorial', font: ['Lato', variant: :bold], font_size: 24, text_align: :center) This will show ‘Composer Tutorial’ at the top of the page since boxes are laid out from top to bottom. We can enable the debug mode to see the extent of a layed out box: composer.document.config['debug'] = true composer.text(\"Let's enable debug mode to see the box extent\", font: 'Lato') composer.document.config['debug'] = false This text box is shown in light green and we see that it takes the full width of the frame. It doesn’t cover the full width of the page since by default there is a margin around the frame. Enabling debug mode is useful for debugging layout problems. Each box will add a layer to the PDF for toggling the visibility state of its debug highlighting rectangle. Sometimes the selected font doesn’t contain all glyphs that one wants to display. This often happens with emoji but can happen for any character. HexaPDF provides the ability to use fallback fonts in such cases: composer.document.config['font.map'] = { 'Emoji' => {none: File.expand_path('~/.fonts/NotoEmoji-Regular.ttf'), bold: File.expand_path('~/.fonts/NotoEmoji-Bold.ttf')} } composer.document.config['font.fallback'] = ['Emoji'] composer.text(\"The monkey-no-see 🙈 and 😄 are provided by the fallback font.\") Besides simple text HexaPDF also has built-in support for formatted text, images, column boxes and lists. Let’s put a list into a column box:
composer.column(columns: 2, gaps: 30, equal_height: true) do |column| column.list(marker_type: :square, item_spacing: 16) do |list| list.multiple do |item_1| item_1.formatted_text([\"This is \", {text: \"formatted\", fill_color: \"red\"}, \" text. And one of two boxes of this item.\"], font: 'Lato') item_1.lorem_ipsum end 3.times { list.lorem_ipsum } end end The #formatted_text method uses an array of strings and hashes to define its content. The simplest form of such a hash is {text: 'Some test', **style_properties}. This allows one to format parts of a paragraph differently and to insert inline boxes (think emojis, inline graphs, …). The child boxes of the column and list boxes are defined in the blocks, with the block argument fulfilling a role similar to the composer instance. The special method #multiple allows adding multiple content boxes at once which is useful for defining list items with more than one content box (like with the first list item above). Styling Content Each box has an associated style, an instance of HexaPDF::Layout::Style. We have already seen some style properties, like font, being set on a box. Style properties can either be set when invoking a box drawing method, like we have already seen, or predefined via #style. By predefining styles it is possible to re-use them and have a consistent visual appearance. Let’s define two styles, one for headers and one for paragraphs: header_marker = lambda do |canvas, box| canvas.line_width(10).stroke_color(\"6a6\").line(-8, 0, -8, box.height).stroke end composer.style(:header, font: ['Lato', variant: :bold], font_size: 16, margin: [20, 0, 16], padding: [10, 0, 8], overlays: [header_marker]) composer.style(:paragraph, font: 'Lato', font_size: 12, margin: [0, 0, 12], text_align: :justify) Both styles define the font and font size as well as a margin and some other style properties. For example, the header will have a green bar to its left curtesy of the header_marker overlay. Now we just need to use those styles and so we put a text box formatted as header and another text box formatted as paragraph onto the page: composer.text('This is our Header!', style: :header) composer.lorem_ipsum(style: :paragraph) Placement of Content Content boxes are usually placed top to bottom, one below the other. However, it is possible to instruct the layout engine to use different placements using the #position, #align, #valign and #mask_mode style properties. The frame that gets created when adding a page defines the space where boxes may be placed. Usually, the frame has a rectangular shape but it may actually be a set of arbitrary, axis-aligned, rectilinear polygons. Let’s “float” a box to the side and then draw the outline of the frame in red: # Let's create a Form XObject acting as the image image = composer.create_stamp(100, 100) do |canvas| canvas.opacity(fill_alpha: 0.5).fill_color(\"6a6\"). rectangle(5, 5, 90, 90, radius: 10).fill end composer.image(image, width: 100, position: :float, margin: [0, 10, 10, 0]) composer.canvas. save_graphics_state.stroke_color(\"red\"). draw(:geom2d, object: composer.frame.shape). restore_graphics_state You can see that the frame is not rectangular anymore! The space occupied by the floating image has been removed from it. The default placement uses a rectangular region starting from the top-most, left-most point of the frame’s shape. So if we draw some text, it will be put right next to the floating image: composer.lorem_ipsum(count: 2, style: :paragraph) Putting the text to the right works but the text does not go beneath the image, i.e. it doesn’t flow around it. The reason for this is that by default the box is fit into to above mentioned rectangular region. If we need to flow the text around the image, we need to instruct the layout engine and box implementations to use the shape of the frame. Let’s draw the image again and now flow the text around it: composer.image(image, width: 100, position: :float, margin: [0, 10, 0, 0]) composer.lorem_ipsum(count: 2, style: :paragraph, position: :flow) Note the added position: :flow argument which makes the difference. You would generally also use that argument with container boxes if you use it for text boxes. Page Styles By default new pages will be empty and the frame will have a margin but nothing else. This can be overridden with page styles. A page style defines at least the size and orientation of a page as well as the frame that should be used. Additionally, it can optionally set the initial content (think background, logo, fixed footer, …) as well as the name of the page style for the next page. Let’s define a simple page style and then create a new page with it: composer.page_style(:simple, page_size: :A4) do |canvas, style| page_box = canvas.context.box canvas.fill_color(\"ffa\") do canvas.rectangle(0, 0, page_box.width, page_box.height). fill end canvas.rectangle(20, 20, page_box.width - 40, page_box.height - 40, radius: 36).stroke style.frame = style.create_frame(canvas.context, 36) end composer.new_page(:simple) composer.lorem_ipsum(count: 2) All new pages will now use that page style. By setting the #next_style attribute of the page style, it is possible to automatically switch between styles (e.g. between a left page style and a right page style). Note that if you want to use a custom style for the first page of a document, you need to use the skip_page_creation: true argument when creating a composer instance. As last step we need to write the created PDF document composer.write(\"composer-tutorial.pdf\") which concludes this tutorial! The Complete Code and Result PDF Here is the complete code generating this result PDF: require 'hexapdf' composer = HexaPDF::Composer.new composer.document.config['font.map'] = { 'Lato' => { none: '/usr/share/fonts/truetype/lato/Lato-Regular.ttf', bold: '/usr/share/fonts/truetype/lato/Lato-Bold.ttf', italic: '/usr/share/fonts/truetype/lato/Lato-Italic.ttf', bold_italic: '/usr/share/fonts/truetype/lato/Lato-BoldItalic.ttf', } } composer.text('Composer Tutorial', font: ['Lato', variant: :bold], font_size: 24, text_align: :center) composer.document.config['debug'] = true composer.text(\"Let's enable debug mode to see the box extent\", font: 'Lato') composer.document.config['debug'] = false composer.document.config['font.map'] = { 'Emoji' => {none: File.expand_path('~/.fonts/NotoEmoji-Regular.ttf'), bold: File.expand_path('~/.fonts/NotoEmoji-Bold.ttf')} } composer.document.config['font.fallback'] = ['Emoji'] composer.text(\"The monkey-no-see 🙈 and 😄 are provided by the fallback font.\") composer.column(columns: 2, gaps: 30, equal_height: true) do |column| column.list(marker_type: :square, item_spacing: 16) do |list| list.multiple do |item_1| item_1.formatted_text([\"This is \", {text: \"formatted\", fill_color: \"red\"}, \" text. And one of two boxes of this item.\"], font: 'Lato') item_1.lorem_ipsum end 3.times { list.lorem_ipsum } end end header_marker = lambda do |canvas, box| canvas.line_width(10).stroke_color(\"6a6\").line(-8, 0, -8, box.height).stroke end composer.style(:header, font: ['Lato', variant: :bold], font_size: 16, margin: [20, 0, 16], padding: [10, 0, 8], overlays: [header_marker]) composer.style(:paragraph, font: 'Lato', font_size: 12, margin: [0, 0, 12], text_align: :justify) composer.text('This is our Header!', style: :header) composer.lorem_ipsum(style: :paragraph) # Let's create a Form XObject acting as the image image = composer.create_stamp(100, 100) do |canvas| canvas.opacity(fill_alpha: 0.5).fill_color(\"6a6\"). rectangle(5, 5, 90, 90, radius: 10).fill end composer.image(image, width: 100, position: :float, margin: [0, 10, 10, 0]) composer.canvas. save_graphics_state.stroke_color(\"red\"). draw(:geom2d, object: composer.frame.shape). restore_graphics_state composer.lorem_ipsum(count: 2, style: :paragraph) composer.image(image, width: 100, position: :float, margin: [0, 10, 0, 0]) composer.lorem_ipsum(count: 2, style: :paragraph, position: :flow) composer.page_style(:simple, page_size: :A4) do |canvas, style| page_box = canvas.context.box canvas.fill_color(\"ffa\") do canvas.rectangle(0, 0, page_box.width, page_box.height). fill end canvas.rectangle(20, 20, page_box.width - 40, page_box.height - 40, radius: 36).stroke style.frame = style.create_frame(canvas.context, 36) end composer.new_page(:simple) composer.lorem_ipsum(count: 2) composer.write(\"composer-tutorial.pdf\") "},{"loc":"http://hexapdf.gettalong.org/documentation/benchmarks/line_wrapping.html","title":"Line Wrapping","tags":"","text":" Line Wrapping BenchmarkBenchmark SetupResults Line Wrapping Benchmark This benchmark tests the performance of line wrapping and simple general layouting. The Project Gutenberg text of Homer’s Odyssey is used for this purposes. Benchmark Setup The text of the Odyssey is arranged on pages of the dimension WIDTHx1000 where WIDTH is set to different values (400, 200, 100 and 50 by default). Additionally, all widths are combined once with the standard PDF Type1 font Times-Roman and once with a TrueType font (DejaVu Sans by default). In the case of pages with a width of 400 no line wrapping needs to be done because each line in the source text is shorter than 400 points. In the other cases lines need to be actually wrapped and the number of pages increases. With a width of 50 even words need sometimes to be broken. Each benchmark script can be invoked standalone in the following way: script-executable TXT_FILE WIDTH OUTPUT_FILE [TTF_FILE]. The performance of the libraries hugely depends on how the input text is provided: Some are very fast when processing the whole input file at once, others only when processing the input line by line. The fastest method was always chosen. The list of the benchmarked libraries: HexaPDF Homepage: http://hexapdf.gettalong.org Language: Ruby Version: Latest version HexaPDF works faster if the whole input is given at once but still has acceptable runtimes for line by line input. Two different
ways of general layouting are benchmarked: L This version uses the low-level layouting facility HexaPDF::Layout::TextLayouter. C This version uses the high-level HexaPDF::Composer to construct the document. Prawn Homepage: https://prawnpdf.org Language: Ruby Version: 2.4.0 Prawn is much faster and uses much less memory if the input is provided line by line. However, it still works if the whole input is provided at once. ReportLab Homepage: https://www.reportlab.com/opensource/ Language: Python Version: 3.6.12 ReportLab also needs its input line by line. Otherwise it is much, much slower (at least 60x, then the test run was aborted). fpdf2 Homepage: https://pyfpdf.github.io/fpdf2/ Language: Python Version: 2.7.4 As with HexaPDF itself, fpdf2 works equally fine when getting the input as one big string or line by line. TCPDF Homepage: https://tcpdf.org/ Language: PHP Version: 6.6.2 As with Prawn and ReportLab, TCPDF needs its input line by line. Otherwise it is much, much slower when line wrapping needs to be done (the test run was aborted because it took too long). Results These benchmark results are from 2023-08-03. Time Memory File size hexapdf L 400 872ms 100.132KiB 361.571 hexapdf C 400 915ms 93.360KiB 361.577 prawn 400 3.659ms 53.820KiB 526.289 reportlab/C 400 1.024ms 44.376KiB 486.548 fpdf2 400 1.528ms 65.940KiB 436.467 tcpdf 400 1.013ms 33.880KiB 513.780 hexapdf L 200 942ms 105.456KiB 408.488 hexapdf C 200 968ms 96.236KiB 408.487 prawn 200 4.846ms 56.428KiB 665.500 reportlab/C 200 1.109ms 44.816KiB 584.702 fpdf2 200 1.722ms 69.776KiB 545.185 tcpdf 200 1.147ms 35.412KiB 668.559 hexapdf L 100 1.066ms 109.812KiB 463.815 hexapdf C 100 1.116ms 100.768KiB 463.809 prawn 100 6.517ms 63.120KiB 850.581 reportlab/C 100 1.220ms 45.656KiB 698.375 fpdf2 100 2.048ms 75.656KiB 687.194 tcpdf 100 1.443ms 38.232KiB 918.499 hexapdf L 50 1.676ms 206.016KiB 569.338 hexapdf C 50 1.649ms 212.212KiB 569.338 prawn 50 11.087ms 69.352KiB 1.263.210 reportlab/C 50 1.413ms 47.328KiB 933.885 fpdf2 50 2.615ms 91.016KiB 1.006.761 tcpdf 50 2.132ms 46.164KiB 1.465.888 hexapdf L 400 ttf 967ms 105.736KiB 442.425 hexapdf C 400 ttf 1.007ms 101.760KiB 442.438 prawn 400 ttf 3.459ms 54.048KiB 561.034 reportlab/C 400 ttf 1.112ms 48.944KiB 621.389 fpdf2 400 ttf 1.770ms 67.216KiB 523.438 tcpdf 400 ttf 1.228ms 39.252KiB 631.677 hexapdf L 200 ttf 1.002ms 98.456KiB 504.454 hexapdf C 200 ttf 1.015ms 98.560KiB 504.454 prawn 200 ttf 4.560ms 59.592KiB 715.069 reportlab/C 200 ttf 1.193ms 49.928KiB 730.741 fpdf2 200 ttf 1.956ms 71.116KiB 650.491 tcpdf 200 ttf 1.325ms 41.348KiB 818.349 hexapdf L 100 ttf 1.173ms 111.944KiB 606.547 hexapdf C 100 ttf 1.200ms 104.832KiB 606.543 prawn 100 ttf 6.907ms 69.844KiB 1.015.736 reportlab/C 100 ttf 1.342ms 50.880KiB 920.045 fpdf2 100 ttf 2.373ms 80.680KiB 888.224 tcpdf 100 ttf 1.765ms 44.372KiB 1.200.745 hexapdf L 50 ttf 3.044ms 288.980KiB 767.835 hexapdf C 50 ttf 3.116ms 284.808KiB 767.852 prawn 50 ttf 11.155ms 70.432KiB 1.572.100 reportlab/C 50 ttf 1.668ms 52.908KiB 1.249.287 fpdf2 50 ttf 3.310ms 100.632KiB 1.320.952 tcpdf 50 ttf 2.604ms 54.100KiB 1.941.055 "},{"loc":"http://hexapdf.gettalong.org/documentation/benchmarks/optimization.html","title":"Optimization","tags":"","text":" Optimization BenchmarkBenchmark SetupResults Optimization Benchmark One of the ways to use the hexapdf command is to optimize a PDF file in terms of its file size. This involves reading and writing the PDF file and performing the optimization. Sometimes the word “optimization” is used when a PDF file is linearized for faster display on web sites. However, here it always means file size optimization. There are various ways to optimize the file size of a PDF file and they can be divided into two groups: lossless and lossy operations. Since all used applications perform only lossless optimizations, we only look at those: Removing unused and deleted objects A PDF file can store multiple revisions of an object but only the last one is used. So all other versions can safely be deleted. Using object and cross-reference streams A PDF file can be thought of as a collection of random-access objects that are stored sequentially in an ASCII-based format. Object streams take those objects and store them compressed in a binary format. And cross-reference streams store the file offsets to the objects in a compressed manner, instead of the standard ASCII-based format. Recompressing page content streams The content of a PDF page is described in an ASCII-based format. Some PDF producers don’t optimize their output which can lead to bigger than necessary content streams or don’t store it in a compressed format. There are some more techniques for reducing the file size like font subsetting/merging/deduplication or object and image deduplication. However, those are rather advanced and not implemented in most PDF libraries because it is hard to get them right. Benchmark Setup There are many applications that can perform some or all of the optimizations mentioned above. Since this benchmark is intended to be run on Linux we will use command line applications that are readily available on this platform. Since the abilities of the applications vary, following is a table of keys used to describe the various operations: Key Operation C Compacting by removing unused and deleted objects S Usage of object and cross-reference streams P Recompression of page content streams The list of the benchmarked applications: hexapdf Homepage: http://hexapdf.gettalong.org Version: Latest version Abilities: Any combination of C, S and P We want to benchmark hexapdf with increasing levels of compression, using the following invocations: None of C, S, or P hexapdf optimize INPUT --no-compact --object-streams=preserve --xref-streams=preserve --streams=preserve --no-optimize-fonts OUTPUT C hexapdf optimize INPUT --compact --object-streams=preserve --xref-streams=preserve --streams=preserve --no-optimize-fonts OUTPUT CS (so this would be the standard mode of operation) hexapdf optimize INPUT OUTPUT CSP hexapdf optimize INPUT --compress-pages OUTPUT origami Homepage: https://github.com/gdelugre/origami Version: 2.1.0 Abilities: ? Similar to HexaPDF Origami is a framework for manipulating PDF files. Since it is also written in Ruby, it makes for a good comparison. The origami.rb script can be invoked like ruby origami.rb INPUT OUTPUT. combine_pdf Homepage: https://github.com/boazsegev/combine_pdf Version: 1.0.23 Abilities: ? CombinePDF is a tool for merging PDF files, written in Ruby. The combine_pdf.rb script can be invoked like ruby combine_pdf.rb INPUT OUTPUT. pdftk Homepage: https://gitlab.com/marcvinyals/pdftk Version: 3.3.2 Abilities: C pdftk is probably one of the best known applications because, like hexapdf it allows for many different operations on PDFs. It is based on the Java iText library. Prior version have been compiled to native code using GCJ but GCJ was deprecated and this fork of pdftk now uses Java. The application doesn’t have options for optimizing a PDF file but it can be assumed that it removes unused and deleted objects when invoked like pdftk INPUT output OUTPUT. qpdf Homepage: http://qpdf.sourceforge.net/ Version: 10.4.0 Abilities: C, CS QPDF is a command line application for transforming PDF files written in C++. The standard C mode of operation is invoked with qpdf INPUT OUTPUT whereas the CS mode would need an additional option --object-streams=generate. smpdf Homepage: http://www.coherentpdf.com/compression.html Version: 1.4.1 Abilities: CSP This is a commercial application but can be used for evaluation purposes. There is no way to configure the operations done but judging from its output it seems it does all of the lossless operations. Invocation is done like this: smpdf INPUT -o OUTPUT. The standard files used in the benchmark (not available in the HexaPDF distribution) vary in file size and internal structure: Name Size Objects Pages Details a.pdf 53.056 36 4 Very simple one page file b.pdf 11.520.218 4.161 439 Many non-stream objects c.pdf 14.399.980 5.263 620 Linearized, many streams d.pdf 8.107.348 34.513 20 e.pdf 21.788.087 2.296 52 Huge content streams, many pictures, object streams, encrypted with default password f.pdf 154.752.614 287.977 28.365 Very big file Results These benchmark results are from 2023-08-03. Time Memory File size hexapdf a.pdf 199ms 34.944KiB 52.299 hexapdf C a.pdf 200ms 35.200KiB 52.277 hexapdf CS a.pdf 207ms 35.328KiB 49.224 hexapdf CSP a.pdf 214ms 36.096KiB 48.297 origami a.pdf 250ms 44.684KiB 52.111 combinepdf a.pdf 124ms 30.848KiB 53.263 pdftk C? a.pdf 152ms 56.304KiB 53.144 qpdf C a.pdf 12ms 8.064KiB 53.179 qpdf CS a.pdf 12ms 8.320KiB 49.287 smpdf CSP a.pdf 14ms 7.936KiB 48.329 hexapdf b.pdf 497ms 51.616KiB 11.222.968 hexapdf C b.pdf 515ms 54.392KiB 11.350.258 hexapdf CS b.pdf 564ms 58.112KiB 11.045.214 hexapdf CSP b.pdf 2.366ms 68.428KiB 11.027.080 ERR origami b.pdf 0ms 0KiB 0 combinepdf b.pdf 959ms 152.336KiB 11.526.172 pdftk C? b.pdf 497ms 105.976KiB 11.564.056 qpdf C b.pdf 215ms 22.912KiB 11.273.690 qpdf CS b.pdf 229ms 23.040KiB 11.126.861 smpdf CSP b.pdf 1.785ms 49.408KiB 11.092.465 hexapdf c.pdf 780ms 55.168KiB 14.382.696 hexapdf C c.pdf 744ms 57.216KiB 14.345.269 hexapdf CS c.pdf 826ms 60.032KiB 13.180.713 hexapdf CSP c.pdf 2.549ms 76.416KiB 13.102.033 origami c.pdf 3.490ms 136.808KiB 14.338.126 combinepdf c.pdf 1.008ms 154.400KiB 14.329.457 pdftk C? c.pdf 1.544ms 158.212KiB 14.439.011 qpdf C c.pdf 707ms 95.744KiB 14.432.647 qpdf CS c.pdf 817ms 95.488KiB 13.228.102 smpdf CSP c.pdf 1.668ms 74.240KiB 13.076.598 hexapdf d.pdf 1.658ms 80.648KiB 7.662.939 hexapdf C d.pdf 1.596ms 84.776KiB 6.924.700 hexapdf CS d.pdf 1.822ms 84.520KiB 6.418.482 hexapdf CSP d.pdf 1.737ms 99.468KiB 5.391.919 origami d.pdf 4.053ms 144.000KiB 7.498.876 combinepdf d.pdf 2.156ms 144.552KiB 7.243.107 pdftk C? d.pdf 2.140ms 211.976KiB 7.279.035 qpdf C d.pdf 1.045ms 69.248KiB 7.209.305 qpdf CS d.pdf 1.206ms 69.248KiB 6.703.374 smpdf CSP d.pdf
1.734ms 70.604KiB 5.528.352 hexapdf e.pdf 512ms 59.720KiB 21.766.847 hexapdf C e.pdf 584ms 113.592KiB 21.832.869 hexapdf CS e.pdf 620ms 112.812KiB 21.751.196 hexapdf CSP e.pdf 11.397ms 156.636KiB 21.186.414 ERR origami e.pdf 0ms 0KiB 0 ERR combinepdf e.pdf 0ms 0KiB 0 pdftk C? e.pdf 687ms 198.568KiB 21.874.883 qpdf C e.pdf 268ms 31.420KiB 21.802.439 qpdf CS e.pdf 267ms 31.660KiB 21.787.558 smpdf CSP e.pdf 20.680ms 608.428KiB 21.188.516 hexapdf f.pdf 20.748ms 435.072KiB 153.972.520 hexapdf C f.pdf 23.003ms 474.052KiB 153.844.796 hexapdf CS f.pdf 26.267ms 552.272KiB 117.545.255 ERR hexapdf CSP f.pdf 0ms 0KiB 0 origami f.pdf 63.483ms 1.567.124KiB 152.614.156 ERR combinepdf f.pdf 0ms 0KiB 0 pdftk C? f.pdf 22.076ms 792.892KiB 157.850.353 qpdf C f.pdf 14.567ms 959.820KiB 157.723.936 qpdf CS f.pdf 19.236ms 975.392KiB 118.114.521 ERR smpdf CSP f.pdf 0ms 0KiB 0 "},{"loc":"http://hexapdf.gettalong.org/documentation/benchmarks/raw_text.html","title":"Raw Text","tags":"","text":" Simple Text Rendering BenchmarkBenchmark SetupResults Simple Text Rendering Benchmark The Python PDF generation library ReportLab contains a demo/benchmarking application that takes the Project Gutenberg text of Homer’s Odyssey (contains about 12.000 lines and about 700.000 characters) and creates a PDF version from it. This benchmark is derived from that demo. No advanced text features are used or needed by this benchmark, only the raw text output performance is tested. Benchmark Setup The text of the Odyssey is written onto A4 pages with a margin of 72 points, showing each line of the source text using the most basic text drawing methods available, without line wrapping or text measuring. To see how the amount of text influences the performance, the benchmark is done by concatenating the text multiple times (1x, 5x and 10x by default). Additionally, all multiplication factors are combined once with the standard PDF Type1 font Times-Roman and once with a TrueType font (DejaVu Sans by default). Each benchmark script (except the jPDFWriter and pdfkit ones) can be invoked standalone in the following way: script-executable TXT_FILE OUTPUT_FILE [TTF_FILE]. The list of the benchmarked libraries: HexaPDF Homepage: http://hexapdf.gettalong.org Language: Ruby Version: Latest version Prawn Homepage: https://prawnpdf.org Language: Ruby Version: 2.4.0 ReportLab Homepage: https://www.reportlab.com/opensource/ Language: Python Version: 3.6.12 ReportLab has a module that implements some features in C to speed up the execution. This module is used in the benchmark. fpdf2 Homepage: https://pyfpdf.github.io/fpdf2/ Language: Python Version: 2.7.4 jPDFWriter Homepage: https://www.qoppa.com/pdfwriter/ Language: Java Version: v2016R1 Qoppa Software provides the free jPDFWriter library which is needed for benchmarking this library. The Java source code file for the benchmark needs to be compiled and the jPDFWriter-JAR put onto the CLASSPATH environment variable. Note that TrueType fonts don’t seem to be supported. TCPDF Homepage: https://tcpdf.org/ Language: PHP Version: 6.6.2 PDF::API2 Homepage: http://search.cpan.org/perldoc/PDF::API2 Language: Perl Version: 2.044 PDFKit Homepage: https://pdfkit.org/ Language: Javascript Version: 0.11.0 Results These benchmark results are from 2023-08-03. Time Memory File size hexapdf 1x 361ms 43.312KiB 441.386 prawn 1x 395ms 36.352KiB 616.765 reportlab/C 1x 144ms 31.488KiB 474.492 fpdf2 1x 234ms 51.056KiB 485.475 jPDFWriter 1x 362ms 93.880KiB 569.421 tcpdf 1x 461ms 33.272KiB 627.074 PDF::API2 1x 490ms 31.092KiB 455.322 pdfkit 1x 906ms 93.348KiB 637.581 hexapdf 5x 1.006ms 53.572KiB 2.201.635 prawn 5x 1.316ms 53.760KiB 3.084.301 reportlab/C 5x 406ms 48.512KiB 2.372.212 fpdf2 5x 485ms 63.724KiB 2.429.354 jPDFWriter 5x 657ms 189.072KiB 2.849.342 tcpdf 5x 2.060ms 48.220KiB 3.112.669 PDF::API2 5x 2.440ms 45.824KiB 2.276.997 pdfkit 5x 2.312ms 134.668KiB 3.189.607 hexapdf 10x 1.879ms 64.964KiB 4.403.276 prawn 10x 2.524ms 74.368KiB 6.170.089 reportlab/C 10x 752ms 70.324KiB 4.745.535 fpdf2 10x 809ms 79.816KiB 4.860.132 jPDFWriter 10x 954ms 277.588KiB 5.700.015 tcpdf 10x 4.106ms 66.492KiB 6.221.294 PDF::API2 10x 5.738ms 64.000KiB 4.555.402 pdfkit 10x 4.142ms 171.040KiB 6.380.272 hexapdf 1x ttf 401ms 41.472KiB 535.238 prawn 1x ttf 1.278ms 40.576KiB 636.144 reportlab/C 1x ttf 285ms 36.452KiB 623.814 fpdf2 1x ttf 444ms 57.436KiB 585.247 ERR jPDFWriter 1x ttf 0ms 0KiB 0 tcpdf 1x ttf 591ms 38.100KiB 758.153 PDF::API2 1x ttf 4.831ms 52.224KiB 668.754 pdfkit 1x ttf 1.497ms 140.912KiB 726.256 hexapdf 5x ttf 1.224ms 55.296KiB 2.615.336 prawn 5x ttf 5.614ms 56.320KiB 3.098.170 reportlab/C 5x ttf 1.042ms 60.904KiB 3.037.995 fpdf2 5x ttf 1.299ms 69.744KiB 2.860.114 ERR jPDFWriter 5x ttf 0ms 0KiB 0 tcpdf 5x ttf 2.792ms 55.584KiB 3.573.805 PDF::API2 5x ttf 23.469ms 76.288KiB 3.083.924 pdfkit 5x ttf 3.000ms 179.732KiB 3.568.199 hexapdf 10x ttf 2.286ms 73.600KiB 5.217.070 prawn 10x ttf 11.413ms 76.800KiB 6.177.035 reportlab/C 10x ttf 1.939ms 91.704KiB 6.056.935 fpdf2 10x ttf 2.339ms 91.368KiB 5.704.992 ERR jPDFWriter 10x ttf 0ms 0KiB 0 tcpdf 10x ttf 5.261ms 78.032KiB 7.095.073 PDF::API2 10x ttf 48.507ms 107.136KiB 6.104.416 pdfkit 10x ttf 5.167ms 210.680KiB 7.120.879 "},{"loc":"http://hexapdf.gettalong.org/documentation/benchmarks/table.html","title":"Table","tags":"","text":" Table BenchmarkBenchmark SetupResults Table Benchmark This benchmark tests the performance of table implementations. Benchmark Setup A simple table with three columns (text, image, text) and varying number of rows is laid out, using the available table implementation together with automatic page breaking. Each benchmark script can be invoked standalone in the following way: script-executable NR_ROWS IMAGE_FILE OUTPUT_FILE. The list of the benchmarked libraries: HexaPDF Homepage: http://hexapdf.gettalong.org Language: Ruby Version: Latest version Prawn Homepage: https://prawnpdf.org Language: Ruby Version: 2.4.0 Prawn’s table implementation is available in the separate gem prawn-table. ReportLab Homepage: https://www.reportlab.com/opensource/ Language: Python Version: 3.6.12 fpdf2 Homepage: https://pyfpdf.github.io/fpdf2/ Language: Python Version: 2.7.4 Results These benchmark results are from 2023-08-03. Time Memory File size hexapdf 10 226ms 37.488KiB 22.159 prawn 10 206ms 35.968KiB 22.146 reportlab 10 107ms 29.780KiB 22.007 fpdf2 10 171ms 48.648KiB 21.970 hexapdf 100 276ms 41.500KiB 26.904 prawn 100 327ms 40.192KiB 33.825 reportlab 100 117ms 30.168KiB 28.077 fpdf2 100 196ms 48.776KiB 29.703 hexapdf 1000 501ms 51.284KiB 73.909 prawn 1000 1.356ms 75.520KiB 151.129 reportlab 1000 224ms 32.340KiB 88.365 fpdf2 1000 453ms 49.948KiB 106.353 hexapdf 10000 2.653ms 151.316KiB 546.297 prawn 10000 13.047ms 405.996KiB 1.339.194 reportlab 10000 3.837ms 55.144KiB 697.027 fpdf2 10000 3.052ms 61.820KiB 876.678 "},{"loc":"http://hexapdf.gettalong.org/examples/hello_world.html","title":"Hello World","tags":"","text":" Hello World This simple example mimics the classic “hello world” examples from programming languages. Usage: ruby hello_world.rb Resulting PDF: hello_world.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new canvas = doc.pages.add.canvas canvas.font('Helvetica', size: 100) canvas.text(\"Hello World!\", at: [20, 400]) doc.write(\"hello_world.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/graphics.html","title":"Graphics Primitives","tags":"","text":" Graphics Primitives This example shows many of the operations that the canvas implementation allows. Note that the PDF canvas has its origin in the bottom left corner of the page. This means the coordinate (100, 50) is 100 PDF points from the left side and 50 PDF points from the bottom. One PDF point is equal to 1/72 inch. Usage: ruby graphics.rb Resulting PDF: graphics.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas # Draws the shape that is used to showcase the transformations in the given # color. def transformation_shape(canvas, *color) canvas.stroke_color(*color) canvas.polygon(0, 0, 0, 80, 30, 50, 60, 80, 60, 0, 30, 30) canvas.line(-30, 0, 30, 0) canvas.line(0, 30, 0, -30) canvas.stroke end # Basic transformations: translate, scale, rotate, skew canvas.translate(0, 710) do normal_color = \"black\" transformed_color = \"hp-blue\" canvas.translate(50, 0) do transformation_shape(canvas, normal_color) canvas.translate(40, 40) { transformation_shape(canvas, transformed_color) } end canvas.translate(180, 0) do transformation_shape(canvas, normal_color) canvas.scale(1.7, 1.3) { transformation_shape(canvas, transformed_color) } end canvas.translate(330, 0) do transformation_shape(canvas, normal_color) canvas.rotate(30) { transformation_shape(canvas, transformed_color) } end canvas.translate(430, 0) do transformation_shape(canvas, normal_color) canvas.skew(15, 30) { transformation_shape(canvas, transformed_color) } end end # Draws a thin white line over a thick black line. def dual_lines(canvas) canvas.stroke_color(0) canvas.line_width = 15 yield canvas.stroke canvas.stroke_color(1.0) canvas.line_width = 1 yield canvas.stroke end # Graphics state: line width, line cap style, line join style, miter limit, # line dash pattern canvas.translate(0, 550) do canvas.translate(50, 0) do [1, 5, 10, 15].each_with_index do |i, index| canvas.stroke_color(0) canvas.line_width(i) canvas.line(20 * index, 0, 20 * index, 100) canvas.stroke end end canvas.translate(150, 0) do 0.upto(2) do |i| canvas.line_cap_style = i dual_lines(canvas) { canvas.line(20 * i, 0, 20 * i, 100) } end end canvas.translate(230, 0) do 0.upto(2) do |i| canvas.line_join_style = i dual_lines(canvas) { canvas.polyline(0, 30 * i, 40, 50 + 30 * i, 80, 30 * i) } end end canvas.translate(350, 0) do canvas.line_join_style = :miter canvas.miter_limit = 1 dual_lines(canvas) { canvas.polyline(0, 0, 20, 80, 40, 0) } canvas.miter_limit = 10 dual_lines(canvas) { canvas.polyline(60, 0, 80, 80, 100, 0)
} end canvas.translate(490, 0) do canvas.line_width(1) [[[1, 1]], [[3, 1]], [[3, 3]], [[5, 1, 1, 1, 1, 1]], [[3, 5], 6]].each_with_index do |(value, phase), index| canvas.line_dash_pattern(value, phase || 0) canvas.line(20 * index, 0, 20 * index, 100) canvas.stroke end end end # Basic shapes: line, polyline, (rounded) rectangle, (rounded) polygon, circle, ellipse canvas.translate(0, 420) do canvas.line(50, 0, 50, 100) canvas.polyline(80, 0, 80, 20, 70, 30, 90, 40, 70, 50, 90, 60, 70, 70, 80, 80, 80, 100) canvas.rectangle(110, 0, 50, 100) canvas.rectangle(180, 0, 50, 100, radius: 20) canvas.polygon(250, 0, 250, 100, 280, 70, 310, 100, 310, 0, 280, 30) canvas.polygon(330, 0, 330, 100, 360, 70, 390, 100, 390, 0, 360, 30, radius: 20) canvas.circle(440, 50, 30) canvas.ellipse(520, 50, a: 30, b: 15, inclination: 45) canvas.stroke end # Various arcs w/wo filling, using the Canvas#arc method as well as directly # working with the arc objects canvas.translate(0, 320) do canvas.arc(50, 50, a: 10, start_angle: -60, end_angle: 115) canvas.arc(100, 50, a: 40, b: 20, start_angle: -60, end_angle: 115) canvas.arc(180, 50, a: 40, b: 20, start_angle: -60, end_angle: 115, inclination: 45) canvas.stroke canvas.fill_color(\"hp-blue\") canvas.arc(250, 50, a: 10, start_angle: -60, end_angle: 115) canvas.arc(300, 50, a: 40, b: 20, start_angle: -60, end_angle: 115) canvas.arc(380, 50, a: 40, b: 20, start_angle: -60, end_angle: 115, inclination: 45) canvas.fill arc = canvas.graphic_object(:arc, cx: 450, cy: 50, a: 30, b: 30, start_angle: -30, end_angle: 105) canvas.fill_color(\"hp-blue\") canvas.move_to(450, 50) canvas.line_to(*arc.start_point) arc.curves.each {|x, y, hash| canvas.curve_to(x, y, **hash)} canvas.fill arc.configure(start_angle: 105, end_angle: -30) canvas.fill_color(\"hp-orange\") canvas.move_to(450, 50) canvas.line_to(*arc.start_point) arc.curves.each {|x, y, hash| canvas.curve_to(x, y, **hash)} canvas.fill arc = canvas.graphic_object(:arc, cx: 530, cy: 50, a: 40, b: 20, start_angle: -30, end_angle: 105) canvas.fill_color(\"hp-blue\") canvas.move_to(530, 50) canvas.line_to(*arc.start_point) arc.curves.each {|x, y, hash| canvas.curve_to(x, y, **hash)} canvas.fill arc.configure(start_angle: 105, end_angle: -30) canvas.fill_color(\"hp-orange\") canvas.move_to(530, 50) canvas.line_to(*arc.start_point) arc.curves.each {|x, y, hash| canvas.curve_to(x, y, **hash)} canvas.fill end # Draws a circle and two half circles inside with different directions. def shapes_to_paint(canvas) canvas.line_width = 2 canvas.arc(50, 50, a: 50) canvas.arc(50, 60, a: 25, end_angle: 180, clockwise: false) canvas.arc(50, 40, a: 25, end_angle: 180, clockwise: true) end # Draws arrows showing the direction of the #shapes_to_paint def arrows(canvas) canvas.line_width = 1 canvas.polyline(95, 45, 100, 50, 105, 45) canvas.polyline(55, 105, 50, 100, 55, 95) canvas.polyline(-5, 55, 0, 50, 5, 55) canvas.polyline(45, 5, 50, 0, 45, -5) canvas.polyline(55, 90, 50, 85, 55, 80) canvas.polyline(55, 20, 50, 15, 55, 10) canvas.stroke end # Path painting and clipping operations: stroke, close and stroke, fill nonzero, # fill even-odd, fill nonzero and stroke, fill even-odd and stroke, close and # fill nonzero and stroke, close fill even-odd and stroke, clip even-odd, clip # nonzero canvas.translate(0, 190) do canvas.fill_color(\"hp-blue\") [[:stroke], [:close_stroke], [:fill, :nonzero], [:fill, :even_odd], [:fill_stroke, :nonzero], [:fill_stroke, :even_odd], [:close_fill_stroke, :nonzero], [:close_fill_stroke, :even_odd]].each_with_index do |op, index| row = (1 - (index / 4)) column = index % 4 x = 50 + 80 * column y = 80 * row canvas.transform(0.6, 0, 0, 0.6, x, y) do shapes_to_paint(canvas) canvas.send(*op) arrows(canvas) end end [:even_odd, :nonzero].each_with_index do |op, index| canvas.translate(370 + 110 * index, 20) do canvas.circle(50, 50, 50) canvas.circle(50, 50, 20) canvas.clip_path(op) canvas.end_path canvas.rectangle(0, 0, 100, 100, radius: 100) canvas.fill_stroke end end end # Some composite shapes, an image and a form XObject canvas.translate(0, 80) do canvas.fill_color(\"hp-blue\") canvas.rectangle(50, 0, 80, 80, radius: 80) canvas.fill solid = canvas.graphic_object(:solid_arc, cx: 190, cy: 40, inner_a: 20, inner_b: 15, outer_a: 40, outer_b: 30, start_angle: 10, end_angle: 130) canvas.line_width(0.5) canvas.opacity(fill_alpha: 0.5, stroke_alpha: 0.2) do canvas.fill_color(\"hp-blue\").draw(solid).fill_stroke canvas.fill_color(\"hp-orange\").draw(solid, start_angle: 130, end_angle: 220).fill_stroke canvas.fill_color(\"hp-teal\").draw(solid, start_angle: 220, end_angle: 10).fill_stroke solid.configure(inner_a: 0, inner_b: 0, outer_a: 40, outer_b: 40, cx: 290) canvas.fill_color(\"hp-blue\").draw(solid, start_angle: 10, end_angle: 130).fill_stroke canvas.fill_color(\"hp-orange\").draw(solid, start_angle: 130, end_angle: 220).fill_stroke canvas.fill_color(\"hp-teal\").draw(solid, start_angle: 220, end_angle: 10).fill_stroke canvas.image(File.join(__dir__, 'machupicchu.jpg'), at: [350, 0], height: 80) end end # A simple rainbow color band canvas.translate(0, 20) do canvas.line_width = 6 freq = 0.1 0.upto(100) do |i| r = Math.sin(freq * i) * 127 + 128 g = Math.sin(freq * i + 2) * 127 + 128 b = Math.sin(freq * i + 4) * 127 + 128 canvas.stroke_color(r.to_i, g.to_i, b.to_i) canvas.line(50 + i * 5, 0, 50 + i * 5, 40) canvas.stroke end end # Reusing the already draw graphics for an XObject # Note that converting the page to a form XObject automatically closes all open # graphics states, therefore this can't be inside the above Canvas#translate # call form = doc.add(page.to_form_xobject(reference: false)) canvas.rectangle(480, 80, form.box.width * (100 / form.box.height.to_f), 100).stroke canvas.xobject(form, at: [480, 80], height: 100) doc.write('graphics.pdf', optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/arcs.html","title":"Arcs and Solid Arcs","tags":"","text":" Arcs and Solid Arcs This example shows how to use the graphic objects :arc and :solid_arc to draw simple pie charts. Usage: ruby arcs.rb Resulting PDF: arcs.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas radius = 75 # Left pie chart center = [page.box.width * 0.25, page.box.height * 0.85] pie = canvas.graphic_object(:solid_arc, cx: center[0], cy: center[1], outer_a: radius, outer_b: radius) canvas.fill_color(\"hp-orange-light\") canvas.draw(pie, start_angle: 30, end_angle: 110).fill canvas.fill_color(\"hp-teal-light\") canvas.draw(pie, start_angle: 110, end_angle: 130).fill canvas.fill_color(\"hp-blue-light\") canvas.draw(pie, start_angle: 130, end_angle: 30).fill arc = canvas.graphic_object(:arc, cx: center[0], cy: center[1], a: radius, b: radius) canvas.stroke_color(\"hp-orange\") canvas.draw(arc, start_angle: 30, end_angle: 110).stroke canvas.stroke_color(\"hp-teal\") canvas.draw(arc, start_angle: 110, end_angle: 130).stroke canvas.stroke_color(\"hp-blue-dark\") canvas.draw(arc, start_angle: 130, end_angle: 30).stroke # Right pie chart center = [page.box.width * 0.75, page.box.height * 0.85] canvas.stroke_color('777777') pie = canvas.graphic_object(:solid_arc, cx: center[0], cy: center[1], outer_a: radius, outer_b: radius) canvas.fill_color(\"hp-orange-light\") canvas.draw(pie, start_angle: 30, end_angle: 110).fill_stroke canvas.fill_color(\"hp-teal-light\") canvas.draw(pie, start_angle: 110, end_angle: 130).fill_stroke canvas.fill_color(\"hp-blue-light\") canvas.draw(pie, start_angle: 130, end_angle: 30).fill_stroke doc.write('arcs.pdf', optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/optimizing.html","title":"Optimizing a PDF File","tags":"","text":" Optimizing a PDF File This example shows how to read a PDF file, optimize it and write it out again. The heavy work is done by the :optimize task which allows control over which aspects should be optimized. See HexaPDF::Task::Optimize for detailed information. The hexapdf binary provides an optimization command which does some additional operations like optimizing the page tree. Usage: ruby optimizing.rb INPUT.PDF Code require 'hexapdf' HexaPDF::Document.open(ARGV.shift) do |doc| doc.task(:optimize, compact: true, object_streams: :generate, compress_pages: false) doc.write('optimizing.pdf') end "},{"loc":"http://hexapdf.gettalong.org/examples/merging.html","title":"Merging PDF Files","tags":"","text":" Merging PDF Files Merging of PDF files can be done in various ways of sophistication. The easiest way, which this example shows, just imports the pages of the source files into the target file. This preserves the page contents themselves but nothing else. For example, named destinations are not properly handled by the code. Sometimes other things like attached files or a document outline should also be preserved. The hexapdf binary provides a command for merging files which does the merging in a more sophisticated way. Usage: ruby merging.rb INPUT1.PDF INPUT2.PDF ... Code require 'hexapdf' target = HexaPDF::Document.new ARGV.each do |file| pdf = HexaPDF::Document.open(file) pdf.pages.each {|page| target.pages << target.import(page)} end target.write(\"2.merging.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/standard_pdf_fonts.html","title":"Standard PDF Fonts","tags":"","text":" Standard PDF Fonts This example shows all characters that are available in the standard 14 PDF fonts. The standard 14 PDF fonts are those fonts that all PDF reading/viewing applications need to support. They only provide a limited set of glyphs but have the advantage that they don’t need to be embedded. Usage: ruby standard_pdf_fonts.rb Resulting PDF: standard_pdf_fonts.pdf Preview: Code require 'hexapdf' def base_encoding_for_font(font) case font.font_name when 'Symbol', 'ZapfDingbats' font.encoding else HexaPDF::Font::Encoding.for_name(:WinAnsiEncoding) end end doc = HexaPDF::Document.new HexaPDF::FontLoader::Standard14::MAPPING.each do |font_name, mapping
 mapping.each_key do |variant| canvas = doc.pages.add.canvas canvas.font(\"Helvetica\", size: 14) canvas.text(\"#{font_name} #{variant != :none ? variant : ''}\", at: [100, 800]) canvas.font(font_name, size: 14, variant: variant) canvas.leading = 20 font = canvas.font encoding = base_encoding_for_font(font.wrapped_font) used_glyphs = [] # Showing the glyphs of the WinAnsi or built-in encoding canvas.move_text_cursor(offset: [100, 750]) (2..15).each do |y| data = [] (0..15).each do |x| code = y * 16 + x glyph = font.glyph(encoding.name(code)) glyph = font.glyph(:space) if glyph.id == font.wrapped_font.missing_glyph_id used_glyphs << glyph.name data << glyph << -(2000 - glyph.width) end canvas.show_glyphs(data) canvas.move_text_cursor end # Showing the remaining glyphs canvas.move_text_cursor(offset: [0, -40], absolute: false) glyphs = font.wrapped_font.metrics.character_metrics.keys.select do |k| Symbol === k end.sort - used_glyphs canvas.font(font_name, size: 14, variant: variant, custom_encoding: true) font = canvas.font glyphs.each_slice(16).with_index do |slice, index| data = [] slice.each do |name| glyph = font.glyph(name) data << glyph << -(2000 - glyph.width) end canvas.show_glyphs(data) canvas.move_text_cursor end end end doc.write(\"standard_pdf_fonts.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/truetype.html","title":"TrueType Fonts","tags":"","text":" TrueType Fonts This example displays all glyphs of a TrueType font and shows that using a TrueType font with HexaPDF is very similar to using one of the standard PDF fonts. Before a TrueType font can be used, HexaPDF needs to be made aware of it. This is done by setting the configuration option ‘font.map’. For one-off usage of a font file, the file name itself can also be used. Once that is done the HexaPDF::Content::Canvas#font method can be used as usual. Usage: ruby truetype.rb [FONT_FILE] Resulting PDF: truetype.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new font_file = ARGV.shift || File.join(__dir__, '../test/data/fonts/Ubuntu-Title.ttf') wrapper = doc.fonts.add(font_file) max_gid = wrapper.wrapped_font[:maxp].num_glyphs 255.times do |page| break unless page * 256 < max_gid canvas = doc.pages.add.canvas canvas.font(\"Helvetica\", size: 10) canvas.text(\"Font: #{wrapper.wrapped_font.full_name}\", at: [50, 825]) canvas.font(font_file, size: 15) 16.times do |y| canvas.move_text_cursor(offset: [50, 800 - y * 50], absolute: true) canvas.show_glyphs((0..15).map do |i| gid = page * 256 + y * 16 + i glyph = wrapper.glyph(gid) gid >= max_gid ? [] : [glyph, -(2000 - glyph.width)] end.flatten!) end end doc.write(\"truetype.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/show_char_bboxes.html","title":"Show Character Bounding Boxes","tags":"","text":" Show Character Bounding Boxes This examples shows how to process the contents of a page. It finds all characters on a page and surrounds them with their bounding box. Additionally, all consecutive text runs are also surrounded by a box. The code provides two ways of generating the boxes. The commented part of ShowTextProcessor#show_text uses a polyline since some characters may be transforemd (rotated or skewed). The un-commented part uses rectangles which is faster and correct for most but not all cases. Usage: ruby show_char_boxes.rb INPUT.PDF Code require 'hexapdf' class ShowTextProcessor < HexaPDF::Content::Processor def initialize(page) super() @canvas = page.canvas(type: :overlay) end def show_text(str) boxes = decode_text_with_positioning(str) return if boxes.string.empty? @canvas.line_width = 1 @canvas.stroke_color(224, 0, 0) # Polyline for transformed characters #boxes.each {|box| @canvas.polyline(*box.points).close_subpath.stroke} # Using rectangles is faster but not 100% correct boxes.each do |box| x, y = *box.lower_left tx, ty = *box.upper_right @canvas.rectangle(x, y, tx - x, ty - y).stroke end @canvas.line_width = 0.5 @canvas.stroke_color(0, 224, 0) @canvas.polyline(*boxes.lower_left, *boxes.lower_right, *boxes.upper_right, *boxes.upper_left).close_subpath.stroke end alias :show_text_with_positioning :show_text end doc = HexaPDF::Document.open(ARGV.shift) doc.pages.each_with_index do |page, index| puts \"Processing page #{index + 1}\" processor = ShowTextProcessor.new(page) page.process_contents(processor) end doc.write('show_char_boxes.pdf', optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/text_layouter_alignment.html","title":"Text Layouter - Alignment","tags":"","text":" Text Layouter - Alignment The HexaPDF::Layout::TextLayouter class can be used to easily lay out text inside a rectangular area, with various horizontal and vertical alignment options. The text can be aligned horizontally by setting HexaPDF::Layout::Style#text_align and vertically by HexaPDF::Layout::Style#text_valign. In this example, a sample text is laid out in all possible combinations. Usage: ruby text_layouter_alignment.rb Resulting PDF: text_layouter_alignment.pdf Preview: Code require 'hexapdf' sample_text = \"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. at\".tr(\"\\n\", ' ') doc = HexaPDF::Document.new canvas = doc.pages.add.canvas canvas.font(\"Times\", size: 10, variant: :bold) width = 100 height = 150 y_base = 800 tf = doc.layout.text_fragments(sample_text, font: doc.fonts.add(\"Times\")) tl = HexaPDF::Layout::TextLayouter.new [:left, :center, :right, :justify].each_with_index do |align, x_index| x = x_index * (width + 20) + 70 canvas.text(align.to_s, at: [x + 40, y_base + 15]) [:top, :center, :bottom].each_with_index do |valign, y_index| y = y_base - (height + 30) * y_index canvas.text(valign.to_s, at: [20, y - height / 2]) if x_index == 0 tl.style.text_align(align).text_valign(valign) tl.fit(tf, width, height).draw(canvas, x, y) canvas.stroke_color(\"hp-blue-dark\").rectangle(x, y, width, -height).stroke end end doc.write(\"text_layouter_alignment.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/text_layouter_inline_boxes.html","title":"Text Layouter - Inline Boxes","tags":"","text":" Text Layouter - Inline Boxes The HexaPDF::Layout::TextLayouter class can be used to easily lay out text mixed with inline boxes. Inline boxes are used for showing graphics that follow the flow of the text. This means that their horizontal and their general vertical position is determined by the text layout functionality. However, inline boxes may be vertically aligned to various positions, like the baseline, the top/bottom of the text and the top/bottom of the line. This example shows some text containing emoticons that are replaced with their graphical representation, with normal smileys being aligned to the baseline and winking smileys to the top of the line. An inline box is a simple wrapper around a generic box that adheres to the necessary interface. Therefore they don’t do any drawing operations themselves but delegate to their wrapped box. This means, for example, that inline boxes can use background colors or borders without doing anything special. Usage: ruby text_layouter_inline_boxes.rb Resulting PDF: text_layouter_inline_boxes.pdf Preview: Code require 'hexapdf' include HexaPDF::Layout sample_text = \"Lorem ipsum :-) dolor sit amet, consectetur adipiscing ;-) elit, sed do eiusmod tempor incididunt :-) ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat ;-). Duis aute irure dolor in reprehenderit in voluptate velit esse cillum :-) dolore eu fugiat nulla pariatur. \".tr(\"\\n\", ' ') * 4 doc = HexaPDF::Document.new emoji_smile = doc.images.add(File.join(__dir__, \"emoji-smile.png\")) emoji_wink = doc.images.add(File.join(__dir__, \"emoji-wink.png\")) size = 10 items = sample_text.split(/(:-\\)|;-\\))/).map do |part| case part when ':-)' InlineBox.create(width: size * 2, height: size * 2, content_box: true, background_color: \"hp-blue-light\", padding: 2) do |canvas, box| canvas.image(emoji_smile, at: [0, 0], width: box.content_width) end when ';-)' InlineBox.create(width: size, height: size, content_box: true, valign: :top, padding: 5, margin: [0, 10], border: {width: [1, 2], color: \"hp-blue\"}) do |canvas, box| canvas.image(emoji_wink, at: [0, 0], width: box.content_width) end else TextFragment.create(part, font: doc.fonts.add(\"Times\"), font_size: 18) end end layouter = TextLayouter.new layouter.style.text_align = :justify layouter.style.line_spacing(:proportional, 1.5) layouter.fit(items, 500, 700).draw(doc.pages.add.canvas, 50, 800) doc.write(\"text_layouter_inline_boxes.pdf\") "},{"loc":"http://hexapdf.gettalong.org/examples/text_layouter_line_wrapping.html","title":"Text Layouter - Line Wrapping","tags":"","text":" Text Layouter - Line Wrapping The HexaPDF::Layout::TextLayouter class can be used to easily lay out text, automatically wrapping it appropriately. Text is broken only at certain characters: The most important break points are spaces. Lines can be broken at tabulators which represent eight spaces. Newline characters are respected when wrapping and introduce a line break. They have to be removed beforehand if this is not wanted. All Unicode newline separators are recognized. Hyphens are used as break points, possibly breaking just after them. In addition to hyphens, soft-hyphens can be used to indicate break points. In contrast to hyphens, soft-hyphens won’t be visible unless a line is broken at its position. Zero-width spaces can be used to indicate break points at any position. Non-breaking spaces can be used to prohibit a break between two words. It has the same appearance as a space in the PDF. This example shows all these specially handled characters in action, e.g. a hard line break after “Fly-fishing”, soft-hyphen in
“wandering”, tabulator instead of space after “wandering”, zero-width space in “fantastic” and non-breaking spaces in “1 0 1”. Usage: ruby text_layout_line_wrapping.rb Resulting PDF: text_layouter_line_wrapping.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new canvas = doc.pages.add([0, 0, 180, 230]).canvas text = \"Hello! Fly-fishing\\nand wand\\u{00AD}ering\\taround - fanta\\u{200B}stic\" \\ \" 1\\u{00A0}0\\u{00A0}1\" x = 10 y = 220 frag = doc.layout.text_fragments(text, font: doc.fonts.add(\"Times\")) layouter = HexaPDF::Layout::TextLayouter.new [30, 60, 100, 160].each do |width| result = layouter.fit(frag, width, 400) result.draw(canvas, x, y) canvas.stroke_color(\"hp-blue-dark\").line_width(0.2) canvas.rectangle(x, y, width, -result.height).stroke y -= result.height + 5 end doc.write(\"text_layouter_line_wrapping.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/text_layouter_styling.html","title":"Text Layouter - Styling","tags":"","text":" Text Layouter - Styling The text used as part of a HexaPDF::Layout::TextLayouter class can be styled using HexaPDF::Layout::Style. To do this HexaPDF::Layout::TextFragment objects have to be created with the needed styling and then added to a text layout object. In addition the style objects can be used for customizing the text layouts themselves. This example shows how to do this and shows off the various styling option, including using callbacks to further customize the appearance. Usage: ruby text_layouter_styling.rb [FONT_FILE] Resulting PDF: text_layouter_styling.pdf Preview: Code require 'hexapdf' include HexaPDF::Layout sample_text = \"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.\".tr(\"\\n\", ' ') # Wraps the text in a TextFragment using the given style. def fragment(text, style) TextFragment.create(text, style) end # Draws the text at the given [x, y] position onto the canvas and returns the # new y position. def draw_text(result, canvas, x, y) raise \"Error\" unless result.remaining_items.empty? result.draw(canvas, x, y) y - result.height end doc = HexaPDF::Document.new canvas = doc.pages.add.canvas base_font = doc.fonts.add(ARGV[0] || \"Times\") base_style = {font: base_font, font_size: 12, text_indent: 20} styles = { \"Fonts | Font Sizes | Colors\" => [{font: doc.fonts.add(\"Times\", variant: :italic), font_size: 12, fill_color: \"hp-blue-light\"}, {font: doc.fonts.add(\"Courier\"), font_size: 14, fill_color: \"hp-orange\"}, {font: doc.fonts.add(\"Helvetica\", variant: :bold), font_size: 20, fill_alpha: 0.5},], \"Character Spacing | Word Spacing | Horizontal Scaling\" => [{**base_style, character_spacing: 3}, {**base_style, horizontal_scaling: 150}, {**base_style, word_spacing: 15},], \"Text Rise\" => [{**base_style, text_rise: 5}, {**base_style, text_rise: -3},], \"Subscript | Superscript\" => [{**base_style, font_size: 15, subscript: true}, {**base_style, font_size: 15, superscript: true},], \"Underline | Strikeout\" => [{**base_style, underline: true, strikeout: true}, {**base_style, underline: true, strikeout: true, text_rise: 5}, {**base_style, underline: true, strikeout: true, subscript: true},], \"Text Rendering Mode\" => [{**base_style, text_rendering_mode: :stroke, stroke_width: 0.1}, {**base_style, font_size: 20, text_rendering_mode: :fill_stroke, stroke_color: \"hp-orange-light\", stroke_width: 0.7, stroke_dash_pattern: [0.5, 1, 1.5], stroke_cap_style: :round},], \"Underlays | Overlays\" => [{**base_style, underlays: [lambda do |canv, box| canv.fill_color(\"hp-orange-light2\").opacity(fill_alpha: 0.5). rectangle(0, 0, box.width, box.height).fill end]}, {**base_style, overlays: [lambda do |canv, box| canv.line_width(1).stroke_color(\"hp-teal-light2\"). line(0, -box.y_min, box.width, box.y_max - box.y_min).stroke end]},], \"Links\" => [{**base_style, overlays: [[:link, dest: [canvas.context, :FitR, 100, 300, 200, 400]],]}, {**base_style, overlays: [[:link, uri: \"https://hexapdf.gettalong.org\", border: [0, 0, 2, [3, 3]], border_color: \"hp-blue\"],]}, {**base_style, overlays: [[:link, file: \"text_layouter_styling.pdf\", border: true],]},], } y = 800 left = 50 width = 500 layouter = TextLayouter.new(base_style) styles.each do |desc, variations| items = sample_text.split(/(Lorem ipsum dolor|\\b\\w{2,5}\\b)/).map do |str| if str.length >= 3 && str.length <= 5 fragment(str, variations[str.length % variations.length]) elsif str.length == 2 fragment(str, variations.first) elsif str =~ /Lorem/ fragment(str, variations.last) else fragment(str, base_style) end end items.unshift(fragment(desc + \": \", fill_color: \"hp-blue-dark\", **base_style)) y = draw_text(layouter.fit(items, width, 400), canvas, left, y) - 20 end doc.write(\"text_layouter_styling.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/text_layouter_shapes.html","title":"Text Layouter - Shapes","tags":"","text":" Text Layouter - Shapes The HexaPDF::Layout::TextLayouter class can be used to easily lay out text, not limiting the area to a rectangle but any shape. There is only one restriction: In the case of arbitrary shapes the vertical alignment has to be “top”. Arbitrary shapes boil down to varying line widths and horizontal offsets from left. Imagine a circle: If text is fit in a circle, the line widths start at zero, getting larger and larger until the middle of the cirle. And then they get smaller until zero again. The x-values of the left half circle determine the horizontal offsets. Both, the line widths and the horizontal offsets can be calculated given a certain height, and this is exactly what HexaPDF uses. If the width argument to HexaPDF::Layout::TextLayouter#fit is an object responding to #call (e.g. a lambda), it is used for determining the line widths and offsets. This example shows text layed out in various shapes, using the above mentioned techniques. Usage: ruby text_layouter_shapes.rb Resulting PDF: text_layouter_shapes.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas canvas.font(\"Times\", size: 10, variant: :bold) canvas.stroke_color(\"hp-blue-dark\").line_width(0.2) font = doc.fonts.add(\"Times\") sample_text = \"Lorem ipsum dolor sit amet, con\\u{00AD}sectetur adipis\\u{00AD}cing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. \".tr(\"\\n\", ' ') * 10 items = doc.layout.text_fragments(sample_text, font: font) layouter = HexaPDF::Layout::TextLayouter.new ## # Circly things on the top radius = 100 circle_top = 840 half_circle_width = lambda do |height, line_height| sum = height + line_height if sum <= radius * 2 [Math.sqrt(radius**2 - (radius - height)**2), Math.sqrt([radius**2 - (radius - sum)**2, 0].max)].min else 0 end end circle = lambda do |height, line_height| w = half_circle_width.call(height, line_height) [radius - w, 2 * w] end left_half_circle = lambda do |height, line_height| w = half_circle_width.call(height, line_height) [radius - w, w] end # Left: right half circle result = layouter.fit(items, half_circle_width, radius * 2) result.draw(canvas, 0, circle_top) canvas.circle(0, circle_top - radius, radius).stroke # Center: full circle layouter.style.text_align = :justify result = layouter.fit(items, circle, radius * 2) result.draw(canvas, page.box.width / 2.0 - radius, circle_top) canvas.circle(page.box.width / 2.0, circle_top - radius, radius).stroke # Right: left half circle layouter.style.text_align = :right result = layouter.fit(items, left_half_circle, radius * 2) result.draw(canvas, page.box.width - radius, circle_top) canvas.circle(page.box.width, circle_top - radius, radius).stroke ## # Pointy, diamondy things in the middle diamond_width = 100 diamond_top = circle_top - 2 * radius - 10 half_diamond_width = lambda do |height, line_height| sum = height + line_height if sum < diamond_width height else [diamond_width * 2 - sum, 0].max end end full_diamond = lambda do |height, line_height| w = half_diamond_width.call(height, line_height) [diamond_width - w, 2 * w] end left_half_diamond = lambda do |height, line_height| w = half_diamond_width.call(height, line_height) [diamond_width - w, w] end # Left: right half diamond layouter.style.text_align = :left result = layouter.fit(items, half_diamond_width, 2 * diamond_width) result.draw(canvas, 0, diamond_top) canvas.polyline(0, diamond_top, diamond_width, diamond_top - diamond_width, 0, diamond_top - 2 * diamond_width).stroke # Center: full diamond layouter.style.text_align = :justify result = layouter.fit(items, full_diamond, 2 * diamond_width) left = page.box.width / 2.0 - diamond_width result.draw(canvas, left, diamond_top) canvas.polyline(left + diamond_width, diamond_top, left + 2 * diamond_width, diamond_top - diamond_width, left + diamond_width, diamond_top - 2 * diamond_width, left, diamond_top - diamond_width).close_subpath.stroke # Right: left half diamond layouter.style.text_align = :right result = layouter.fit(items, left_half_diamond, 2 * diamond_width) middle = page.box.width result.draw(canvas, middle - diamond_width, diamond_top) canvas.polyline(middle, diamond_top, middle - diamond_width, diamond_top - diamond_width, middle, diamond_top - 2 * diamond_width).stroke ## # Sine wave thing next sine_wave_height = 200.0 sine_wave_top = diamond_top - 2 * diamond_width - 10 sine_wave = lambda do |height, line_height| offset = [40 * Math.sin(2 *
Math::PI * (height / sine_wave_height)), 40 * Math.sin(2 * Math::PI * (height + line_height) / sine_wave_height)].max [offset, sine_wave_height + 100 + offset * -2] end layouter.style.text_align = :justify result = layouter.fit(items, sine_wave, sine_wave_height) middle = page.box.width / 2.0 result.draw(canvas, middle - (sine_wave_height + 100) / 2, sine_wave_top) ## # And finally a house house_top = sine_wave_top - sine_wave_height - 10 outer_width = 300.0 inner_width = 100.0 house = lambda do |height, line_height| sum = height + line_height first_part = (outer_width / 2 - inner_width / 2) if (0..first_part).cover?(sum) [-height, outer_width + height * 2] elsif (first_part..(first_part + inner_width)).cover?(height) || (first_part..(first_part + inner_width)).cover?(sum) [0, first_part, inner_width, first_part] elsif sum <= outer_width outer_width else 0 end end layouter.style.text_align = :justify result = layouter.fit(items, house, 200) middle = page.box.width / 2.0 result.draw(canvas, middle - (outer_width / 2), house_top) doc.write(\"text_layouter_shapes.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/text_in_polygon.html","title":"Text in Polygon","tags":"","text":" Text in Polygon While creating width specifications for the HexaPDF::Layout::TextLayouter class by hand is possible, the HexaPDF::Layout::WidthFromPolygon class provides an easier way by using polygons. Most of the times text is laid out within polygonal shapes, so direct support for these makes text layout in HexaPDF easier. This example shows how much easier text layout is by re-doing the “house” example from the Text Layouter - Shapes example. Additionally, there is an example using a complex polygon with a hole inside. Usage: ruby text_in_polygon.rb Resulting PDF: text_in_polygon.pdf Preview: Code require 'hexapdf' require 'geom2d' include HexaPDF::Layout doc = HexaPDF::Document.new canvas = doc.pages.add.canvas sample_text = \"Lorem ipsum dolor sit amet, con\\u{00AD}sectetur adipis\\u{00AD}cing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. \".tr(\"\\n\", ' ') * 12 items = doc.layout.text_fragments(sample_text, font: doc.fonts.add(\"Times\")) layouter = TextLayouter.new layouter.style.text_align = :justify # The house example house = Geom2D::Polygon([100, 200], [400, 200], [500, 100], [400, 100], [400, 0], [300, 0], [300, 100], [200, 100], [200, 0], [100, 0], [100, 100], [0, 100]) width_spec = WidthFromPolygon.new(house) result = layouter.fit(items, width_spec, house.bbox.height) result.draw(canvas, 50, 750) # A more complex example polygon = Geom2D::PolygonSet(Geom2D::Polygon([150, 450], [145, 198], [160, 196], [200, 220], [200, 300], [300, 300], [400, 0], [200, 0], [200, 100], [100, 100], [100, 0], [-100, 0], [0, 300], [-50, 300], [100, 330]), Geom2D::Polygon([50, 120], [250, 120], [250, 180], [50, 180]), Geom2D::Polygon([60, 130], [240, 130], [240, 170], [60, 170])) width_spec = WidthFromPolygon.new(polygon) result = layouter.fit(items, width_spec, polygon.bbox.height) result.draw(canvas, 150, 550) canvas.translate(150, 100). stroke_color(\"hp-blue-dark\"). line_width(0.5). draw(:geom2d, object: polygon) doc.write(\"text_in_polygon.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/boxes.html","title":"Boxes","tags":"","text":" Boxes The HexaPDF::Layout::Box class is used as the basis for all document layout features. This example shows the basic properties that are available for all boxes, like paddings, borders and and background color. It is also possible to use the underlay and overlay callbacks with boxes. Usage: ruby boxes.rb Resulting PDF: boxes.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new annotate_box = lambda do |canvas, box| text = \"\" canvas.font(\"Times\", size: 6).leading(7) if (data = box.style.padding) text << \"Padding (TRBL): #{data.top}, #{data.right}, #{data.bottom}, #{data.left}\\n\" end unless box.style.border.none? data = box.style.border.width text << \"Border Width (TRBL): #{data.top}, #{data.right}, #{data.bottom}, #{data.left}\\n\" data = box.style.border.color text << \"Border Color (TRBL):\\n* #{data.top}\\n* #{data.right}\\n* #{data.bottom}\\n* #{data.left}\\n\" data = box.style.border.style text << \"Border Style (TRBL):\\n* #{data.top}\\n* #{data.right}\\n* #{data.bottom}\\n* #{data.left}\\n\" end canvas.line_width(0.1).rectangle(0, 0, box.content_width, box.content_height).stroke canvas.text(text, at: [0, box.content_height - 10]) end canvas = doc.pages.add.canvas [[1, \"hp-blue-light\"], [5, \"hp-teal-light\"], [15, \"hp-orange-light\"]].each_with_index do |(width, color), row| color = canvas.color_from_specification([color]) [:solid, :dashed, :dashed_round, :dotted].each_with_index do |style, column| box = HexaPDF::Layout::Box.create(width: 100, height: 100, content_box: true, border: {width: width, style: style}, background_color: color.components.map {|c| c + 0.2 * column }, &annotate_box) box.draw(canvas, 20 + 140 * column, 700 - 150 * row) end end # The whole kitchen sink box = HexaPDF::Layout::Box.create(width: 470, height: 200, content_box: true, padding: [20, 5, 10, 15], border: {width: [20, 40, 30, 15], color: [\"hp-blue\", \"hp-orange\", \"hp-teal\", \"hp-blue-light\"], style: [:solid, :dashed, :dashed_round, :dotted]}, background_color: \"hp-orange-light2\", underlays: [lambda do |canv, _| canv.stroke_color([255, 0, 0]).line_width(10).line_cap_style(:butt). line(0, 0, box.width, box.height).line(0, box.height, box.width, 0). stroke end], overlays: [lambda do |canv, _| canv.stroke_color(\"hp-blue-dark\").line_width(5). rectangle(10, 10, box.width - 20, box.height - 20).stroke end], &annotate_box) box.draw(canvas, 20, 100) doc.write(\"boxes.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/frame_automatic_box_placement.html","title":"Frame - Automatic Box Placement","tags":"","text":" Frame - Automatic Box Placement The HexaPDF::Layout::Frame class is used for placing rectangular boxes. This example shows how to create a frame and how different box styles can be used to specify where a box should be placed. After each box is drawn, the frame’s shape is drawn and then a new page is started. This is done to easily compare the changes after each added box. Note how the absolutely positioned box cuts a hole into the frame’s shape and how that influences the positioning. Usage: ruby frame_automatic_box_placement.rb Resulting PDF: frame_automatic_box_placement.pdf Preview: Code require 'hexapdf' include HexaPDF::Layout doc = HexaPDF::Document.new page = doc.pages.add page_box = page.box canvas = page.canvas frame = Frame.new(page_box.left + 20, page_box.bottom + 20, page_box.width - 40, page_box.height - 40) box_counter = 1 draw_box = lambda do |**args| b = Box.create(**args, border: {width: 1, color: \"hp-blue-dark\"}) do |canv, box| canv.save_graphics_state do canv.stroke_color(\"hp-blue-dark\") canv.line(0, 0, box.content_width, box.content_height). line(0, box.content_height, box.content_width, 0). stroke end text = box_counter.to_s << \"\\n\" + args.map {|k, v| \"#{k}: #{v}\"}.join(\"\\n\") canv.font(\"Times\", size: 15).leading(15). text(text, at: [10, box.content_height - 20]) box_counter += 1 end drawn = false until drawn result = frame.fit(b) if result.success? frame.draw(canvas, result) drawn = true else frame.find_next_region end end canvas.line_width(3).draw(:geom2d, object: frame.shape) canvas = doc.pages.add.canvas end # Absolutely positioned box with margin draw_box.call(width: 100, height: 100, position: [250, 250], margin: 10) # Fixed sized box with automatic width draw_box.call(height: 100) # Fixed sized box draw_box.call(width: 100, height: 100) # Fixed sized box, placed below the other because the space to the right can't # be used draw_box.call(width: 100, height: 100) # Fixed sized floating box, space to the right can be used draw_box.call(width: 100, height: 100, position: :float, align: :left) # Fixed sized floating box again, floating to the right draw_box.call(width: 100, height: 100, position: :float, align: :right) # Fixed sized floating box again, floating to the left with margin draw_box.call(width: 100, height: 100, position: :float, align: :left, margin: [0, 10]) # Fixed sized box, no floating draw_box.call(width: 100, height: 100) # Fixed sized box, center aligned in the available space draw_box.call(width: 100, height: 100, align: :center) # Fixed sized box, right aligned in the available space draw_box.call(width: 100, height: 100, align: :right) # Fixed sized box, consuming the whole remaining available space draw_box.call doc.write(\"frame_automatic_box_placement.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/frame_text_flow.html","title":"Frame - Text Flow","tags":"","text":" Frame - Text Flow This example shows how HexaPDF::Layout::Frame and HexaPDF::Layout::TextBox can be used to flow text around objects. Three boxes are placed repeatedly onto the frame until it is filled: two floating boxes (one left, one right) and a text box. The text box is styled to flow its content around the other two boxes. Usage: ruby frame_text_flow.rb Resulting PDF: frame_text_flow.pdf Preview: Code require 'hexapdf' require 'hexapdf/utils/graphics_helpers' include HexaPDF::Layout include HexaPDF::Utils::GraphicsHelpers doc = HexaPDF::Document.new page = doc.pages.add page_box = page.box frame = Frame.new(page_box.left + 20, page_box.bottom + 20, page_box.width - 40, page_box.height - 40) boxes = [] boxes << doc.layout.image_box(File.join(__dir__, 'machupicchu.jpg'), width: 100, margin: [10, 30], position: :float) boxes << Box.create(width: 50, height: 50, margin: 20, position: :float, align: :right, background_color: \"hp-blue-light2\", border: {width: 1,
color: \"hp-blue-dark\"}) boxes << doc.layout.lorem_ipsum_box(count: 3, position: :flow, text_align: :justify) i = 0 frame_filled = false until frame_filled box = boxes[i] drawn = false until drawn || frame_filled result = frame.fit(box) if result.success? frame.draw(page.canvas, result) drawn = true else frame_filled = !frame.find_next_region end end i = (i + 1) % boxes.length end doc.write(\"frame_text_flow.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/composer.html","title":"Composer","tags":"","text":" Composer This example shows how HexaPDF::Composer simplifies the creation of PDF documents by providing a high-level interface to the box layouting engine. Basic style properties can be set using the HexaPDF::Composer#style method and the style name :base. These properties are reused by every box and can be adjusted on a box-by-box basis. Newly defined styles also inherit the properties from the :base style. Various methods allow the easy creation of boxes, for example, text and image boxes. All these boxes are automatically drawn on the page. If the page has not enough room left for a box, the box is split across pages (which are automatically created) if possible or just drawn on the new page. Usage: ruby composer.rb Resulting PDF: composer.pdf Preview: Code require 'hexapdf' lorem_ipsum = \"Lorem ipsum dolor sit amet, con\\u{00AD}sectetur adipis\\u{00AD}cing elit, sed do eiusmod tempor incidi\\u{00AD}dunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exer\\u{00AD}citation ullamco laboris nisi ut aliquip ex ea commodo consequat. \".tr(\"\\n\", \" \") HexaPDF::Composer.create('composer.pdf') do |pdf| pdf.style(:base, line_spacing: 1.5, last_line_gap: true, text_align: :justify) pdf.style(:image, border: {width: 1}, padding: 5, margin: 10) pdf.style(:link, fill_color: \"hp-blue-dark\", underline: true) image = File.join(__dir__, 'machupicchu.jpg') pdf.text(lorem_ipsum * 2) pdf.image(image, style: :image, width: 200, position: :float) pdf.image(image, style: :image, width: 200, position: [200, 300]) pdf.text(lorem_ipsum * 20, position: :flow) pdf.formatted_text([\"Produced by \", {link: \"https://hexapdf.gettalong.org\", text: \"HexaPDF\", style: :link}, \" via HexaPDF::Composer\"], font_size: 15, text_align: :center, padding: 15) end "},{"loc":"http://hexapdf.gettalong.org/examples/acro_form.html","title":"PDF Forms","tags":"","text":" PDF Forms PDF files can be used for interactive forms, containing various types of form fields. HexaPDF supports the creation and processing of these forms. This example show-cases how to create the various form field types and their possible standard appearances. Note the ‘number format’ text field which uses a JavaScript function for formatting a number. Usage: ruby acro_form.rb Resulting PDF: acro_form.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add canvas = page.canvas canvas.font(\"Helvetica\", size: 36) canvas.text(\"Form Example\", at: [50, 750]) form = doc.acro_form(create: true) canvas.font_size(16) canvas.text(\"Check boxes\", at: [50, 650]) [:check, :circle, :cross, :diamond, :square, :star].each_with_index do |symbol, index| cb = form.create_check_box(\"Checkbox #{index}\") widget = cb.create_widget(page, Rect: [200 + 50 * index, 640, 240 + 50 * index, 680]) widget.background_color(1 - 0.05 * index) widget.marker_style(style: symbol, color: [0.166 * index, 0, 1 - 0.166 * index], size: 7 * index) cb.field_value = true end canvas.text(\"Radio buttons\", at: [50, 550]) rb = form.create_radio_button(\"Radio\") [:check, :circle, :cross, :diamond, :square, :star].each_with_index do |symbol, index| widget = rb.create_widget(page, value: :\"button#{index}\", Rect: [200 + 50 * index, 540, 240 + 50 * index, 580]) widget.background_color(1 - 0.05 * index) widget.marker_style(style: symbol, color: [0.166 * index, 0, 1 - 0.166 * index], size: 7 * index) end rb.field_value = :button0 canvas.text(\"Text fields\", at: [50, 480]) canvas.text(\"Single line\", at: [70, 450]) tx = form.create_text_field(\"Single Line\", font_size: 16) widget = tx.create_widget(page, Rect: [200, 445, 500, 465]) tx.field_value = \"A sample test string!\" canvas.text(\"Number format\", at: [70, 420]) tx = form.create_text_field(\"Number format\", font_size: 16) widget = tx.create_widget(page, Rect: [200, 415, 500, 435]) widget[:AA] = { F: {S: :JavaScript, JS: 'AFNumber_Format(2, 2, 0, 0, \"EUR \", true);'}, } tx.field_value = \"123456,789\" canvas.text(\"Multiline\", at: [70, 390]) tx = form.create_multiline_text_field(\"Multiline\", font_size: 0, align: :right) widget = tx.create_widget(page, Rect: [200, 325, 500, 405]) widget.border_style(color: 0, width: 1) tx.field_value = \"A sample test string! \" * 30 + \"\\nNew line\\n\\nAnother line\" canvas.text(\"Password\", at: [70, 300]) tx = form.create_password_field(\"Password\", font_size: 16) widget = tx.create_widget(page, Rect: [200, 295, 500, 315]) canvas.text(\"File select\", at: [70, 270]) tx = form.create_file_select_field(\"File Select\", font_size: 16) widget = tx.create_widget(page, Rect: [200, 265, 500, 285]) tx.field_value = \"path/to/file.pdf\" canvas.text(\"Comb\", at: [70, 240]) tx = form.create_comb_text_field(\"Comb field\", max_chars: 10, font_size: 16, align: :center) widget = tx.create_widget(page, Rect: [200, 220, 500, 255]) widget.border_style(color: [30, 128, 0], width: 1) tx.field_value = 'Hello' canvas.text(\"Combo Box\", at: [50, 170]) cb = form.create_combo_box(\"Combo Box\", font_size: 12, editable: true, option_items: ['Value 1', 'Another value', 'Choose me!']) widget = cb.create_widget(page, Rect: [200, 150, 500, 185]) widget.border_style(width: 1) cb.field_value = 'Another value' canvas.text(\"List Box\", at: [50, 120]) lb = form.create_list_box(\"List Box\", font_size: 15, align: :center, multi_select: true, option_items: 1.upto(7).map {|i| \"Value #{i}\" }) widget = lb.create_widget(page, Rect: [200, 50, 500, 135]) widget.border_style(width: 1) lb.list_box_top_index = 1 lb.field_value = ['Value 6', 'Value 2'] doc.write('acro_form.pdf', optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/column_box.html","title":"Column Box","tags":"","text":" Column Box This example shows how HexaPDF::Layout::ColumnBox can be used to place contents into columns. Three boxes are placed repeatedly onto the frame until it is filled: two floating boxes (one left, one right) and a text box. The text box is styled to flow its content around the other two boxes. Usage: ruby column_box.rb Resulting PDF: column_box.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new page = doc.pages.add page_box = page.box frame = HexaPDF::Layout::Frame.new(page_box.left + 20, page_box.bottom + 20, page_box.width - 40, page_box.height - 40) polygon = Geom2D::Polygon([200, 350], [400, 350], [400, 450], [200, 450]) frame.remove_area(polygon) page.canvas.draw(:geom2d, object: polygon) columns = doc.layout.column(columns: 2, style: {position: :flow}) do |column| 5.times do column.image(File.join(__dir__, 'machupicchu.jpg'), width: 100, style: {margin: [10, 30], position: :float}) column.box(:base, width: 50, height: 50, style: {margin: 20, position: :float, align: :right, background_color: \"hp-blue-light2\", border: {width: 1, color: \"hp-blue-dark\"}}) column.lorem_ipsum(count: 2, position: :flow, text_align: :justify) end end result = frame.fit(columns) frame.draw(page.canvas, result) doc.write(\"column_box.pdf\", optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/list_box.html","title":"List Box","tags":"","text":" List Box This example shows how HexaPDF::Layout::ListBox can be used to place contents into lists. The list box class provides several options to style the item marker and its general appearance. Usage: ruby list_box.rb Resulting PDF: list_box.pdf Preview: Code require 'hexapdf' HexaPDF::Composer.create(\"list_box.pdf\") do |composer| composer.list(content_indentation: 40, item_spacing: 20) do |list| list.lorem_ipsum list.image(File.join(__dir__, 'machupicchu.jpg'), height: 100) list.list(marker_type: :decimal) do |sub_list| 1.upto(10) {|i| sub_list.text(\"Item #{i}\") } end list.column do |column| column.lorem_ipsum(count: 3) end end end "},{"loc":"http://hexapdf.gettalong.org/examples/outline.html","title":"Document Outline (Bookmarks)","tags":"","text":" Document Outline (Bookmarks) This example shows how to add a document outline, also known as bookmarks, to a PDF document. Usage: ruby outline.rb Resulting PDF: outline.pdf Preview: Code require 'hexapdf' doc = HexaPDF::Document.new 6.times { doc.pages.add } doc.outline.add_item(\"Main\") do |main| main.add_item(\"Page 1\", destination: 0) main.add_item(\"Page 2\", destination: 1) main.add_item(\"Sub\", flags: [:bold], text_color: \"red\", open: false) do |sub| sub.add_item(\"Page 3\", destination: {type: :fit_page_horizontal, page: doc.pages[2], top: 480}) sub.add_item(\"Page 4\", destination: 3) end main.add_item(\"Page 5\", destination: 4) end doc.outline.add_item(\"Appendix\") do |appendix| dest = doc.destinations.use_or_create(5) appendix.add_item(\"Page 6\", action: {S: :GoTo, D: dest}) end doc.catalog[:PageMode] = :UseOutlines doc.write('outline.pdf', optimize: true) "},{"loc":"http://hexapdf.gettalong.org/examples/images.html","title":"Images","tags":"","text":" Images This example shows how to embed images into a PDF document, directly on a page’s canvas and through the high-level HexaPDF::Composer. Usage: ruby images.rb Resulting PDF: images.pdf Preview: Code require 'hexapdf' file = File.join(__dir__, 'machupicchu.jpg') doc = HexaPDF::Document.new # Image only added to PDF once though used multiple times canvas = doc.pages.add.canvas canvas.image(file, at: [100, 500]) # auto-size based on image size canvas.image(file, at: [100, 300], width: 100) # height based on w/h ratio canvas.image(file, at: [300, 300], height: 100) # width based on w/h ratio
canvas.image(file, at: [100, 100], width: 300, height: 100) HexaPDF::Composer.create('images.pdf') do |composer| composer.image(file) # fill current rectangular region composer.image(file, width: 100) # height based on w/h ratio composer.image(file, height: 100) # width based on w/h ratio composer.image(file, width: 300, height: 100) # Add the page created above as second page composer.document.pages << composer.document.import(doc.pages[0]) end "},{"loc":"http://hexapdf.gettalong.org/examples/table_box.html","title":"Table Box","tags":"","text":" Table Box This example shows how HexaPDF::Layout::TableBox can be used to create tables. Usage: ruby table_box.rb Resulting PDF: table_box.pdf Preview: Code require 'hexapdf' image = File.join(__dir__, 'machupicchu.jpg') HexaPDF::Composer.create(\"table_box.pdf\") do |composer| # We start with the simplest table data = [['Hello', 'World'], ['How', 'are you?']] composer.table(data) # The width of the columns can be specified composer.table(data, column_widths: [100, 50]) # Besides text a table cell can contain any other element l = composer.document.layout data = [['Text', 'Just simple text'], ['Image', l.image(image)], ['List', l.list {|list| list.text('Hello'); list.text('List')}], ['Columns', l.column {|c| c.lorem_ipsum(count: 4) }]] composer.table(data, column_widths: [50]) # A table can be split if necessary composer.table([[l.lorem_ipsum(sentences: 1), l.lorem_ipsum(sentences: 1)], [l.lorem_ipsum, l.lorem_ipsum]]) # It is possible to specify headers and footers which all split parts # will have composer.column(height: 200) do |column| header = lambda {|table| [[l.text('Header left'), l.text('Header right')]] } footer = lambda {|table| [[l.text('Footer left'), l.text('Footer right')]] } column.table([[l.lorem_ipsum(sentences: 1), l.lorem_ipsum(sentences: 1)], [l.lorem_ipsum(sentences: 1), l.lorem_ipsum(sentences: 1)], [l.lorem_ipsum(sentences: 1), l.lorem_ipsum(sentences: 1)], [l.lorem_ipsum(sentences: 1), l.lorem_ipsum(sentences: 1)]], header: header, footer: footer) end end "},{"loc":"http://hexapdf.gettalong.org/examples/optional_content.html","title":"Optional Content (a.k.a. Layers)","tags":"","text":" Optional Content (a.k.a. Layers) This example shows how to create and assign optional content groups (OCGs) to parts of the content of a page. Four OCGs are created: Squares, Black, Blue, and Orange. The Squares one is applied to everything, the others to the respectively colored squares. When viewed in a compatible viewer, the “Optional Content” or “Layers” panel can be used to switch the layers on and off, resulting in the respective squares appearing or disappearing. Initially, the blue one is not shown, only the black and orange ones. Additionally, if supported by a viewer and if the visibility hasn’t been manually changed, the OCGs for the squares are also configured to only be visible at certain zoom levels. For example, the black one is only visible up to a zoom level of 100%. Usage: ruby optional_content.rb require ‘hexapdf’ Resulting PDF: optional_content.pdf Preview: Code doc = HexaPDF::Document.new ocg = doc.optional_content.ocg('Squares') ocg1 = doc.optional_content.ocg('Black') ocg1.zoom(max: 1) ocg1.add_to_ui(path: ocg) ocg2 = doc.optional_content.ocg('Blue') ocg2.zoom(min: 1, max: 2) ocg2.add_to_ui(path: ocg) ocg2.off! ocg3 = doc.optional_content.ocg('Orange') ocg3.zoom(min: 2, max: 20) ocg3.add_to_ui(path: ocg) canvas = doc.pages.add([0, 0, 200, 200]).canvas canvas.optional_content(ocg) do canvas.optional_content(ocg1) do canvas.fill_color('black').rectangle(20, 80, 100, 100).fill end canvas.optional_content(ocg2) do canvas.fill_color('hp-blue').rectangle(50, 50, 100, 100).fill end canvas.optional_content(ocg3) do canvas.fill_color('hp-orange').rectangle(80, 20, 100, 100).fill end end doc.optional_content.default_configuration[:AS] = [{Event: :View, Category: [:Zoom], OCGs: [ocg1, ocg2, ocg3]}] doc.write('optional_content.pdf') "},{"loc":"http://hexapdf.gettalong.org/examples/composer_optional_content.html","title":"Composer - Optional Content","tags":"","text":" Composer - Optional Content This example shows how to use the optional content feature to create a quiz where the answers can be individually shown and hidden. There is also a link after the questions to toggle all answers. Note: To provide the “All answers” layer switch functionality we need to make use of optional content membership dictionaries. However, this PDF feature is not supported by all PDF viewers. To enable the “All answers” switch in this example, use a1m, a2m, and a3m instead of a1, a2, and a3 when defining the optional content for a box. Usage: ruby composer_optional_content.rb require ‘hexapdf’ Resulting PDF: composer_optional_content.pdf Preview: Code HexaPDF::Composer.create('composer_optional_content.pdf') do |composer| composer.style(:question, font_size: 16, margin: [0, 0, 16], fill_color: 'hp-blue') composer.style(:answer, font: 'ZapfDingbats', fill_color: \"green\") all = composer.document.optional_content.ocg('All answers') a1 = composer.document.optional_content.ocg('Answer 1') a1m = composer.document.optional_content.create_ocmd([a1, all], policy: :any_on) a2 = composer.document.optional_content.ocg('Answer 2') a2m = composer.document.optional_content.create_ocmd([a2, all], policy: :any_on) a3 = composer.document.optional_content.ocg('Answer 3') a3m = composer.document.optional_content.create_ocmd([a3, all], policy: :any_on) composer.text('The Great Ruby Quiz', text_align: :center, margin: [0, 0, 24], font: ['Helvetica', variant: :bold], font_size: 24) composer.list(marker_type: :decimal, item_spacing: 32, style: :question) do |listing| listing.multiple do |item| item.text('Who created Ruby?', style: :question) item.column(columns: 3, gaps: 5) do |cols| cols.list(marker_type: :decimal) do |answers| answers.text('Guido van Rossum') answers.multiple do |answer| answer.text('Yukihiro “Matz” Matsumoto', position: :float) answer.text(\"\\u{a0}\\u{a0}4\", style: :answer, properties: {'optional_content' => a1}) end answers.text('Rob Pike') end end end listing.multiple do |item| item.text('When was Ruby created?', style: :question) item.column(columns: 3, gaps: 5) do |cols| cols.list(marker_type: :decimal) do |answers| answers.text('1991') answers.text('1992') answers.multiple do |answer| answer.text('1993', position: :float) answer.text(\"\\u{a0}\\u{a0}4\", style: :answer, properties: {'optional_content' => a2}) end end end end listing.multiple do |item| item.text('What is the best PDF library for Ruby?', style: :question) answer = composer.document.layout.text('There are several PDF libraries for ' \\ 'Ruby but the best is HexaPDF! :)', width: 400, properties: {'optional_content' => a3}) item.formatted_text([{box: answer}], border: {width: [0, 0, 1]}) end end action = composer.document.wrap({Type: :Action, S: :SetOCGState}) action.add_state_change(:toggle, [a1, a2, a3]) composer.text(\"Click to toggle answers\", border: {width: 1, color: \"red\"}, align: :right, padding: 2, overlays: [[:link, action: action]]) composer.document.optional_content.default_configuration(BaseState: :OFF, Order: [all, a1, a2, a3],) end "},{"loc":"http://hexapdf.gettalong.org/examples/frame_mask_mode.html","title":"Frame - Mask Mode","tags":"","text":" Frame - Mask Mode This example shows how to use the style property ‘mask_mode’ to achieve certain effects like overlaying boxes on each other or using multiple horizontal alignments on one line. Usage: ruby frame_mask_mode.rb require ‘hexapdf’ Resulting PDF: frame_mask_mode.pdf Preview: Code HexaPDF::Composer.create('frame_mask_mode.pdf') do |composer| box = composer.image(File.join(__dir__, 'machupicchu.jpg'), border: {width: 1}, mask_mode: :none) composer.text('Text overlaid over image', height: box.height, text_align: :center, font_size: 50, text_valign: :center, text_rendering_mode: :fill_stroke, fill_color: 'white', stroke_color: 'hp-blue', margin: [0, 0, 10]) composer.column(columns: 1, style: {border: {width: 1}, padding: 10}) do |col| col.text('Center', mask_mode: :box, align: :center) col.text('Left', mask_mode: :fill_horizontal) col.text('Right', align: :right) end end "},{"loc":"http://hexapdf.gettalong.org/examples/composer_fallback_fonts.html","title":"Composer - Fallback Fonts","tags":"","text":" Composer - Fallback Fonts This example shows how to use the fallback font support of HexaPDF to replace invalid glyphs with ones from other fonts. While the examples shows the usage of a single fallback font, it can easily be generalized to support multiple fallback fonts. Usage: ruby composer_fallback_fonts.rb Resulting PDF: composer_fallback_fonts.pdf Preview: Code require 'hexapdf' HexaPDF::Composer.create('composer_fallback_fonts.pdf') do |composer| zapf_dingbats = composer.document.fonts.add('ZapfDingbats') composer.document.config['font.fallback'] = ['ZapfDingbats'] composer.text('This text contains the scissors symbol ✂ which is not available in ' \\ 'the default font Times but available in the set ZapfDingbats fallback ' \\ 'font. Other symbols from ZapfDingbats like ✐ and ✈ can also be used.' \\ \"\\n\\n❤ HexaPDF\") end "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/index.html","title":"Index","tags":"","text":" ConstantsDefaultDocumentConfigurationGlobalConfigurationVERSIONClass Methodsdata_dirfont_on_invalid_glyph module HexaPDF HexaPDF API Documentation¶ ↑ Here are some pointers to more in depth information: HexaPDF::CLI has information about the accompanying command line application. HexaPDF::Document provides information about how to work with a PDF file. HexaPDF::Composer is the main class for easily creating PDF documents from scratch. HexaPDF::Content::Canvas provides the canvas API for drawing/writing on a page or form XObject HexaPDF::Type::AcroForm::Form is the entry point for working with interactive forms. HexaPDF::Type::Outline has information on working with outlines/bookmarks.
HexaPDF::Encryption provides information on how encryption works. HexaPDF::DigitalSignature is the entry point for working with digital signaturs. Constants DefaultDocumentConfiguration¶ The default document specific configuration object. Modify this object if you want to globally change document specific options or if you want to introduce new document specific options. The following options are provided: acro_form.appearance_generator The class that should be used for generating appearances for AcroForm fields. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Type::AcroForm::AppearanceGenerator acro_form.create_appearances A boolean specifying whether an AcroForm field’s appearances should automatically be generated if they are missing. acro_form.default_font_size A number specifying the default font size of AcroForm text fields which should be auto-sized. acro_form.fallback_font The font that should be used when a variable text field references a font that cannot be used. Can be one of the following: The name of a font, like ‘Helvetica’. An array consisting of the font name and a hash of font options, like [‘Helvetica’, variant: :italic]. A callable object receiving the field and the font object (or nil if no valid font object was found) and which has to return either a font name or an array consisting of the font name and a hash of font options. This way the response can be different depending on the original font and it would also allow e.g. modifying the configured fonts to add custom ones. If set to nil, the use of the fallback font is disabled. Default is ‘Helvetica’. acro_form.on_invalid_value Callback hook when an invalid value is set for certain types of AcroForm fields. The value needs to be an object that responds to #call(field, value) where field is the AcroForm field on which the value is set and value is the invalid value. The returned value is used instead of the invalid value. The default implementation raises an error. acro_form.text_field.default_width A number specifying the default width of AcroForm text fields which should be auto-sized. debug If set to true, enables debug output. document.auto_decrypt A boolean determining whether the document should be decrypted automatically when parsed. If this is set to false and the PDF document should later be decrypted, the method Encryption::SecurityHandler.set_up_decryption(document, decryption_opts) has to be called to set and retrieve the needed security handler. Note, however, that already loaded indirect objects have to be decrypted manually! In nearly all cases this option should not be changed from its default setting! document.on_invalid_string A callable object that takes the invalid UTF-16BE encoded string and returns a valid UTF-8 encoded string. The default is to remove all invalid characters. encryption.aes The class that should be used for AES encryption. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Encryption::AES for the general interface such a class must conform to and HexaPDF::Encryption::RubyAES as well as HexaPDF::Encryption::FastAES for implementations. encryption.arc4 The class that should be used for ARC4 encryption. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Encryption::ARC4 for the general interface such a class must conform to and HexaPDF::Encryption::RubyARC4 as well as HexaPDF::Encryption::FastARC4 for implementations. encryption.filter_map A mapping from a PDF name (a Symbol) to a security handler class (see Encryption::SecurityHandler). If the value is a String, it should contain the name of a constant to such a class. PDF defines a standard security handler that is implemented (HexaPDF::Encryption::StandardSecurityHandler) and assigned the :Standard name. encryption.sub_filter_map A mapping from a PDF name (a Symbol) to a security handler class (see HexaPDF::Encryption::SecurityHandler). If the value is a String, it should contain the name of a constant to such a class. The sub filter map is used when the security handler defined by the encryption dictionary is not available, but a compatible implementation is. filter.map A mapping from a PDF name (a Symbol) to a filter object (see Filter). If the value is a String, it should contain the name of a constant that contains a filter object. The most often used filters are implemented and readily available. See PDF2.0 s7.4.1, ADB sH.3 3.3 font.fallback An array of fallback font names to be used when replacing invalid glyphs. The values can be anything that can be passed to Document::Fonts#add. Note that the variant of a font is determined by looking at the font for which a invalid glyph should be replaced. The default value consists of the built-in fonts ZapfDingbats and Symbol. font.map Defines a mapping from font names and variants to font files. The value needs to be a hash of the form: {\"font_name\" => {variant: file_name, variant2: file_name2, ...}, ...} Once a font is registered in this way, the font name together with a variant name can be used with the HexaPDF::Document::Fonts#add method to load the font. For best compatibility, the following variant names should be used: none For the normal variant of the font bold For the bold variant of the font italic For the italic or oblique variant of the font bold_italic For the bold and italic/oblique variant of the font font.on_invalid_glyph Callback hook when a character cannot be mapped to a glyph and one or more glyphs from a different font should be used. Only applies when using high-level text creation facilities. The value needs to be an object that responds to #call(codepoint, invalid_glyph) where codepoint is the Unicode codepoint that cannot be mapped to a valid glyph. The invalid_glyph argument is the HexaPDF::Font::InvalidGlyph object that was the result of the initial mapping. The return value has to be an array of glyph objects which can be from any font but all need to be from the same one. The default implementation is provided by ::font_on_invalid_glyph and uses the ‘font.fallback’ configuration option. It is usually not necessary to change this configuration option or the ‘font.on_missing_glyph’ one. Note: The ‘font.on_missing_glyph’ configuration option does something similar but is restricted to returning a single glyph from the same font. Whenever a glyph is not found, ‘font.on_missing_glyph’ is invoked first and if an invalid glyph instance is returned, this callback hook is invoked when using the layout engine. A typical implementation would use one or more fallback fonts (probably choosing one in the correct font variant) for providing the necessary glyph(s): doc.config['font.on_invalid_glyph'] = lambda do |codepoint, glyph| [other_font.decode_codepoint(codepoint)] end font.on_missing_glyph Callback hook when an UTF-8 character cannot be mapped to a glyph of a font. The value needs to be an object that responds to #call(character, font_wrapper) where character is the Unicode character for the missing glyph and returns a substitute glyph to be used instead. This substitute glyph needs to be from the same font, i.e. it needs to be created through the provided font_wrapper instance. The font_wrapper argument is the used font wrapper object, e.g. HexaPDF::Font::TrueTypeWrapper. To access the HexaPDF::Document instance from which this hook was called, you can use font_wrapper.pdf_object.document. The default implementation returns an object of class HexaPDF::Font::InvalidGlyph which, when not removed before encoding, will raise a HexaPDF::MissingGlyphError. If a replacement glyph should be displayed instead of an error, the following provides a good starting implementation: doc.config['font.on_missing_glyph'] = lambda do |character, font_wrapper| font_wrapper.custom_glyph(font_wrapper.font_type == :Type1 ? :question : 0, character) end font.on_missing_unicode_mapping Callback hook when a character code point cannot be converted to a Unicode character. The value needs to be an object that responds to #call(code, font_dict) where code is the decoded code point and font_dict is the font dictionary which was used for the conversion. The returned value is used as the Unicode character and should be a string. The default implementation raises an error. font_loader An array with font loader implementations. When a font should be loaded, the array is iterated in sequence and the first valid font returned by a font loader is used. If a value is a String, it should contain the name of a constant that is a font loader object. See the HexaPDF::FontLoader module for information on how to implement a font loader object. graphic_object.arc.max_curves The maximum number of curves used for approximating a complete ellipse using Bezier curves. The default value is 6, higher values result in better approximations but also take longer to compute. It should not be set to values lower than 4, otherwise the approximation of a complete ellipse is visibly false. graphic_object.map A mapping from graphic object names to graphic object factories. See HexaPDF::Content::GraphicObject for more information. image_loader An array with image loader implementations. When an image should be loaded, the array is iterated in sequence to find a suitable image loader. If a value is a String, it should contain the name of a constant that is an image loader object. See the HexaPDF::ImageLoader module for information on how to implement an image loader object. image_loader.pdf.use_stringio A boolean determining whether images specified via file names should be read into memory all at once using a StringIO object. Since loading a PDF as image entails having the IO object from the image PDF around until the PDF document where it is used is written, there is the choice whether memory should be used to load the image PDF all at once or whether a File object is used that needs to be manually
closed. To avoid leaking file descriptors, using the StringIO is the default setting. If you set this option to false, it is strongly advised to use ObjectSpace.each_object(File) (or IO instead of +File) to traverse the list of open file descriptors and close the ones that have been used for PDF images. io.chunk_size The size of the chunks that are used when reading IO data. This can be used to limit the memory needed for reading or writing PDF files with huge stream objects. layout.boxes.map A mapping from layout box names to box classes. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Layout::Box for more information. page.default_media_box The media box that is used for new pages that don’t define a media box. Default value is A4. See HexaPDF::Type::Page::PAPER_SIZE for a list of predefined paper sizes. This configuration option (together with ‘page.default_media_orientation’) is also used when validating pages and a page without a media box is found. The value can either be a rectangle defining the paper size or a Symbol referencing one of the predefined paper sizes. page.default_media_orientation The page orientation that is used for new pages that don’t define a media box. It is only used if ‘page.default_media_box’ references a predefined paper size. Default value is :portrait. The other possible value is :landscape. parser.on_correctable_error Callback hook when the parser encounters an error that can be corrected. The value needs to be an object that responds to #call(document, message, position) and returns true if an error should be raised. parser.try_xref_reconstruction A boolean specifying whether non-recoverable parsing errors should lead to reconstructing the main cross-reference table. The reconstructed cross-reference table might make damaged files usable but there is no way to ensure that the reconstructed file is equal to the undamaged original file (though generally it works out). There is also the possibility that reconstructing doesn’t work because the algorithm has to assume that the PDF was written in a certain way (which is recommended by the PDF specification). Defaults to true. signature.signing_handler A mapping from a Symbol to a signing handler class (see HexaPDF::Document::Signatures::DefaultHandler). If the value is a String, it should contain the name of a constant to such a class. signature.sub_filter_map A mapping from a PDF name (a Symbol) to a signature handler class (see HexaPDF::DigitalSignature::Handler). If the value is a String, it should contain the name of a constant to such a class. The sub filter map is used for mapping specific signature algorithms to handler classes. The filter value of a signature dictionary is ignored since we only support the standard signature algorithms. sorted_tree.max_leaf_node_size The maximum number of nodes that should be in a leaf node of a node tree. style.layers_map A mapping from style layer names to layer objects. See HexaPDF::Layout::Style::Layers for more information. task.map A mapping from task names to callable task objects. See HexaPDF::Task for more information. GlobalConfiguration¶ The global configuration object, providing the following options: color_space.map A mapping from a PDF name (a Symbol) to a color space class (see HexaPDF::Content::ColorSpace). If the value is a String, it should contain the name of a constant that contains a color space class. Classes for the most often used color space families are implemented and readily available. See PDF2.0 s8.6 filter.flate.compression Specifies the compression level that should be used with the FlateDecode filter. The level can range from 0 (no compression), 1 (best speed) to 9 (best compression, default). filter.flate.memory Specifies the memory level that should be used with the FlateDecode filter. The level can range from 1 (minimum memory usage; slow, reduces compression) to 9 (maximum memory usage). The HexaPDF default value of 6 has been found in tests to be nearly equivalent to the Zlib default of 8 in terms of speed and compression level but uses less memory. filter.flate.on_error Callback hook when a potentially recoverable Zlib error occurs in the FlateDecode filter. The value needs to be an object that responds to #call(stream, error) where stream is the Zlib stream object and error is the thrown error. The method needs to return true if an error should be raised. The default implementation prevents errors from being raised. filter.predictor.strict Specifies whether the predictor algorithm used by LZWDecode and FlateDecode should operate in strict mode, i.e. adhering to the PDF specification without correcting for common deficiences of PDF writer libraries. object.type_map A mapping from a PDF name (a Symbol) to PDF object classes which is based on the /Type field. If the value is a String, it should contain the name of a constant that contains a PDF object class. This mapping is used to provide automatic wrapping of objects in the HexaPDF::Document#wrap method. object.subtype_map A mapping from a PDF name (a Symbol) to PDF object classes which is based on the /Subtype field. If the value is a String, it should contain the name of a constant that contains a PDF object class. This mapping is used to provide automatic wrapping of objects in the HexaPDF::Document#wrap method. VERSION¶ The version of HexaPDF. Public Class Methods data_dir()¶ Returns the data directory for HexaPDF. font_on_invalid_glyph(codepoint, invalid_glyph)¶ Provides the default implementation for the configuration option ‘font.on_invalid_glyph’. It uses the first font in the list provided by the ‘font.fallback’ configuration option that contains a glyph for the codepoint (taking the font variant into account). If no fallback font contains such a glyph, invalid_glyph is used. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/index.html","title":"HexaPDF","tags":"","text":" ConstantsDefaultDocumentConfigurationGlobalConfigurationVERSIONClass Methodsdata_dirfont_on_invalid_glyph module HexaPDF HexaPDF API Documentation¶ ↑ Here are some pointers to more in depth information: HexaPDF::CLI has information about the accompanying command line application. HexaPDF::Document provides information about how to work with a PDF file. HexaPDF::Composer is the main class for easily creating PDF documents from scratch. HexaPDF::Content::Canvas provides the canvas API for drawing/writing on a page or form XObject HexaPDF::Type::AcroForm::Form is the entry point for working with interactive forms. HexaPDF::Type::Outline has information on working with outlines/bookmarks. HexaPDF::Encryption provides information on how encryption works. HexaPDF::DigitalSignature is the entry point for working with digital signaturs. Constants DefaultDocumentConfiguration¶ The default document specific configuration object. Modify this object if you want to globally change document specific options or if you want to introduce new document specific options. The following options are provided: acro_form.appearance_generator The class that should be used for generating appearances for AcroForm fields. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Type::AcroForm::AppearanceGenerator acro_form.create_appearances A boolean specifying whether an AcroForm field’s appearances should automatically be generated if they are missing. acro_form.default_font_size A number specifying the default font size of AcroForm text fields which should be auto-sized. acro_form.fallback_font The font that should be used when a variable text field references a font that cannot be used. Can be one of the following: The name of a font, like ‘Helvetica’. An array consisting of the font name and a hash of font options, like [‘Helvetica’, variant: :italic]. A callable object receiving the field and the font object (or nil if no valid font object was found) and which has to return either a font name or an array consisting of the font name and a hash of font options. This way the response can be different depending on the original font and it would also allow e.g. modifying the configured fonts to add custom ones. If set to nil, the use of the fallback font is disabled. Default is ‘Helvetica’. acro_form.on_invalid_value Callback hook when an invalid value is set for certain types of AcroForm fields. The value needs to be an object that responds to #call(field, value) where field is the AcroForm field on which the value is set and value is the invalid value. The returned value is used instead of the invalid value. The default implementation raises an error. acro_form.text_field.default_width A number specifying the default width of AcroForm text fields which should be auto-sized. debug If set to true, enables debug output. document.auto_decrypt A boolean determining whether the document should be decrypted automatically when parsed. If this is set to false and the PDF document should later be decrypted, the method Encryption::SecurityHandler.set_up_decryption(document, decryption_opts) has to be called to set and retrieve the needed security handler. Note, however, that already loaded indirect objects have to be decrypted manually! In nearly all cases this option should not be changed from its default setting! document.on_invalid_string A callable object that takes the invalid UTF-16BE encoded string and returns a valid UTF-8 encoded string. The default is to remove all invalid characters. encryption.aes The class that should be used for AES encryption. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Encryption::AES for the general interface such a class must conform to and HexaPDF::Encryption::RubyAES as well as HexaPDF::Encryption::FastAES for implementations. encryption.arc4 The class that should be used for ARC4 encryption. If the value is a String, it should contain the name of a constant to such a
class. See HexaPDF::Encryption::ARC4 for the general interface such a class must conform to and HexaPDF::Encryption::RubyARC4 as well as HexaPDF::Encryption::FastARC4 for implementations. encryption.filter_map A mapping from a PDF name (a Symbol) to a security handler class (see Encryption::SecurityHandler). If the value is a String, it should contain the name of a constant to such a class. PDF defines a standard security handler that is implemented (HexaPDF::Encryption::StandardSecurityHandler) and assigned the :Standard name. encryption.sub_filter_map A mapping from a PDF name (a Symbol) to a security handler class (see HexaPDF::Encryption::SecurityHandler). If the value is a String, it should contain the name of a constant to such a class. The sub filter map is used when the security handler defined by the encryption dictionary is not available, but a compatible implementation is. filter.map A mapping from a PDF name (a Symbol) to a filter object (see Filter). If the value is a String, it should contain the name of a constant that contains a filter object. The most often used filters are implemented and readily available. See PDF2.0 s7.4.1, ADB sH.3 3.3 font.fallback An array of fallback font names to be used when replacing invalid glyphs. The values can be anything that can be passed to Document::Fonts#add. Note that the variant of a font is determined by looking at the font for which a invalid glyph should be replaced. The default value consists of the built-in fonts ZapfDingbats and Symbol. font.map Defines a mapping from font names and variants to font files. The value needs to be a hash of the form: {\"font_name\" => {variant: file_name, variant2: file_name2, ...}, ...} Once a font is registered in this way, the font name together with a variant name can be used with the HexaPDF::Document::Fonts#add method to load the font. For best compatibility, the following variant names should be used: none For the normal variant of the font bold For the bold variant of the font italic For the italic or oblique variant of the font bold_italic For the bold and italic/oblique variant of the font font.on_invalid_glyph Callback hook when a character cannot be mapped to a glyph and one or more glyphs from a different font should be used. Only applies when using high-level text creation facilities. The value needs to be an object that responds to #call(codepoint, invalid_glyph) where codepoint is the Unicode codepoint that cannot be mapped to a valid glyph. The invalid_glyph argument is the HexaPDF::Font::InvalidGlyph object that was the result of the initial mapping. The return value has to be an array of glyph objects which can be from any font but all need to be from the same one. The default implementation is provided by ::font_on_invalid_glyph and uses the ‘font.fallback’ configuration option. It is usually not necessary to change this configuration option or the ‘font.on_missing_glyph’ one. Note: The ‘font.on_missing_glyph’ configuration option does something similar but is restricted to returning a single glyph from the same font. Whenever a glyph is not found, ‘font.on_missing_glyph’ is invoked first and if an invalid glyph instance is returned, this callback hook is invoked when using the layout engine. A typical implementation would use one or more fallback fonts (probably choosing one in the correct font variant) for providing the necessary glyph(s): doc.config['font.on_invalid_glyph'] = lambda do |codepoint, glyph| [other_font.decode_codepoint(codepoint)] end font.on_missing_glyph Callback hook when an UTF-8 character cannot be mapped to a glyph of a font. The value needs to be an object that responds to #call(character, font_wrapper) where character is the Unicode character for the missing glyph and returns a substitute glyph to be used instead. This substitute glyph needs to be from the same font, i.e. it needs to be created through the provided font_wrapper instance. The font_wrapper argument is the used font wrapper object, e.g. HexaPDF::Font::TrueTypeWrapper. To access the HexaPDF::Document instance from which this hook was called, you can use font_wrapper.pdf_object.document. The default implementation returns an object of class HexaPDF::Font::InvalidGlyph which, when not removed before encoding, will raise a HexaPDF::MissingGlyphError. If a replacement glyph should be displayed instead of an error, the following provides a good starting implementation: doc.config['font.on_missing_glyph'] = lambda do |character, font_wrapper| font_wrapper.custom_glyph(font_wrapper.font_type == :Type1 ? :question : 0, character) end font.on_missing_unicode_mapping Callback hook when a character code point cannot be converted to a Unicode character. The value needs to be an object that responds to #call(code, font_dict) where code is the decoded code point and font_dict is the font dictionary which was used for the conversion. The returned value is used as the Unicode character and should be a string. The default implementation raises an error. font_loader An array with font loader implementations. When a font should be loaded, the array is iterated in sequence and the first valid font returned by a font loader is used. If a value is a String, it should contain the name of a constant that is a font loader object. See the HexaPDF::FontLoader module for information on how to implement a font loader object. graphic_object.arc.max_curves The maximum number of curves used for approximating a complete ellipse using Bezier curves. The default value is 6, higher values result in better approximations but also take longer to compute. It should not be set to values lower than 4, otherwise the approximation of a complete ellipse is visibly false. graphic_object.map A mapping from graphic object names to graphic object factories. See HexaPDF::Content::GraphicObject for more information. image_loader An array with image loader implementations. When an image should be loaded, the array is iterated in sequence to find a suitable image loader. If a value is a String, it should contain the name of a constant that is an image loader object. See the HexaPDF::ImageLoader module for information on how to implement an image loader object. image_loader.pdf.use_stringio A boolean determining whether images specified via file names should be read into memory all at once using a StringIO object. Since loading a PDF as image entails having the IO object from the image PDF around until the PDF document where it is used is written, there is the choice whether memory should be used to load the image PDF all at once or whether a File object is used that needs to be manually closed. To avoid leaking file descriptors, using the StringIO is the default setting. If you set this option to false, it is strongly advised to use ObjectSpace.each_object(File) (or IO instead of +File) to traverse the list of open file descriptors and close the ones that have been used for PDF images. io.chunk_size The size of the chunks that are used when reading IO data. This can be used to limit the memory needed for reading or writing PDF files with huge stream objects. layout.boxes.map A mapping from layout box names to box classes. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Layout::Box for more information. page.default_media_box The media box that is used for new pages that don’t define a media box. Default value is A4. See HexaPDF::Type::Page::PAPER_SIZE for a list of predefined paper sizes. This configuration option (together with ‘page.default_media_orientation’) is also used when validating pages and a page without a media box is found. The value can either be a rectangle defining the paper size or a Symbol referencing one of the predefined paper sizes. page.default_media_orientation The page orientation that is used for new pages that don’t define a media box. It is only used if ‘page.default_media_box’ references a predefined paper size. Default value is :portrait. The other possible value is :landscape. parser.on_correctable_error Callback hook when the parser encounters an error that can be corrected. The value needs to be an object that responds to #call(document, message, position) and returns true if an error should be raised. parser.try_xref_reconstruction A boolean specifying whether non-recoverable parsing errors should lead to reconstructing the main cross-reference table. The reconstructed cross-reference table might make damaged files usable but there is no way to ensure that the reconstructed file is equal to the undamaged original file (though generally it works out). There is also the possibility that reconstructing doesn’t work because the algorithm has to assume that the PDF was written in a certain way (which is recommended by the PDF specification). Defaults to true. signature.signing_handler A mapping from a Symbol to a signing handler class (see HexaPDF::Document::Signatures::DefaultHandler). If the value is a String, it should contain the name of a constant to such a class. signature.sub_filter_map A mapping from a PDF name (a Symbol) to a signature handler class (see HexaPDF::DigitalSignature::Handler). If the value is a String, it should contain the name of a constant to such a class. The sub filter map is used for mapping specific signature algorithms to handler classes. The filter value of a signature dictionary is ignored since we only support the standard signature algorithms. sorted_tree.max_leaf_node_size The maximum number of nodes that should be in a leaf node of a node tree. style.layers_map A mapping from style layer names to layer objects. See HexaPDF::Layout::Style::Layers for more information. task.map A mapping from task names to callable task objects. See HexaPDF::Task for more information. GlobalConfiguration¶ The global configuration object, providing the following options: color_space.map A mapping from a PDF name (a Symbol) to a color space class (see
HexaPDF::Content::ColorSpace). If the value is a String, it should contain the name of a constant that contains a color space class. Classes for the most often used color space families are implemented and readily available. See PDF2.0 s8.6 filter.flate.compression Specifies the compression level that should be used with the FlateDecode filter. The level can range from 0 (no compression), 1 (best speed) to 9 (best compression, default). filter.flate.memory Specifies the memory level that should be used with the FlateDecode filter. The level can range from 1 (minimum memory usage; slow, reduces compression) to 9 (maximum memory usage). The HexaPDF default value of 6 has been found in tests to be nearly equivalent to the Zlib default of 8 in terms of speed and compression level but uses less memory. filter.flate.on_error Callback hook when a potentially recoverable Zlib error occurs in the FlateDecode filter. The value needs to be an object that responds to #call(stream, error) where stream is the Zlib stream object and error is the thrown error. The method needs to return true if an error should be raised. The default implementation prevents errors from being raised. filter.predictor.strict Specifies whether the predictor algorithm used by LZWDecode and FlateDecode should operate in strict mode, i.e. adhering to the PDF specification without correcting for common deficiences of PDF writer libraries. object.type_map A mapping from a PDF name (a Symbol) to PDF object classes which is based on the /Type field. If the value is a String, it should contain the name of a constant that contains a PDF object class. This mapping is used to provide automatic wrapping of objects in the HexaPDF::Document#wrap method. object.subtype_map A mapping from a PDF name (a Symbol) to PDF object classes which is based on the /Subtype field. If the value is a String, it should contain the name of a constant that contains a PDF object class. This mapping is used to provide automatic wrapping of objects in the HexaPDF::Document#wrap method. VERSION¶ The version of HexaPDF. Public Class Methods data_dir()¶ Returns the data directory for HexaPDF. font_on_invalid_glyph(codepoint, invalid_glyph)¶ Provides the default implementation for the configuration option ‘font.on_invalid_glyph’. It uses the first font in the list provided by the ‘font.fallback’ configuration option that contains a glyph for the codepoint (taking the font variant into account). If no fallback font contains such a glyph, invalid_glyph is used. "},{"loc":"http://hexapdf.gettalong.org/examples/../documentation/hexapdf.1.html#examples","title":"CLI commands","tags":"","text":""},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/index.html","title":"HexaPDF","tags":"","text":" ConstantsDefaultDocumentConfigurationGlobalConfigurationVERSIONClass Methodsdata_dirfont_on_invalid_glyph module HexaPDF HexaPDF API Documentation¶ ↑ Here are some pointers to more in depth information: HexaPDF::CLI has information about the accompanying command line application. HexaPDF::Document provides information about how to work with a PDF file. HexaPDF::Composer is the main class for easily creating PDF documents from scratch. HexaPDF::Content::Canvas provides the canvas API for drawing/writing on a page or form XObject HexaPDF::Type::AcroForm::Form is the entry point for working with interactive forms. HexaPDF::Type::Outline has information on working with outlines/bookmarks. HexaPDF::Encryption provides information on how encryption works. HexaPDF::DigitalSignature is the entry point for working with digital signaturs. Constants DefaultDocumentConfiguration¶ The default document specific configuration object. Modify this object if you want to globally change document specific options or if you want to introduce new document specific options. The following options are provided: acro_form.appearance_generator The class that should be used for generating appearances for AcroForm fields. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Type::AcroForm::AppearanceGenerator acro_form.create_appearances A boolean specifying whether an AcroForm field’s appearances should automatically be generated if they are missing. acro_form.default_font_size A number specifying the default font size of AcroForm text fields which should be auto-sized. acro_form.fallback_font The font that should be used when a variable text field references a font that cannot be used. Can be one of the following: The name of a font, like ‘Helvetica’. An array consisting of the font name and a hash of font options, like [‘Helvetica’, variant: :italic]. A callable object receiving the field and the font object (or nil if no valid font object was found) and which has to return either a font name or an array consisting of the font name and a hash of font options. This way the response can be different depending on the original font and it would also allow e.g. modifying the configured fonts to add custom ones. If set to nil, the use of the fallback font is disabled. Default is ‘Helvetica’. acro_form.on_invalid_value Callback hook when an invalid value is set for certain types of AcroForm fields. The value needs to be an object that responds to #call(field, value) where field is the AcroForm field on which the value is set and value is the invalid value. The returned value is used instead of the invalid value. The default implementation raises an error. acro_form.text_field.default_width A number specifying the default width of AcroForm text fields which should be auto-sized. debug If set to true, enables debug output. document.auto_decrypt A boolean determining whether the document should be decrypted automatically when parsed. If this is set to false and the PDF document should later be decrypted, the method Encryption::SecurityHandler.set_up_decryption(document, decryption_opts) has to be called to set and retrieve the needed security handler. Note, however, that already loaded indirect objects have to be decrypted manually! In nearly all cases this option should not be changed from its default setting! document.on_invalid_string A callable object that takes the invalid UTF-16BE encoded string and returns a valid UTF-8 encoded string. The default is to remove all invalid characters. encryption.aes The class that should be used for AES encryption. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Encryption::AES for the general interface such a class must conform to and HexaPDF::Encryption::RubyAES as well as HexaPDF::Encryption::FastAES for implementations. encryption.arc4 The class that should be used for ARC4 encryption. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Encryption::ARC4 for the general interface such a class must conform to and HexaPDF::Encryption::RubyARC4 as well as HexaPDF::Encryption::FastARC4 for implementations. encryption.filter_map A mapping from a PDF name (a Symbol) to a security handler class (see Encryption::SecurityHandler). If the value is a String, it should contain the name of a constant to such a class. PDF defines a standard security handler that is implemented (HexaPDF::Encryption::StandardSecurityHandler) and assigned the :Standard name. encryption.sub_filter_map A mapping from a PDF name (a Symbol) to a security handler class (see HexaPDF::Encryption::SecurityHandler). If the value is a String, it should contain the name of a constant to such a class. The sub filter map is used when the security handler defined by the encryption dictionary is not available, but a compatible implementation is. filter.map A mapping from a PDF name (a Symbol) to a filter object (see Filter). If the value is a String, it should contain the name of a constant that contains a filter object. The most often used filters are implemented and readily available. See PDF2.0 s7.4.1, ADB sH.3 3.3 font.fallback An array of fallback font names to be used when replacing invalid glyphs. The values can be anything that can be passed to Document::Fonts#add. Note that the variant of a font is determined by looking at the font for which a invalid glyph should be replaced. The default value consists of the built-in fonts ZapfDingbats and Symbol. font.map Defines a mapping from font names and variants to font files. The value needs to be a hash of the form: {\"font_name\" => {variant: file_name, variant2: file_name2, ...}, ...} Once a font is registered in this way, the font name together with a variant name can be used with the HexaPDF::Document::Fonts#add method to load the font. For best compatibility, the following variant names should be used: none For the normal variant of the font bold For the bold variant of the font italic For the italic or oblique variant of the font bold_italic For the bold and italic/oblique variant of the font font.on_invalid_glyph Callback hook when a character cannot be mapped to a glyph and one or more glyphs from a different font should be used. Only applies when using high-level text creation facilities. The value needs to be an object that responds to #call(codepoint, invalid_glyph) where codepoint is the Unicode codepoint that cannot be mapped to a valid glyph. The invalid_glyph argument is the HexaPDF::Font::InvalidGlyph object that was the result of the initial mapping. The return value has to be an array of glyph objects which can be from any font but all need to be from the same one. The default implementation is provided by ::font_on_invalid_glyph and uses the ‘font.fallback’ configuration option. It is usually not necessary to change this configuration option or the ‘font.on_missing_glyph’ one. Note: The ‘font.on_missing_glyph’ configuration option does something similar but is restricted to returning a single glyph from the same font. Whenever a glyph is not found, ‘font.on_missing_glyph’ is invoked first and if an invalid glyph instance
is returned, this callback hook is invoked when using the layout engine. A typical implementation would use one or more fallback fonts (probably choosing one in the correct font variant) for providing the necessary glyph(s): doc.config['font.on_invalid_glyph'] = lambda do |codepoint, glyph| [other_font.decode_codepoint(codepoint)] end font.on_missing_glyph Callback hook when an UTF-8 character cannot be mapped to a glyph of a font. The value needs to be an object that responds to #call(character, font_wrapper) where character is the Unicode character for the missing glyph and returns a substitute glyph to be used instead. This substitute glyph needs to be from the same font, i.e. it needs to be created through the provided font_wrapper instance. The font_wrapper argument is the used font wrapper object, e.g. HexaPDF::Font::TrueTypeWrapper. To access the HexaPDF::Document instance from which this hook was called, you can use font_wrapper.pdf_object.document. The default implementation returns an object of class HexaPDF::Font::InvalidGlyph which, when not removed before encoding, will raise a HexaPDF::MissingGlyphError. If a replacement glyph should be displayed instead of an error, the following provides a good starting implementation: doc.config['font.on_missing_glyph'] = lambda do |character, font_wrapper| font_wrapper.custom_glyph(font_wrapper.font_type == :Type1 ? :question : 0, character) end font.on_missing_unicode_mapping Callback hook when a character code point cannot be converted to a Unicode character. The value needs to be an object that responds to #call(code, font_dict) where code is the decoded code point and font_dict is the font dictionary which was used for the conversion. The returned value is used as the Unicode character and should be a string. The default implementation raises an error. font_loader An array with font loader implementations. When a font should be loaded, the array is iterated in sequence and the first valid font returned by a font loader is used. If a value is a String, it should contain the name of a constant that is a font loader object. See the HexaPDF::FontLoader module for information on how to implement a font loader object. graphic_object.arc.max_curves The maximum number of curves used for approximating a complete ellipse using Bezier curves. The default value is 6, higher values result in better approximations but also take longer to compute. It should not be set to values lower than 4, otherwise the approximation of a complete ellipse is visibly false. graphic_object.map A mapping from graphic object names to graphic object factories. See HexaPDF::Content::GraphicObject for more information. image_loader An array with image loader implementations. When an image should be loaded, the array is iterated in sequence to find a suitable image loader. If a value is a String, it should contain the name of a constant that is an image loader object. See the HexaPDF::ImageLoader module for information on how to implement an image loader object. image_loader.pdf.use_stringio A boolean determining whether images specified via file names should be read into memory all at once using a StringIO object. Since loading a PDF as image entails having the IO object from the image PDF around until the PDF document where it is used is written, there is the choice whether memory should be used to load the image PDF all at once or whether a File object is used that needs to be manually closed. To avoid leaking file descriptors, using the StringIO is the default setting. If you set this option to false, it is strongly advised to use ObjectSpace.each_object(File) (or IO instead of +File) to traverse the list of open file descriptors and close the ones that have been used for PDF images. io.chunk_size The size of the chunks that are used when reading IO data. This can be used to limit the memory needed for reading or writing PDF files with huge stream objects. layout.boxes.map A mapping from layout box names to box classes. If the value is a String, it should contain the name of a constant to such a class. See HexaPDF::Layout::Box for more information. page.default_media_box The media box that is used for new pages that don’t define a media box. Default value is A4. See HexaPDF::Type::Page::PAPER_SIZE for a list of predefined paper sizes. This configuration option (together with ‘page.default_media_orientation’) is also used when validating pages and a page without a media box is found. The value can either be a rectangle defining the paper size or a Symbol referencing one of the predefined paper sizes. page.default_media_orientation The page orientation that is used for new pages that don’t define a media box. It is only used if ‘page.default_media_box’ references a predefined paper size. Default value is :portrait. The other possible value is :landscape. parser.on_correctable_error Callback hook when the parser encounters an error that can be corrected. The value needs to be an object that responds to #call(document, message, position) and returns true if an error should be raised. parser.try_xref_reconstruction A boolean specifying whether non-recoverable parsing errors should lead to reconstructing the main cross-reference table. The reconstructed cross-reference table might make damaged files usable but there is no way to ensure that the reconstructed file is equal to the undamaged original file (though generally it works out). There is also the possibility that reconstructing doesn’t work because the algorithm has to assume that the PDF was written in a certain way (which is recommended by the PDF specification). Defaults to true. signature.signing_handler A mapping from a Symbol to a signing handler class (see HexaPDF::Document::Signatures::DefaultHandler). If the value is a String, it should contain the name of a constant to such a class. signature.sub_filter_map A mapping from a PDF name (a Symbol) to a signature handler class (see HexaPDF::DigitalSignature::Handler). If the value is a String, it should contain the name of a constant to such a class. The sub filter map is used for mapping specific signature algorithms to handler classes. The filter value of a signature dictionary is ignored since we only support the standard signature algorithms. sorted_tree.max_leaf_node_size The maximum number of nodes that should be in a leaf node of a node tree. style.layers_map A mapping from style layer names to layer objects. See HexaPDF::Layout::Style::Layers for more information. task.map A mapping from task names to callable task objects. See HexaPDF::Task for more information. GlobalConfiguration¶ The global configuration object, providing the following options: color_space.map A mapping from a PDF name (a Symbol) to a color space class (see HexaPDF::Content::ColorSpace). If the value is a String, it should contain the name of a constant that contains a color space class. Classes for the most often used color space families are implemented and readily available. See PDF2.0 s8.6 filter.flate.compression Specifies the compression level that should be used with the FlateDecode filter. The level can range from 0 (no compression), 1 (best speed) to 9 (best compression, default). filter.flate.memory Specifies the memory level that should be used with the FlateDecode filter. The level can range from 1 (minimum memory usage; slow, reduces compression) to 9 (maximum memory usage). The HexaPDF default value of 6 has been found in tests to be nearly equivalent to the Zlib default of 8 in terms of speed and compression level but uses less memory. filter.flate.on_error Callback hook when a potentially recoverable Zlib error occurs in the FlateDecode filter. The value needs to be an object that responds to #call(stream, error) where stream is the Zlib stream object and error is the thrown error. The method needs to return true if an error should be raised. The default implementation prevents errors from being raised. filter.predictor.strict Specifies whether the predictor algorithm used by LZWDecode and FlateDecode should operate in strict mode, i.e. adhering to the PDF specification without correcting for common deficiences of PDF writer libraries. object.type_map A mapping from a PDF name (a Symbol) to PDF object classes which is based on the /Type field. If the value is a String, it should contain the name of a constant that contains a PDF object class. This mapping is used to provide automatic wrapping of objects in the HexaPDF::Document#wrap method. object.subtype_map A mapping from a PDF name (a Symbol) to PDF object classes which is based on the /Subtype field. If the value is a String, it should contain the name of a constant that contains a PDF object class. This mapping is used to provide automatic wrapping of objects in the HexaPDF::Document#wrap method. VERSION¶ The version of HexaPDF. Public Class Methods data_dir()¶ Returns the data directory for HexaPDF. font_on_invalid_glyph(codepoint, invalid_glyph)¶ Provides the default implementation for the configuration option ‘font.on_invalid_glyph’. It uses the first font in the list provided by the ‘font.fallback’ configuration option that contains a glyph for the codepoint (taking the font variant into account). If no fallback font contains such a glyph, invalid_glyph is used. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/index.html","title":"HexaPDF::CLI","tags":"","text":" Class Methodsrun module HexaPDF::CLI Contains the code for the hexapdf binary. The binary uses the cmdparse library (cmdparse.gettalong.org) for the command suite support. Public Class Methods run(args = ARGV)¶ Runs the CLI application. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Application.html","title":"HexaPDF::CLI::Application","tags":"","text":" ConstantsVERBOSITY_INFOVERBOSITY_QUIETVERBOSITY_WARNINGAttributesforcestrictInstance Methodsverbosity_info?verbosity_warning? class HexaPDF::CLI::Application Parent
CmdParse::CommandParser The CmdParse::CommandParser class that is used for running the CLI application. Constants VERBOSITY_INFO¶ Verbosity level for informational output VERBOSITY_QUIET¶ Verbosity level for no output VERBOSITY_WARNING¶ Verbosity level for warning output Attributes force[R]¶ Specifies whether an operation should be forced. For example, if an existing file should be overwritten. strict[R]¶ Specifies whether strict parsing and validation should be used. Public Instance Methods verbosity_info?()¶ Returns true if the verbosity level info is enabled. verbosity_warning?()¶ Returns true if the verbosity level warning is enabled. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Batch.html","title":"HexaPDF::CLI::Batch","tags":"","text":" class HexaPDF::CLI::Batch Parent Command Execute the same command for multiple input files. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Command.html","title":"HexaPDF::CLI::Command","tags":"","text":" ConstantsIGNORED_FILTERSPAGE_MAPPAGE_NUMBER_SPECROTATE_MAPInstance Methodsapply_encryption_optionsapply_optimization_optionsdefine_encryption_optionsdefine_optimization_optionshuman_readable_file_sizemaybe_raise_on_existing_fileoptimize_fontoptimize_streamparse_pages_specificationpdf_optionsread_passwordremove_unused_pageswith_documentwrite_document class HexaPDF::CLI::Command Parent CmdParse::Command Base class for all hexapdf commands. It provides utility methods needed by the individual commands. Constants PAGE_MAP¶ Protected Instance Methods apply_encryption_options(doc)¶ Applies the encryption related options to the given HexaPDF::Document instance. See: define_encryption_options apply_optimization_options(doc)¶ Applies the optimization options to the given HexaPDF::Document instance. See: define_optimization_options define_encryption_options()¶ Defines the encryption options. See: out_options, apply_encryption_options define_optimization_options()¶ Defines the optimization options. See: out_options, apply_optimization_options human_readable_file_size(size)¶ Returns the human readable file size. maybe_raise_on_existing_file(filename)¶ Checks whether the given output file exists and raises an error if it does and HexaPDF::CLI#force is not set. optimize_font(obj)¶ Optimize the object if it is a font object. optimize_stream(obj)¶ Applies the chosen stream mode to the given object. parse_pages_specification(range, count)¶ Parses the pages specification string and returns an array of tuples containing a page number and a rotation value (either -90, 90, 180, :none or nil where an integer means adding a rotation by that number of degrees, :none means removing any set rotation value and nil means preserving the set rotation value). The parameter count needs to be the total number of pages in the document. For details on the pages specification see the hexapdf(1) manual page. pdf_options(password)¶ Returns a hash with HexaPDF::Document options based on the given password and the option switches. read_password(prompt = \"Password\")¶ Reads a password from the standard input and falls back to the console if needed. The optional argument prompt can be used to customize the prompt when reading from the console. remove_unused_pages(doc)¶ Removes unused pages and page tree nodes from the document. with_document(file, password: nil, out_file: nil, incremental: false) { |document| ... }¶ Creates a HexaPDF::Document instance for the PDF file and yields it. If out_file is given, the document is written to it after yielding. write_document(doc, out_file, incremental: false)¶ Writes the document to the given file or does nothing if out_file is nil. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Error.html","title":"HexaPDF::CLI::Error","tags":"","text":" class HexaPDF::CLI::Error Parent HexaPDF::Error Raised when problems occur on the CLI side of things. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Files.html","title":"HexaPDF::CLI::Files","tags":"","text":" class HexaPDF::CLI::Files Parent HexaPDF::CLI::Command Lists or extracts embedded files from a PDF file. See: HexaPDF::Type::EmbeddedFile "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Fonts.html","title":"HexaPDF::CLI::Fonts","tags":"","text":" class HexaPDF::CLI::Fonts Parent HexaPDF::CLI::Command Lists fonts from a PDF file. See: HexaPDF::Type::Font "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Form.html","title":"HexaPDF::CLI::Form","tags":"","text":" class HexaPDF::CLI::Form Parent HexaPDF::CLI::Command Processes a PDF that contains an interactive form (AcroForm). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Image2PDF.html","title":"HexaPDF::CLI::Image2PDF","tags":"","text":" class HexaPDF::CLI::Image2PDF Parent HexaPDF::CLI::Command Converts one or more images into a PDF file. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Images/index.html","title":"HexaPDF::CLI::Images","tags":"","text":" class HexaPDF::CLI::Images Parent HexaPDF::CLI::Command Lists or extracts images from a PDF file. See: HexaPDF::Type::Image "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Images/ImageLocationProcessor.html","title":"HexaPDF::CLI::Images::ImageLocationProcessor","tags":"","text":" AttributesresultClass MethodsnewInstance Methodspaint_xobject class HexaPDF::CLI::Images::ImageLocationProcessor Parent HexaPDF::Content::Processor Extracts the PPI (pixel per inch) information for each image of a content stream. Attributes result[R]¶ The mapping of XObject name to [x_ppi, y_ppi]. Public Class Methods new(names, user_unit)¶ Initialize the processor with the names of the images for which the PPI should be determined. Calls superclass method HexaPDF::Content::Processor::new Public Instance Methods paint_xobject(name)¶ Determine the PPI in x- and y-directions of the specified images. Calls superclass method HexaPDF::Content::Processor#paint_xobject "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Info.html","title":"HexaPDF::CLI::Info","tags":"","text":" class HexaPDF::CLI::Info Parent HexaPDF::CLI::Command Outputs various bits of information about PDF files: The entries in the trailers /Info dictionary Encryption information from the trailers /Encrypt dictionary The number of pages The used PDF version See: HexaPDF::Type::Info, HexaPDF::Encryption::SecurityHandler "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Inspect/index.html","title":"HexaPDF::CLI::Inspect","tags":"","text":" ConstantsCOMMAND_DESCRIPTIONSCOMMAND_LISTRELINE_COMPLETION_PROC class HexaPDF::CLI::Inspect Parent HexaPDF::CLI::Command Shows the internal structure of a PDF file. Constants COMMAND_LIST¶ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Inspect/ContentProcessor.html","title":"HexaPDF::CLI::Inspect::ContentProcessor","tags":"","text":" class HexaPDF::CLI::Inspect::ContentProcessor Parent HexaPDF::Content::Processor Outputs the content of a page in a nicer form. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Merge.html","title":"HexaPDF::CLI::Merge","tags":"","text":" class HexaPDF::CLI::Merge Parent HexaPDF::CLI::Command Merges pages from multiple PDF files. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Modify.html","title":"HexaPDF::CLI::Modify","tags":"","text":" class HexaPDF::CLI::Modify Parent HexaPDF::CLI::Command Modifies a PDF file: Decrypts or encrypts the resulting output PDF file. Generates or deletes object and cross-reference streams. Optimizes the output PDF by merging the revisions of a PDF file and removes unused entries. See: HexaPDF::Task::Optimize "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Optimize.html","title":"HexaPDF::CLI::Optimize","tags":"","text":" class HexaPDF::CLI::Optimize Parent HexaPDF::CLI::Command Optimizes the size of a PDF file. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Split.html","title":"HexaPDF::CLI::Split","tags":"","text":" class HexaPDF::CLI::Split Parent HexaPDF::CLI::Command Splits a PDF file, putting each page into a separate file. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/CLI/Watermark.html","title":"HexaPDF::CLI::Watermark","tags":"","text":" class HexaPDF::CLI::Watermark Parent HexaPDF::CLI::Command Uses one or more pages of one PDF and underlays/overlays it/them onto another. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Composer.html","title":"HexaPDF::Composer","tags":"","text":" AttributescanvasdocumentframepageClass MethodscreatenewInstance Methodsboxcreate_stampdraw_boxformatted_textimagemethod_missingnew_pagepage_stylestyletextwritexy class HexaPDF::Composer Parent Object The composer class can be used to create PDF documents from scratch. It uses HexaPDF::Layout::Frame and HexaPDF::Layout::Box objects underneath and binds them together to provide a convenient interface for working with them. Usage¶ ↑ First, a new Composer objects needs to be created, either using ::new or the utility method ::create. On creation a HexaPDF::Document object is created as well the first page and an accompanying HexaPDF::Layout::Frame object. The frame is used by the various methods for general document layout tasks, like positioning of text, images, and so on. By default, it covers the whole page except the margin area. How the frame gets created can be customized by defining a custom page style, see page_style. Use the skip_page_creation argument to avoid the initial page creation when creating a Composer instance. Once the Composer object is created, its methods can be used to draw text, images, … on the page. Behind the scenes HexaPDF::Layout::Box (and subclass) objects are created using the HexaPDF::Document::Layout methods and drawn on the page via the frame. If the frame of a page is full and a box doesn’t fit
anymore, a new page is automatically created. The box is either split into two boxes where one fits on the first page and the other on the new page, or it is drawn completely on the new page. A new page can also be created by calling the new_page method, optionally providing a page style. The x and y methods provide the point where the next box would be drawn if it fits the available space. This information can be used, for example, for custom drawing operations through canvas which provides direct access to the HexaPDF::Content::Canvas object of the current page. When using canvas and modifying the graphics state, care has to be taken to avoid problems with later box drawing operations since the graphics state cannot completely be reset (e.g. transformations of the canvas cannot always be undone). So it is best to save the graphics state before and restore it afterwards. Example¶ ↑ HexaPDF::Composer.create('out.pdf', page_size: :A6, margin: 36) do |pdf| pdf.style(:base, font_size: 20, text_align: :center) pdf.text(\"Hello World\", text_valign: :center) end See: HexaPDF::Document::Layout, HexaPDF::Layout::Frame, HexaPDF::Layout::Box Attributes canvas[R]¶ The canvas instance (a Content::Canvas object) of the current page. Can be used to perform arbitrary drawing operations. document[R]¶ The PDF document (HexaPDF::Document) that is created. frame[R]¶ The HexaPDF::Layout::Frame for automatic box placement. page[R]¶ The current page (a HexaPDF::Type::Page object). Public Class Methods create(output, **options, &block)¶ Creates a new PDF document and writes it to output. The argument options and block are passed to ::new. Example: HexaPDF::Composer.create('out.pdf', margin: 36) do |pdf| ... end new(skip_page_creation: false, page_size: :A4, page_orientation: :portrait, margin: 36) { |composer| ... }¶ Creates a new Composer object and optionally yields it to the given block. skip_page_creation If this argument is false (the default), the arguments page_size, page_orientation and margin are used to create a page style with the name :default. Additionally, an initial page/frame is created using this page style. Otherwise, i.e. when this argument is true, no initial page or default page style is created. This is useful when the first page needs a custom page style. The page_style method needs to be used to define a page style which is then used with the new_page method to create the initial page/frame. page_size Can be any valid predefined page size (see Type::Page::PAPER_SIZE) or an array [llx, lly, urx, ury] specifying a custom page size. Only used if skip_page_creation is false. page_orientation Specifies the orientation of the page, either :portrait or :landscape, if page_size is one of the predefined page sizes. Only used if skip_page_creation is false. margin The margin to use. See HexaPDF::Layout::Style::Quad#set for possible values. Only used if skip_page_creation is false. Example: # Uses the default values composer = HexaPDF::Composer.new HexaPDF::Composer.new(page_size: :Letter, margin: 72) do |composer| #... end HexaPDF::Composer.new(skip_page_creation: true) do |composer| composer.page_style(:default) do |canvas, style| style.frame = style.create_frame(canvas.context, 36) end composer.new_page # ... end Public Instance Methods box(name, width: 0, height: 0, style: nil, **box_options, &block)¶ Draws the named box at the current position (see x and y). It uses HexaPDF::Document::Layout#box behind the scenes to create the named box. See that method for details on the arguments. Examples: composer.box(:image, image: composer.document.images.add(machu_picchu)) See: HexaPDF::Document::Layout#box create_stamp(width, height) { |canvas| ... }¶ Creates a stamp (Form XObject) which can be used like an image multiple times on a single page or on multiple pages. The width and the height of the stamp need to be set (frame.width/height or page.box.width/height might be good choices). Examples: stamp = composer.create_stamp(50, 50) do |canvas| canvas.fill_color(\"hp-blue\").line_width(5). rectangle(10, 10, 30, 30).fill_stroke end composer.image(stamp, width: 20, height: 20) composer.image(stamp, width: 50) draw_box(box)¶ Draws the given HexaPDF::Layout::Box and returns the last drawn box. The box is drawn into the current frame if possible. If it doesn’t fit, the box is split. If it still doesn’t fit, a new region of the frame is determined and then the process starts again. If none or only some parts of the box fit into the current frame, one or more new pages are created for the rest of the box. formatted_text(data, width: 0, height: 0, style: nil, box_style: nil, **style_properties)¶ Draws text like text but allows parts of the text to be formatted differently and interspersing with inline boxes. It uses HexaPDF::Document::Layout#formatted_text_box behind the scenes to create the HexaPDF::Layout::TextBox that does the actual work. See that method for details on the arguments. Examples: composer.formatted_text([\"Some string\"]) composer.formatted_text([\"Some \", {text: \"string\", fill_color: \"hp-orange\"}]) composer.formatted_text([\"Some \", {link: \"https://example.com\", fill_color: 'hp-blue', text: \"Example\"}]) composer.formatted_text([\"Some \", {text: \"string\", style: {font_size: 20}}]) block = lambda {|list| list.text(\"First item\"); list.text(\"Second item\") } composer.formatted_text([\"Some \", {box: :list, width: 50, valign: :bottom, block: block}]) See: text, HexaPDF::Layout::TextBox, HexaPDF::Layout::TextFragment image(file, width: 0, height: 0, style: nil, **style_properties)¶ Draws the given image at the current position (see x and y). It uses HexaPDF::Document::Layout#image_box behind the scenes to create the HexaPDF::Layout::ImageBox that does the actual work. See that method for details on the arguments. Examples: composer.image(machu_picchu, border: {width: 3}) composer.image(machu_picchu, height: 30) See: HexaPDF::Layout::ImageBox method_missing(name, *args, **kwargs, &block)¶ Draws any custom box that can be created using HexaPDF::Document::Layout. This includes all named boxes defined in the ‘layout.boxes.map’ configuration option. Examples: composer.lorem_ipsum(sentences: 1, margin: [0, 0, 5]) composer.list(item_spacing: 2) do |list| composer.document.config['layout.boxes.map'].each do |name, klass| list.formatted_text([{text: name.to_s, fill_color: \"hp-blue-dark\"}, \"\\n#{klass}\"], font_size: 8) end end See: HexaPDF::Document::Layout#box Calls superclass method new_page(style = @next_page_style)¶ Creates a new page, making it the current one. The page style (see page_style) to use for the new page can be set via the style argument. If not provided, the currently set page style is used (:default is the initial value for @next_page_style). The applied page style determines the page style that should be used for the following new pages (see Layout::PageStyle#next_style). If this information is not provided by the applied page style, that page style is used again. Examples: # Define two page styles composer.page_style(:cover, page_size: :A4, next_style: :content) composer.page_style(:content, page_size: :A4) composer.new_page(:cover) # uses the :cover style, set next style to :content composer.new_page # uses the :content style, next style again :content page_style(name) → page_style ¶ page_style(name, **attributes, &template_block) → page_style ¶ Creates and/or returns the page style name. If no attributes are given, the page style name is returned. In case it does not exist, nil is returned. If one or more page style attributes are given, a new HexaPDF::Layout::PageStyle object with those attribute values is created, stored under name and returned. Additionally, if a block is provided, it is used to define the page template. Example: composer.page_style(:default) composer.page_style(:cover, page_size: :A4) do |canvas, style| page_box = canvas.context.box canvas.fill_color(\"green\") do canvas.rectangle(0, 0, page_box.width, page_box.height). fill end style.frame = style.create_frame(canvas.context, 36) end See: HexaPDF::Layout::PageStyle style(name) → style ¶ style(name, base: :base, **properties) → style ¶ Creates or updates the HexaPDF::Layout::Style object called name with the given property values and returns it. If neither base nor any style properties are specified, the style name is just returned. See HexaPDF::Document::Layout#style for details; this method is just a thin wrapper around that method. Example: composer.style(:base, font_size: 12, leading: 1.2) composer.style(:header, font: 'Helvetica', fill_color: \"008\") composer.style(:header1, base: :header, font_size: 30) See: HexaPDF::Layout::Style text(str, width: 0, height: 0, style: nil, box_style: nil, **style_properties)¶ Draws the given text at the current position into the current frame. The text will be positioned at the current position (see x and y) if possible. Otherwise the next best position is used. If the text doesn’t fit onto the current page or only partially, one or more new pages are created automatically. This method is of the two main methods for creating text boxes, the other being formatted_text. It uses HexaPDF::Document::Layout#text_box behind the scenes to create the HexaPDF::Layout::TextBox that does the actual work. See HexaPDF::Document::Layout#text_box for details on the arguments. Examples: composer.text(\"Test it now \" * 15) composer.text(\"Now \" * 7, width: 100) composer.text(\"Another test\", font_size: 15, fill_color: \"hp-blue\") composer.text(\"Different box style\", fill_color: 'white', box_style: { underlays: [->(c, b) { c.rectangle(0, 0, b.content_width, b.content_height).fill }] }) See: formatted_text, HexaPDF::Layout::TextBox, HexaPDF::Layout::TextFragment write(output, optimize: true, **options)¶ Writes the created PDF document to the given output. See HexaPDF::Document#write for details. x()¶ The x-position inside the current frame where the next box (provided it fits) will be
placed. Example: composer.text(\"Hello\", position: :float) composer.canvas.stroke_color(\"hp-blue\"). circle(composer.x, composer.y, 0.5).fill. circle(composer.x, composer.y, 5).stroke y()¶ The y-position inside the current frame.where the next box (provided it fits) will be placed. Example: composer.text(\"Hello\", position: :float) composer.canvas.stroke_color(\"hp-blue\"). circle(composer.x, composer.y, 0.5).fill. circle(composer.x, composer.y, 5).stroke "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Configuration.html","title":"HexaPDF::Configuration","tags":"","text":" AttributesoptionsClass Methodsnewwith_defaultsInstance Methods[][]=constantizekey?mergeoption? class HexaPDF::Configuration Parent Object Manages both the global and document specific configuration options for HexaPDF. Overview¶ ↑ HexaPDF allows detailed control over many aspects of PDF manipulation. If there is a need to use a certain default value somewhere, it is defined as a configuration option so that it can easily be changed. Some options are defined as global options because they are needed on the class level - see HexaPDF::GlobalConfiguration. Other options can be configured for individual documents as they allow to fine-tune some behavior - see HexaPDF::DefaultDocumentConfiguration. A configuration option name is dot-separted to provide a hierarchy of option names. For example, io.chunk_size. Attributes options[R]¶ Returns the hash with the configuration options. Public Class Methods new(options = {})¶ Creates a new Configuration object using the provided hash argument. with_defaults(values = {})¶ Creates a new document specific Configuration object by merging the values into the default configuration object. Public Instance Methods [](name)¶ Returns the value for the configuration option name. []=(name, value)¶ Uses value as the value for the configuration option name. constantize(name, *keys) → constant ¶ constantize(name, *keys) {|name| block} → obj ¶ Returns the constant the option name is referring to. If keys are provided and the value of the option name responds to #dig, the constant to which the keys refer is returned. If no constant can be found and no block is provided, an error is raised. If a block is provided it is called with the option name and its result will be returned. config.constantize('encryption.aes') #=> HexaPDF::Encryption::FastAES config.constantize('filter.map', :Fl) #=> HexaPDF::Filter::FlateDecode key?(name)¶ Returns true if the given option exists. Also aliased as: option? merge(config)¶ Returns a new Configuration object containing the options from the given configuration object (or hash) and this configuration object. If a key already has a value in this object, its value is overwritten by the one from config. However, hash values are merged instead of being overwritten. Array values are duplicated. option?(name)¶ Alias for: key? "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/index.html","title":"HexaPDF::Content","tags":"","text":" module HexaPDF::Content Overview¶ ↑ The Content module contains everything related to working with page content streams. The most important classes are: The Canvas class which provides an interface for drawing graphics and text. The Parser and Processor classes for processing an existing content stream. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Canvas.html","title":"HexaPDF::Content::Canvas","tags":"","text":" Attributescontentscontextcurrent_pointgraphics_objectgraphics_stateoperatorsstream_dataClass MethodsnewInstance Methodsarcbegin_textcharacter_spacingcharacter_spacing=circleclip_pathclose_fill_strokeclose_strokeclose_subpathcolor_from_specificationcomposercurve_todrawellipseend_marked_content_sequenceend_optional_contentend_pathend_textfillfill_colorfill_color=fill_strokefontfont=font_sizefont_size=formgraphic_objecthorizontal_scalinghorizontal_scaling=imageleadingleading=lineline_cap_styleline_cap_style=line_dash_patternline_dash_pattern=line_join_styleline_join_style=line_toline_widthline_width=line_with_rounded_cornermarked_content_pointmarked_content_sequencemiter_limitmiter_limit=move_text_cursormove_toopacityoptional_contentpolygonpolylineposrectanglerendering_intentrendering_intent=resourcesrestore_graphics_staterotatesave_graphics_statescaleshow_glyphsshow_glyphs_onlyskewstrokestroke_colorstroke_color=texttext_cursortext_matrixtext_rendering_modetext_rendering_mode=text_risetext_rise=transformtranslateword_spacingword_spacing=xobject class HexaPDF::Content::Canvas Parent Object Included Modules HexaPDF::Utils::MathHelpers HexaPDF::Utils::GraphicsHelpers This class provides the basic drawing operations supported by PDF. General Information¶ ↑ A canvas object is used for modifying content streams on a level higher than text. It would be possible to write a content stream by hand since PDF uses a simplified reversed polish notation for specifying operators: First come the operands, then comes the operator and no operator returns any result. However, it is easy to make mistakes this way and one has to know all operators and their operands. This is rather tedious and therefore this class exists. It allows one to modify a content stream by invoking methods that should be familiar to anyone that has ever used a graphics API. There are methods for moving the current point, drawing lines and curves, setting the color, line width and so on. The PDF operators themselves are implemented as classes, see Operator. The canvas class uses the Operator::BaseOperator#invoke and Operator::BaseOperator#serialize methods for applying changes and serialization, with one exception: color setters don’t invoke the corresponding operator implementation but work directly on the graphics state. General Graphics State Manipulation Methods¶ ↑ save_graphics_state restore_graphics_state fill_color stroke_color opacity rendering_intent Transformation Methods¶ ↑ transform translate scale rotate skew Path Construction Methods¶ ↑ move_to line_to curve_to rectangle line polyline polygon circle ellipse arc close_subpath end_path Path Painting Methods¶ ↑ fill stroke fill_stroke close_stroke close_fill_stroke clip_path Path Related Graphics State Methods¶ ↑ line_cap_style line_dash_pattern line_join_style line_width miter_limit Text Related Methods¶ ↑ begin_text end_text text show_glyphs show_glyphs_only text_cursor move_text_cursor font font_size character_spacing horizontal_scaling text_rise word_spacing leading text_matrix text_rendering_mode Other Methods¶ ↑ image xobject graphic_object draw marked_content_point marked_content_sequence end_marked_content_sequence PDF Graphics¶ ↑ Graphics Operators and Objects¶ ↑ There are about 60 PDF content stream operators. Some are used for changing the graphics state, some for drawing paths and others for showing text. This is all abstracted through the Canvas class. PDF knows about five different graphics objects: path objects, text objects, external objects, inline image objects and shading objects. If none of the five graphics objects is current, the content stream is at the so called page description level (in between graphics objects). Additionally the PDF operators are divided into several groups, like path painting or text showing operators, and such groups of operators are allowed to be used only in certain graphics objects or the page description level. Have a look at the PDF specification (PDF2.0 s8.2) for more details. HexaPDF tries to ensure the proper use of the operators and graphics objects and if it cannot do it, an error is raised. So if you don’t modify a content stream directly but via the Canvas methods, you generally don’t have to worry about the low-level inner workings. Graphics State¶ ↑ Some operators modify the so called graphics state (see GraphicsState). The graphics state is a collection of settings that is used during processing or creating a content stream. For example, the path painting operators don’t have operands to specify the line width or the stroke color but take this information from the graphics state. One important thing about the graphics state is that it is only possible to restore a prior state using the save and restore methods. It is not possible to reset the graphics state while creating the content stream! This means, for example, if you use a clipping path (see clip_path) you should first save the graphics state (save_graphics_state) and then restore it afterwards (restore_graphics_state). Otherwise all following operations will be clipped to the clipping path. Paths¶ ↑ A PDF path object consists of one or more subpaths. Each subpath can be a rectangle or can consist of lines and cubic bezier curves. No other types of subpaths are known to PDF. However, the Canvas class contains additional methods that use the basic path construction methods for drawing other paths like circles. When a subpath is started, the current graphics object is changed to :path. After all path constructions are finished, a path painting method needs to be invoked to change back to the page description level. Optionally, the path painting method may be preceeded by a clipping path method to change the current clipping path (see clip_path). There are four kinds of path painting methods: Those that stroke the path, those that fill the path, those that stroke and fill the path and one to neither stroke or fill the path (used, for example, to just set the clipping path). In addition filling may be done using either the nonzero winding number rule or the even-odd rule. See: PDF2.0 s8, s9 Attributes contents[R]¶ The serialized contents produced by the various canvas operations up to this point. Note that the returned string may not be a completely valid PDF content stream since a graphic object may be open or the graphics state may not be completely restored. See: stream_data context[R]¶ The context for which the canvas was created (a HexaPDF::Type::Page or
HexaPDF::Type::Form object). The context object is used for two things: To store the resources (resources) that are needed by the canvas (e.g. font references). To access the HexaPDF::Document object to which this canvas and the context object belongs. This is used internally but it is also useful in other situations since some parts of HexaPDF only yield a canvas object, and not also the underlying document object. current_point[R]¶ The current point [x, y] of the path. This attribute holds the current point which is only valid if the current graphics object (see graphic_object) is :path. When the current point changes, the array is modified in place instead of creating a new array! graphics_object[RW]¶ The current graphics object. The graphics object should not be changed directly! It is automatically updated by the invoked methods. This attribute can have the following values: :none No current graphics object, i.e. the page description level. :path The current graphics object is a path. :clipping_path The current graphics object is a clipping path. :text The current graphics object is a text object. See: PDF2.0 s8.2 graphics_state[R]¶ The GraphicsState object containing the current graphics state. The graphics state must not be changed directly, only by using the provided methods. If it is changed directly, the output will not be correct. operators[R]¶ The operator name/implementation map used when invoking or serializing an operator. Defaults to Operator::DEFAULT_OPERATORS, i.e. the standard implementation provided by HexaPDF. stream_data[R]¶ A StreamData object representing the serialized contents produced by the various canvas operations. In contrast to contents, it is ensured that an open graphics object is closed and all saved graphics states are restored when the contents of the stream data object is read. Note that this means that reading the stream data object may change the state of the canvas! Public Class Methods new(context)¶ Creates a new Canvas object for the given context object (either a HexaPDF::Type::Page or a HexaPDF::Type::Form). This method is usually not invoked directly but through HexaPDF::Type::Page#canvas or HexaPDF::Type::Form#canvas to make sure the contents of the canvas is properly assigned to the context object. Examples: doc = HexaPDF::Document.new canvas = doc.pages.add.canvas Public Instance Methods arc(cx, cy, a:, b: a, start_angle: 0, end_angle: 360, clockwise: false, inclination: 0) → canvas ¶ Appends an elliptical arc to the path and returns self. The endpoint of the arc becomes the new current point. cx x-coordinate of the center point of the arc cy y-coordinate of the center point of the arc a Length of semi-major axis b Length of semi-minor axis (default: a) start_angle Angle in degrees at which to start the arc (default: 0) end_angle Angle in degrees at which to end the arc (default: 360) clockwise If true the arc is drawn in clockwise direction, otherwise in counterclockwise direction (default: false). inclination Angle in degrees between the x-axis and the semi-major axis (default: 0) If a and b are equal, a circular arc is drawn. If the difference of the start angle and end angle is equal to 360, a full ellipse (or circle) is drawn. If there is no current path when the method is invoked, a new path is automatically begun. This arc does not start from the current point (current_point). If this functionality is needed, use draw together with GraphicObject::EndpointArc. Since PDF doesn’t have operators for drawing elliptical or circular arcs, they have to be approximated using Bezier curves (see curve_to). The accuracy of the approximation can be controlled using the configuration option ‘graphic_object.arc.max_curves’. Examples: canvas.arc(50, 150, a: 10) # Circle with radius 10 canvas.arc(100, 150, a: 10, b: 5) # Ellipse with radii 10 and 5 canvas.arc(150, 150, a: 10, b: 5, inclination: 45) # The above ellipse inclined 45 degrees canvas.stroke # Circular and elliptical arcs from 30 degrees to 160 degrees canvas.stroke_color(\"hp-blue\") canvas.arc(50, 100, a: 10, start_angle: 30, end_angle: 160) canvas.arc(100, 100, a: 10, b: 5, start_angle: 30, end_angle: 160) canvas.stroke # Arcs from 135 degrees to 30 degrees, the first in counterclockwise direction (i.e. the # big arc), the other in clockwise direction (i.e. the small arc) canvas.stroke_color(\"hp-orange\") canvas.arc(50, 50, a: 10, start_angle: 135, end_angle: 30) canvas.arc(100, 50, a: 10, start_angle: 135, end_angle: 30, clockwise: true) canvas.stroke See: arc, circle, ellipse, GraphicObject::Arc, GraphicObject::EndpointArc begin_text(force_new: false) → canvas ¶ Begins a new text object and returns self. If force is true and the current graphics object is already a text object, it is ended and a new text object is begun. It is not necessary to invoke this method manually in most cases since it is automatically called when needed by other methods, i.e. the text method. See: PDF2.0 s9.4.1, end_text, text character_spacing → current_character_spacing ¶ character_spacing(amount) → canvas ¶ character_spacing(amount) { block } → canvas ¶ The character spacing determines how much additional space is added after each character (or, more correctly, after each glyph). For horizontal writing positive values increase the distance between two characters, whereas for vertical writing negative values increase the distance. Note that the character spacing is applied to all characters that are rendered. This has the effect that there is also a space after the last character which might not be wanted in certain cases (e.g. when justifying text). Returns the current character spacing value (see GraphicsState#character_spacing) when no argument is given. Otherwise sets the character spacing using the amount argument and returns self. The setter version can also be called in the character_spacing= form. If the amount and a block are provided, the changed character spacing is only active during the block by saving and restoring the graphics state. Examples: canvas.character_spacing(0.25) canvas.character_spacing # => 0.25 canvas.character_spacing = 0.5 # => 0.5 canvas.character_spacing(0.10) do canvas.character_spacing # => 0.10 end canvas.character_spacing # => 0.5 # visual example canvas.font(\"Helvetica\", size: 10) canvas.character_spacing = 0 # initial value canvas.text(\"This is an example\", at: [10, 150]) # show that the text cursor is directly after the last glyph x, y = canvas.text_cursor canvas.stroke_color(\"hp-blue\").line(x, y, x, y + 10).stroke canvas.character_spacing = 5 canvas.text(\"This is an example\", at: [10, 100]) # visualize the spacing after the last glyph x, y = canvas.text_cursor canvas.stroke_color(\"hp-blue\").line(x, y, x, y + 10).stroke See: PDF2.0 s9.3.2, word_spacing, horizontal_scaling Also aliased as: character_spacing= character_spacing=(amount = nil, &bk)¶ Alias for: character_spacing circle(cx, cy, radius) → canvas ¶ Appends a circle with center (cx, cy) and the given radius (in degrees) to the path as a complete subpath (drawn in counterclockwise direction). The point (center_x + radius, center_y) becomes the new current point. Returns self. If there is no current path when the method is invoked, a new path is automatically begun. Examples: canvas.circle(100, 100, 30) cp = canvas.current_point canvas.stroke canvas.stroke_color(\"hp-orange\").line(*cp, 180, 100).stroke See: arc (for approximation accuracy), ellipse clip_path(rule = :nonzero) → canvas ¶ Modifies the clipping path by intersecting it with the current path. Returns self. The argument rule may either be :nonzero to use the nonzero winding number rule or :even_odd to use the even-odd rule for determining which regions lie inside the clipping path. Details on how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. The initial clipping path includes the entire canvas. Once the clipping path is reduced to a subset of the canvas, there is no way to enlarge it. To restrict the effect of this method, use save_graphics_state before modifying the clipping path. Note that the current path cannot be modified after invoking this method! This means that one of the path painting methods or end_path must be called immediately afterwards. Examples: canvas.ellipse(100, 100, a: 50, b: 30). # Restrict operations to this intersecting path ellipse(100, 100, a: 30, b: 50). # where the inside is not part of it clip_path(:even_odd).end_path canvas.rectangle(0, 0, 200, 200).fill # Fills everything inside the clipping path See: PDF2.0 s8.5.4, end_path close_fill_stroke(rule = :nonzero) → canvas ¶ Closes the last subpath and then fills and strokes the path using the given rule. Returns self. The argument rule may either be :nonzero to use the nonzero winding number rule or :even_odd to use the even-odd rule for determining which regions to fill in. Details on how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. Examples: canvas.stroke_color(\"hp-orange\").line_width(3) canvas.fill_color(\"hp-blue\"). polyline(20, 10, 90, 60, 10, 60, 80, 10, 50, 90). close_fill_stroke canvas.fill_color(\"hp-teal\"). polyline(120, 110, 190, 160, 110, 160, 180, 110, 150, 190). close_fill_stroke(:even_odd) See: PDF2.0 s8.5.3, fill, fill_stroke close_stroke → canvas ¶ Closes the last subpath and then strokes the path. Returns self. Examples: canvas.polyline(10, 10, 120, 40, 50, 160) # No line from the top to the left canvas.close_stroke See: PDF2.0 s8.5.3.1, s8.5.3.2, stroke, close_fill_stroke close_subpath → canvas ¶ Closes the current subpath by appending a straight line from the current point to the start point of the subpath which also becomes the new current point. Returns self. If there is no current path when the method is invoked, an error is raised since a valid current point (current_point) is needed. Examples: canvas.move_to(10, 10). line_to(110, 10). line_to(60, 60). close_subpath. # Draws
the line from (60, 60) to (10, 10) stroke See: PDF2.0 s8.5.2.1 color_from_specification(spec)¶ Creates and returns a color object from the given color specification. See stroke_color for details on the possible color specifications. This utility method is meant for use by higher-level methods that need to convert a color specification into a color object. composer(margin: 0) {|composer| block } → composer ¶ Creates a CanvasComposer object for composing content using high-level document layout features, yields it, if a block is given, and returns it. The margin can be any value allowed by HexaPDF::Layout::Style::Quad#set and defines the margin that should not be used during composition. For the remaining area of the canvas a frame object will be created. Examples: canvas.composer(margin: [10, 30]) do |composer| composer.image(machu_picchu, height: 30, position: :float) composer.lorem_ipsum(position: :flow) end See: CanvasComposer, HexaPDF::Document::Layout curve_to(x, y, p1:, p2:) → canvas ¶ curve_to(x, y, p1:) → canvas ¶ curve_to(x, y, p2:) → canvas ¶ Appends a cubic Bezier curve to the current subpath starting from the current point and returns self. The end point becomes the new current point. If there is no current path when the method is invoked, an error is raised since a valid current point (current_point) is needed. A Bezier curve consists of the start point, the end point and the two control points p1 and p2. The start point is always the current point and the end point is specified as the x and y arguments. Additionally, either the first control point p1 or the second control p2 or both control points have to be specified (as arrays containing two numbers). If the first control point is not specified, the current point is used as first control point. If the second control point is not specified, the end point is used as the second control point. Examples: canvas.move_to(10, 50). curve_to(80, 80, p1: [10, 70], p2: [50, 100]). curve_to(90, -20, p1: [50, 50]). curve_to(-30, 60, p2: [-20, -40]) canvas.current_point # => [-30, 60] canvas.stroke See: PDF2.0 s8.5.2.2, move_to, line_to, rectangle draw(obj, **options) → canvas ¶ draw(name, **options) → canvas ¶ Draws the given graphic object on the canvas. This is the same as “graphic_object(obj_or_name, **options).draw(self)”. See graphic_object for details on the arguments and invocation. ellipse(cx, cy, a:, b:, inclination: 0) → canvas ¶ Appends an ellipse with center (cx, cy), semi-major axis a, semi-minor axis b and an inclination from the x-axis of inclination degrees to the path as a complete subpath. The outer-most point on the positive semi-major axis becomes the new current point. Returns self. If there is no current path when the method is invoked, a new path is automatically begun. Examples: # Ellipse aligned to x-axis and y-axis canvas.ellipse(50, 50, a: 20, b: 10).stroke # Inclined ellipse with line from the end point canvas.stroke_color(\"hp-blue\"). ellipse(150, 150, a: 20, b: 10, inclination: 30) cp = canvas.current_point x, y = 2 * canvas.current_point[0] - 150, 2 * canvas.current_point[1] - 150 canvas.stroke. stroke_color(\"hp-orange\").line(*cp, x, y).stroke See: arc (for approximation accuracy), circle end_marked_content_sequence → canvas ¶ Ends a marked-content sequence and returns self. See marked_content_sequence for details. See: PDF2.0 s14.6, marked_content_sequence, marked_content_point Also aliased as: end_optional_content end_optional_content()¶ Ends an optional content sequence and returns self. See optional_content for details. See: PDF2.0 s8.11 Alias for: end_marked_content_sequence end_path → canvas ¶ Ends the path without stroking or filling it and returns self. This method is usually used in conjunction with the clipping path methods to define the clipping path. Examples: canvas.line(10, 10, 100, 100) canvas.end_path # Nothing to see here! See: PDF2.0 s8.5.3.1, clip_path end_text → canvas ¶ Ends the current text object and returns self. It is not necessary to invoke this method manually in most cases since it is automatically called when needed by other methods, i.e. when creating a new path. See: PDF2.0 s9.4.1, begin_text fill(rule = :nonzero) → canvas ¶ Fills the path using the given rule and returns self. The argument rule may either be :nonzero to use the nonzero winding number rule or :even_odd to use the even-odd rule for determining which regions to fill in. Details on how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. Any open subpaths are implicitly closed before being filled. Examples: canvas.fill_color(\"hp-blue\"). polyline(20, 10, 90, 60, 10, 60, 80, 10, 50, 90). fill canvas.fill_color(\"hp-orange\"). polyline(120, 110, 190, 160, 110, 160, 180, 110, 150, 190). fill(:even_odd) See: PDF2.0 s8.5.3.1, s8.5.3.3, fill_stroke, close_fill_stroke fill_color(*color, &block)¶ The fill color defines the color used for non-stroking operations, i.e. for filling paths. Works exactly the same as stroke_color but for the fill color. See stroke_color for details on invocation and use. Also aliased as: fill_color= fill_color=(*color, &block)¶ Alias for: fill_color fill_stroke(rule = :nonzero) → canvas ¶ Fills and then strokes the path using the given rule. Returns self. The argument rule may either be :nonzero to use the nonzero winding number rule or :even_odd to use the even-odd rule for determining which regions to fill in. Details on how these rules work are found in the PDF 2.0 spec section 8.5.3.3 or via Internet search. Note that any open subpaths are not closed concerning the stroking operation. Examples: canvas.stroke_color(\"hp-orange\").line_width(3) canvas.fill_color(\"hp-blue\"). polyline(20, 10, 90, 60, 10, 60, 80, 10, 50, 90). fill_stroke # Note the missing stroke from the top corner canvas.fill_color(\"hp-teal\"). polyline(120, 110, 190, 160, 110, 160, 180, 110, 150, 190). fill_stroke(:even_odd) # Note the missing stroke from the top corner See: PDF2.0 s8.5.3.1, s8.5.3.3, fill, close_fill_stroke font → current_font ¶ font(name, size: nil, **options) → canvas ¶ Specifies the font and optional the font size that should be used when showing text. A valid font size needs to be provided on the first invocation, otherwise an error is raised (this is due to how setting a font works with PDFs). If size is specified, the font_size method is invoked with it as argument. All other options are passed on to the font loaders (see HexaPDF::FontLoader) that are used for loading the specified font. One standard keyword argument for fonts is :variant which specifies the font variant to use, with standard values of :none, :italic, :bold and :bold_italic. Returns the current font object when no argument is given, otherwise returns self. Note that this is the font object itself, not the PDF dictionary representing the font that is stored in the resources. Examples: canvas.font(\"Times\", variant: :bold, size: 10) canvas.font # => font object canvas.font = \"Times\" # visual example canvas.text(\"Times at size 10\", at: [10, 150]) canvas.font(\"Times\", variant: :bold_italic, size: 15) canvas.text(\"Times bold+italic at size 15\", at: [10, 100]) See: PDF2.0 s9.2.2, font_size, text Also aliased as: font= font=(name = nil, size: nil, **options)¶ Alias for: font font_size → font_size ¶ font_size(size) → canvas ¶ Specifies the font size. Note that an error is raised if no font has been set before via font (this is due to how setting font and font size works in PDF). Returns the current font size when no argument is given, otherwise returns self. The setter version can also be called in the font_size= form. Examples: canvas.font(\"Helvetica\", size: 10) # Necessary only the first time canvas.font_size(12) canvas.font_size # => 12 canvas.font_size = 10 # visual example 6.step(to: 20, by: 2).each_with_index do |size, index| canvas.font_size(size) canvas.text(\"Text in size #{size}\", at: [15, 180 - index * 20]) end See: PDF2.0 s9.2.2, font, text Also aliased as: font_size= font_size=(size = nil)¶ Alias for: font_size form {|form_canvas| block } → form ¶ form(width, height) {|form_canvas| block } → form ¶ Creates a reusable Form XObject, yields its canvas and then returns it. If no arguments are provided, the bounding box of the form is the same as that of the context object of this canvas. Otherwise you need to provide the width and height for the form. Once the form has been created, it can be used like an image and drawn mulitple times with the xobject method. Note that the created form object is independent of this canvas and its context object. This means it can also be used with other canvases. Examples: form = canvas.form do |form_canvas| form_canvas.fill_color(\"hp-blue\").line_width(5). rectangle(10, 10, 80, 80).fill_stroke end canvas.xobject(form, at: [0, 0]) canvas.xobject(form, width: 50, at: [100, 100]) See: HexaPDF::Type::Form graphic_object(obj, **options) → obj ¶ graphic_object(name, **options) → graphic_object ¶ Returns the named graphic object, configured with the given options. If an object responding to :configure is given, it is used. Otherwise the graphic object is looked up via the given name in the configuration option ‘graphic_object.map’. Either way, the graphic object is then configured with the given options if at least one is given. Examples: obj = canvas.graphic_object(:solid_arc, cx: 100, cy: 100, inner_a: 20, inner_b: 10, outer_a: 50, outer_b: 40, end_angle: 135) canvas.draw(obj).stroke See: draw, GraphicObject horizontal_scaling → current_horizontal_scaling ¶ horizontal_scaling(percent) → canvas ¶ horizontal_scaling(percent) { block } → canvas ¶ The horizontal scaling adjusts the width of text character glyphs by stretching or compressing them in the horizontal direction. The value is specified as percent of the normal width, so 100 means no scaling. Returns the current horizontal scaling value (see GraphicsState#horizontal_scaling) when no argument is given. Otherwise
sets the horizontal scaling using the percent argument and returns self. The setter version can also be called in the horizontal_scaling= form. If the percent and a block are provided, the changed horizontal scaling is only active during the block by saving and restoring the graphics state. Examples: canvas.horizontal_scaling(50) # each glyph has only 50% width canvas.horizontal_scaling # => 50 canvas.horizontal_scaling = 125 # => 125 canvas.horizontal_scaling(75) do canvas.horizontal_scaling # => 75 end canvas.horizontal_scaling # => 125 # visual example canvas.font(\"Helvetica\", size: 10) canvas.horizontal_scaling = 100 # initial value canvas.text(\"This is an example text.\", at: [10, 150]) canvas.horizontal_scaling = 50 canvas.text(\"This is an example text.\", at: [10, 100]) See: PDF2.0 s9.3.4, character_spacing, word_spacing Also aliased as: horizontal_scaling= horizontal_scaling=(amount = nil, &bk)¶ Alias for: horizontal_scaling image(obj, at:, width: nil, height: nil)¶ Alias for: xobject leading → current_leading ¶ leading(amount) → canvas ¶ leading(amount) { block } → canvas ¶ The leading specifies the vertical distance between the baselines of adjacent text lines. It defaults to 0 if not changed. It is only used by HexaPDF when invoking move_text_cursor with offset set to nil. There are other PDF content stream operators that would be effected but those are not used by the canvas. Returns the current leading value (see GraphicsState#leading) when no argument is given. Otherwise sets the leading using the amount argument and returns self. The setter version can also be called in the leading= form. If the amount and a block are provided, the changed leading is only active during the block by saving and restoring the graphics state. Examples: canvas.leading(14.5) canvas.leading # => 14.5 canvas.leading = 10 # => 10 canvas.leading(25) do canvas.leading # => 25 end canvas.leading # => 10 # visual example canvas.font(\"Helvetica\", size: 10) canvas.leading = 15 canvas.text(\"This is an example text.\\nwith a second\\nand thrid line\", at: [10, 150]) See: PDF2.0 s9.3.5, move_text_cursor Also aliased as: leading= leading=(amount = nil, &bk)¶ Alias for: leading line(x0, y0, x1, y1) → canvas ¶ Moves the current point to (x0, y0) and appends a line to (x1, y1) to the current path. Returns self. If there is no current path when the method is invoked, a new path is automatically begun. Examples: canvas.line(10, 10, 100, 100).stroke See: move_to, line_to line_cap_style → current_line_cap_style ¶ line_cap_style(style) → canvas ¶ line_cap_style(style) { block } → canvas ¶ The line cap style specifies how the ends of stroked, open paths should look like. The style parameter can be one of (also see LineCapStyle): :butt or 0 Stroke is squared off at the endpoint of a path. :round or 1 A semicircular arc is drawn at the endpoint of a path. :projecting_square or 2 The stroke continues half the line width beyond the endpoint of a path. Note that the return value is always a normalized line cap style (i.e. a NamedValue). Returns the current line cap style (see GraphicsState#line_cap_style) when no argument is given. Otherwise sets the line cap style to the given style and returns self. The setter version can also be called in the line_cap_style= form. If the style and a block are provided, the changed line cap style is only active during the block by saving and restoring the graphics state. Examples: canvas.line_cap_style(:butt) canvas.line_cap_style # => #<NamedValue @name=:butt, @value=0> canvas.line_cap_style = :round # => #<NamedValue @name=:round, @value=1> canvas.line_cap_style(:butt) do canvas.line_cap_style # => #<NamedValue @name=:butt, @value=0> end canvas.line_cap_style # => #<NamedValue @name=:round, @value=1> # visual example [:butt, :round, :projecting_square].each_with_index do |style, index| canvas.line_cap_style(style). line_width(10).stroke_color(\"black\"). line(50 + index * 50, 30, 50 + index * 50, 170).stroke canvas.stroke_color(\"white\").line_width(1).line_cap_style(:butt). line(50 + index * 50, 30, 50 + index * 50, 170).stroke end See: PDF2.0 s8.4.3.3, Content::LineCapStyle Also aliased as: line_cap_style= line_cap_style=(style = nil, &block)¶ Alias for: line_cap_style line_dash_pattern → current_line_dash_pattern ¶ line_dash_pattern(line_dash_pattern) → canvas ¶ line_dash_pattern(length, phase = 0) → canvas ¶ line_dash_pattern(array, phase = 0) → canvas ¶ line_dash_pattern(value, phase = 0) { block } → canvas ¶ The line dash pattern defines the appearance of a stroked path (line or curve), ie. if it is solid or if it contains dashes and gaps. There are multiple ways to set the line dash pattern: By providing a LineDashPattern object By providing a single Integer/Float that is used for both dashes and gaps By providing an array of Integers/Floats that specify the alternating dashes and gaps The phase (i.e. the distance into the dashes/gaps at which to start) can additionally be set in the last two cases. A solid line can be achieved by using 0 for the length or by using an empty array. Returns the current line dash pattern (a LineDashPattern object, see GraphicsState#line_dash_pattern) when no argument is given. Otherwise sets the line dash pattern using the given arguments and returns self. The setter version can also be called in the line_dash_pattern= form (but only without the second argument!). If arguments and a block are provided, the changed line dash pattern is only active during the block by saving and restoring the graphics state. Examples: canvas.line_dash_pattern(10) canvas.line_dash_pattern # => LineDashPattern.new([10], 0) canvas.line_dash_pattern(10, 2) canvas.line_dash_pattern([5, 3, 1], 2) canvas.line_dash_pattern = HexaPDF::Content::LineDashPattern.new([5, 3, 1], 1) canvas.line_dash_pattern(10) do canvas.line_dash_pattern # => LineDashPattern.new([10], 0) end canvas.line_dash_pattern # => LineDashPattern.new([5, 3, 1], 1) # visual example [10, [10, 2], [[5, 3, 1], 2]].each_with_index do |pattern, index| canvas.line_dash_pattern(*pattern) canvas.line_width(10).line(50 + index * 50, 30, 50 + index * 50, 170). stroke end See: PDF2.0 s8.4.3.5, LineDashPattern Also aliased as: line_dash_pattern= line_dash_pattern=(value = nil, phase = 0, &block)¶ Alias for: line_dash_pattern line_join_style → current_line_join_style ¶ line_join_style(style) → canvas ¶ line_join_style(style) { block } → canvas ¶ The line join style specifies the shape that is used at the corners of stroked paths. The style parameter can be one of (also see LineJoinStyle): :miter or 0 The outer lines of the two segments continue until the meet at an angle. :round or 1 An arc of a circle is drawn around the point where the segments meet. :bevel or 2 The two segments are finished with butt caps and the space between the ends is filled with a triangle. Note that the return value is always a normalized line join style (i.e. a NamedValue). Returns the current line join style (see GraphicsState#line_join_style) when no argument is given. Otherwise sets the line join style to the given style and returns self. The setter version can also be called in the line_join_style= form. If the style and a block are provided, the changed line join style is only active during the block by saving and restoring the graphics state. Examples: canvas.line_join_style(:miter) canvas.line_join_style # => #<NamedValue @name=:miter, @value=0> canvas.line_join_style = :round # => #<NamedValue @name=:round, @value=1> canvas.line_join_style(:bevel) do canvas.line_join_style # => #<NamedValue @name=:bevel, @value=2> end canvas.line_join_style # => #<NamedValue @name=:round, @value=1> # visual example [:miter, :round, :bevel].each_with_index do |style, index| canvas.line_join_style(style). line_width(10).stroke_color(\"black\"). polyline(20 + index * 60, 30, 40 + index * 60, 170, 60 + index * 60, 30).stroke canvas.stroke_color(\"white\").line_width(1).line_join_style(:bevel). polyline(20 + index * 60, 30, 40 + index * 60, 170, 60 + index * 60, 30).stroke end See: PDF2.0 s8.4.3.4, Content::LineJoinStyle Also aliased as: line_join_style= line_join_style=(style = nil, &block)¶ Alias for: line_join_style line_to(x, y) → canvas ¶ Appends a straight line segment from the current point to the given point (which becomes the new current point) to the current subpath and returns self. If there is no current path when the method is invoked, an error is raised since a valid current point (current_point) is needed. Examples: canvas.move_to(10, 50) canvas.line_to(80, 80) canvas.current_point # => [80, 80] canvas.stroke See: PDF2.0 s8.5.2.1, move_to, curve_to, rectangle line_width → current_line_width ¶ line_width(width) → canvas ¶ line_width(width) { block } → canvas ¶ The line width determines the thickness of a stroked path. Note that half the line width lies on either side of the path. For example, if a path from (0, 0) to (0, 100) is drawn with a line width of 20, the stroked path is actually 20 units wide, from -10 to 10. And if a rectangle is drawn stroked, but not filled, from (20, 20) with a width and height of 20 and a line width of 10, the “inside” of the rectangle would only be from (25, 25) to (35, 35). Also see the examples below. Returns the current line width (see GraphicsState#line_width) when no argument is given. Otherwise sets the line width to the given width and returns self. The setter version can also be called in the line_width= form. If the width and a block are provided, the changed line width is only active during the block by saving and restoring the graphics state. Examples: canvas.line_width(10). line(10, 100, 10, 190).stroke canvas.line_width # => 10 canvas.line_width = 5 # => 5 canvas.line(60, 100, 60, 190).stroke canvas.line_width(10) do canvas.line_width # => 10 canvas.line(110, 100, 110, 190).stroke end canvas.line_width # => 5 canvas.line(160, 100, 160, 190).stroke canvas.line_width(10).rectangle(20, 20, 20, 20).stroke # The
rectangle canvas.fill_color(\"hp-blue\").rectangle(25, 25, 10, 10).fill # The inside See: PDF2.0 s8.4.3.2 Also aliased as: line_width= line_width=(width = nil, &block)¶ Alias for: line_width line_with_rounded_corner(x0 = current_point[0], y0 = current_point[1], x1, y1, x2, y2, in_radius:, out_radius: in_radius) ¶ Appends a line with a rounded corner at (x1, y1) from the current point and returns self. The end point of the rounded corner (i.e. out_radius units from (x1, y1) in the direction of (x2, y2)) becomes the current point. In degraded cases the corner point (x1, y1) becomes the current point. The corner is specified by (x0, y0) which defaults to the current_point of the path, (x1, y1) and (x2, y2) - all of which need to be different points. The in_radius specifies the corner radius into the corner and the out_radius the one out of the corner. Degraded cases, like with (x0, y0) == (x1, y1), are handled gracefully. There has to be a current path when this method is invoked, otherwise an error is raised. For example, the current point could be estabilshed beforehand using move_to. Examples: canvas.move_to(10, 180) # Both radii are the same canvas.line_with_rounded_corner(180, 180, 180, 100, in_radius: 20) canvas.move_to(10, 150) # Different radii canvas.line_with_rounded_corner(180, 150, 180, 100, in_radius: 50, out_radius: 20) canvas.move_to(10, 120) # One radius is zero, making it just a line canvas.line_with_rounded_corner(180, 120, 150, 100, in_radius: 0, out_radius: 10) canvas.stroke # Special effects when (x0, y0) is not the current point, like when the current # point would be equal to the corner point. Rounded rectangle use this method # internally, as high-lighted by the blue segment. canvas.rectangle(10, 10, 60, 60, radius: 60).stroke canvas.stroke_color(\"hp-blue\"). move_to(70, 10). # Start point at the end of the lower-left rounded corner line_with_rounded_corner(10, 10, 70, 10, 70, 70, in_radius: 60).stroke canvas.stroke_color(\"black\"). rectangle(110, 10, 60, 60, radius: 70).stroke marked_content_point(tag, property_list: nil) → canvas ¶ Inserts a marked-content point, optionally associated with a property list. Returns self. A marked-content point is used to identify a position in the content stream for later use by other applications. The symbol tag is used to uniquely identify the role of the marked-content point and should be registered with ISO to avoid conflicts. The optional property_list argument can either be a valid PDF dictionary or a symbol referencing an already used property list in the resource dictionary’s /Properties dictionary. Examples: canvas.marked_content_point(:Divider) canvas.marked_content_point(:Divider, property_list: {Key: 'value'}) See: PDF2.0 s14.6, marked_content_sequence, end_marked_content_sequence marked_content_sequence(tag, property_list: nil) → canvas ¶ marked_content_sequence(tag, property_list: nil) { block } → canvas ¶ Inserts a marked-content sequence, optionally associated with a property list. Returns self. A marked-content sequence is used to identify a sequence of complete graphics objects in the content stream for later use by other applications, e.g. for tagged PDF. The symbol tag is used to uniquely identify the role of the marked-content sequence and should be registered with ISO to avoid conflicts. The optional property_list argument can either be a valid PDF dictionary or a symbol referencing an already used property list in the resource dictionary’s /Properties dictionary. If invoked without a block, a corresponding call to end_marked_content_sequence must be done. Otherwise the marked-content sequence automatically ends when the block is finished. Although the PDF specification would allow using marked-content sequences inside text objects, this is prohibited in HexaPDF. Examples: canvas.marked_content_sequence(:Divider) # Other instructions canvas.end_marked_content_sequence canvas.marked_content_sequence(:Divider, property_list: {Key: 'value'}) do # Other instructions end See: PDF2.0 s14.6, end_marked_content_sequence, marked_content_point miter_limit → current_miter_limit ¶ miter_limit(limit) → canvas ¶ miter_limit(limit) { block } → canvas ¶ The miter limit specifies the maximum ratio of the miter length to the line width for mitered line joins (see line_join_style). When the limit is exceeded, a bevel join is used instead of a miter join. Returns the current miter limit (see GraphicsState#miter_limit) when no argument is given. Otherwise sets the miter limit to the given limit and returns self. The setter version can also be called in the miter_limit= form. If the limit and a block are provided, the changed miter limit is only active during the block by saving and restoring the graphics state. Examples: canvas.miter_limit(10) canvas.miter_limit # => 10 canvas.miter_limit = 5 # => 5 canvas.miter_limit(10) do canvas.miter_limit # => 10 end canvas.miter_limit # => 5 # visual example [10, 5].each_with_index do |limit, index| canvas.miter_limit(limit) canvas.line_width(10).polyline(20 + index * 80, 30, 40 + index * 80, 170, 60 + index * 80, 30).stroke end See: PDF2.0 s8.4.3.5 Also aliased as: miter_limit= miter_limit=(limit = nil, &block)¶ Alias for: miter_limit move_text_cursor(offset: nil, absolute: true) → canvas ¶ Moves the text cursor by modifying the text and text line matrices. Returns self. If offset is not specified, the text cursor is moved to the start of the next text line using leading as vertical offset. Otherwise, the arguments offset, which has to be an array of the form [x, y], and absolute work together: If absolute is true, then the text and text line matrices are set to [1, 0, 0, 1, x, y], placing the origin of text space, and therefore the text cursor, at [x, y]. Note that absolute has to be understood in terms of the text matrix since for the actual rendering the current transformation matrix is multiplied with the text matrix. If absolute is false, then the text cursor is moved to the start of the next line, offset from the start of the current line (the origin of the text line matrix) by offset. If the current graphics object is not a text object, begin_text is automatically called because the text matrix is only available within a text object. Examples: canvas.font(\"Helvetica\", size: 10) canvas.move_text_cursor(offset: [30, 150]) canvas.text(\"Absolutely positioned at (30, 150)\") canvas.move_text_cursor(offset: [20, -15], absolute: false) canvas.text(\"Relative offset (20, -15)\") canvas.leading(30) canvas.move_text_cursor canvas.text(\"Text on next line with leading=30\") See: PDF2.0 s9.4.2, leading, text_cursor, text, show_glyphs move_to(x, y) → canvas ¶ Begins a new subpath (and possibly a new path) by moving the current point to the given point and returns self. Examples: canvas.move_to(10, 50) canvas.current_point # => [10, 50] See: PDF2.0 s8.5.2.1, line_to, curve_to, rectangle opacity → current_values ¶ opacity(fill_alpha:) → canvas ¶ opacity(stroke_alpha:) → canvas ¶ opacity(fill_alpha:, stroke_alpha:) → canvas ¶ opacity(fill_alpha:, stroke_alpha:) { block } → canvas ¶ The fill and stroke alpha values determine how opaque drawn elements will be. Note that the fill alpha value applies not just to fill values but to all non-stroking operations (e.g. images, …). Returns the current fill alpha (see GraphicsState#fill_alpha) and stroke alpha (see GraphicsState#stroke_alpha) values using a hash with the keys :fill_alpha and :stroke_alpha when no argument is given. Otherwise sets the fill and stroke alpha values and returns self. The setter version can also be called in the opacity= form. If the values are set and a block is provided, the changed alpha values are only active during the block by saving and restoring the graphics state. Examples: canvas.opacity(fill_alpha: 0.5) canvas.opacity # => {fill_alpha: 0.5, stroke_alpha: 1.0} canvas.opacity(fill_alpha: 0.4, stroke_alpha: 0.9) canvas.opacity # => {fill_alpha: 0.4, stroke_alpha: 0.9} canvas.opacity(stroke_alpha: 0.7) do canvas.opacity # => {fill_alpha: 0.4, stroke_alpha: 0.7} end canvas.opacity # => {fill_alpha: 0.4, stroke_alpha: 0.9} # visual example canvas.opacity(fill_alpha: 1, stroke_alpha: 1) canvas.fill_color(\"hp-gray-light\"). # background rectangle on right side rectangle(100, 0, 100, 200).fill canvas.opacity(fill_alpha: 0.5, stroke_alpha: 0.8). # foreground rectangle, with a thick line_width(20). # stroke that also overlays the fill_color(\"hp-blue\").stroke_color(\"hp-blue\"). # inside of the rectangle, creating rectangle(20, 20, 160, 160).fill_stroke # multiple shadings due to opacity See: PDF2.0 s11.6.4.4 optional_content(ocg, &block) → canvas ¶ optional_content(name, use_existing_ocg: true, &block) → canvas ¶ Inserts an optional content sequence. Returns self. An optional content sequence marks part of the content stream as belonging to the given optional content group. See HexaPDF::Type::OptionalContentProperties for details. If the first argument is already an optional content group dictionary, it is used. Otherwise, the first argument needs to be the name of the optional content group. In that case, the use_existing_ocg specifies whether the first found optional content group with that name should be used or whether a new OCG should always be created. If invoked without a block, a corresponding call to end_optional_content must be done. Otherwise the optional content sequence automatically ends when the block is finished. Examples: canvas.optional_content('Hints') # Other instructions canvas.end_optional_content canvas.optional_content('Hints', use_existing_ocg: false) do # Other instructions end See: PDF2.0 s8.11, end_optional_content, HexaPDF::Type::OptionalContentProperties polygon(x0, y0, x1, y1, x2, y2, ..., radius: 0) → canvas ¶ Appends a polygon consisting of the given points to the path as a complete subpath and returns self. The point (x0, y0 + radius) becomes the new current point. If radius is greater than 0, the corners are
rounded with the given radius. If there is no current path when the method is invoked, a new path is automatically begun. Examples: canvas.polygon(10, 10, 90, 10, 70, 90, 20, 100).stroke canvas.stroke_color(\"hp-blue\"). polygon(130, 130, 150, 100, 170, 150, 130, 190, radius: 10).stroke See: polyline polyline(x0, y0, x1, y1, x2, y2, ...) → canvas ¶ Moves the current point to (x0, y0) and appends line segments between all given consecutive points, i.e. between (x0, y0) and (x1, y1), between (x1, y1) and (x2, y2) and so on. The last point becomes the new current point. Returns self. If there is no current path when the method is invoked, a new path is automatically begun. Examples: canvas.polyline(50, 50, 150, 50, 150, 150, 50, 150, 50, 50).stroke See: move_to, line_to, polygon pos(x, y)¶ Returns the position (x,y) transformed by the current transformation matrix. The resulting position should be interpreted in terms of the coordinate system of the context object (e.g. the page or Form XObject). rectangle(x, y, width, height, radius: 0) → canvas ¶ Appends a rectangle to the current path as a complete subpath (drawn in counterclockwise direction), with the bottom left corner specified by x and y and the given width and height. Returns self. If radius is greater than 0, the corners are rounded with the given radius. Note that the rectangle degrades to a line if either width or height is zero and to nothing if both are zero. If there is no current path when the method is invoked, a new path is automatically begun. The current point is set to the bottom left corner if radius is zero, otherwise it is set to (x, y + radius). Examples: canvas.rectangle(10, 110, 80, 50).stroke canvas.rectangle(110, 110, 80, 50, radius: 10).stroke canvas.rectangle(10, 90, 80, 0).stroke # Degraded: Just a line canvas.rectangle(110, 90, 0, 0).stroke # Degraded: Draws nothing See: PDF2.0 s8.5.2.1, move_to, line_to, curve_to rendering_intent → current_rendering_intent ¶ rendering_intent(intent) → canvas ¶ rendering_intent(intent) { block } → canvas ¶ The rendering intent is used to specify the intent on how colors should be rendered since sometimes compromises have to be made when the capabilities of an output device are not sufficient. The intent parameter can be one of the following symbols: :AbsoluteColorimetric :RelativeColorimetric :Saturation :Perceptual Returns the current rendering intent (see GraphicsState#rendering_intent) when no argument is given. Otherwise sets the rendering intent using the intent argument and returns self. The setter version can also be called in the rendering_intent= form. If the intent and a block are provided, the changed rendering intent is only active during the block by saving and restoring the graphics state. Examples: canvas.rendering_intent(:Perceptual) canvas.rendering_intent # => :Perceptual canvas.rendering_intent = :Saturation # => :Saturation canvas.rendering_intent(:Perceptual) do canvas.rendering_intent # => :Perceptual end canvas.rendering_intent # => :Saturation See: PDF2.0 s8.6.5.8, RenderingIntent Also aliased as: rendering_intent= rendering_intent=(intent = nil, &bk)¶ Alias for: rendering_intent resources()¶ Returns the resource dictionary of the context object. See HexaPDF::Type::Resources restore_graphics_state → canvas ¶ Restores the graphics state to the last saved version and returns self. Must not be invoked more times than save_graphics_state. Example: canvas.save_graphics_state canvas.circle(100, 100, 50).clip_path.end_path canvas.fill_color(\"hp-blue\").rectangle(0, 0, 100, 100).fill canvas.restore_graphics_state canvas.rectangle(100, 0, 100, 100).fill See: PDF2.0 s8.4.2, save_graphics_state rotate(angle, origin: nil) → canvas ¶ rotate(angle, origin: nil) { block } → canvas ¶ Rotates the coordinate system angle degrees around the origin or around the given point and returns self. If invoked with a block, the rotation of the coordinate system is only active during the block by saving and restoring the graphics state. Note that the origin of the coordinate system itself doesn’t change even if the origin argument is given! origin The point around which the coordinate system should be rotated. Examples: canvas.stroke_color(\"hp-gray-light\"). rectangle(0, 0, 60, 40).stroke # The rectangle that gets rotated canvas.rotate(45) do # Positive x-axis pointing to top-right corner canvas.stroke_color(\"hp-blue\"). rectangle(0, 0, 60, 40).stroke end canvas.rotate(-45, origin: [-50, -50]) do # Rotate around (-50,-50) canvas.stroke_color(\"hp-orange\"). rectangle(0, 0, 60, 40).stroke end See: transform save_graphics_state → canvas ¶ save_graphics_state { block } → canvas ¶ Saves the current graphics state and returns self. If invoked without a block a corresponding call to restore_graphics_state must be done to ensure proper nesting. Otherwise, i.e. when invoked with a block, the graphics state is automatically restored when the block is finished. Any saved graphics states are also restored when the content stream associated with the canvas is serialized to ensure proper nesting. Examples: # With a block canvas.save_graphics_state do canvas.stroke_color(\"hp-blue\") # After the block the color is reset canvas.line(20, 20, 70, 180).stroke end canvas.line(60, 20, 110, 180).stroke # Same without a block canvas.save_graphics_state. stroke_color(\"red\"). line(100, 20, 150, 180).stroke. restore_graphics_state canvas.line(140, 20, 190, 180).stroke See: PDF2.0 s8.4.2, restore_graphics_state scale(sx, sy = sx, origin: nil) → canvas ¶ scale(sx, sy = sx, origin: nil) { block } → canvas ¶ Scales the coordinate system sx units in the horizontal and sy units in the vertical direction and returns self. If the optional origin is specified, scaling is done from that point. If invoked with a block, the scaling is only active during the block by saving and restoring the graphics state. Note that the origin of the coordinate system itself doesn’t change even if the origin argument is given! origin The point from which the coordinate system should be scaled. Examples: canvas.stroke_color(\"hp-gray-light\"). rectangle(10, 10, 10, 10).stroke # The rectangle that gets scaled canvas.scale(4, 2) do # Scale from origin canvas.stroke_color(\"hp-blue\"). rectangle(10, 10, 10, 10).stroke # Actually (40, 20) to (80, 40) end canvas.scale(-2, 4, origin: [10, 10]) do # Scale from (10, 10) canvas.stroke_color(\"hp-orange\"). rectangle(10, 10, 10, 10).stroke # Actually (10, 10) to (-10, 40) end See: transform show_glyphs(glyphs) → canvas ¶ Low-level method for actually showing text on the canvas. Returns self. The argument glyphs needs to be a an array of glyph objects valid for the current font, optionally interspersed with numbers for kerning. Text is always shown at the current position of the text cursor, i.e. the origin of the text matrix. To move the text cursor to somewhere else use move_text_cursor before calling this method. The text matrix is updated to correctly represent the graphics state after the invocation. Since this is a compute intensive operation, use show_glyphs_only if you don’t need a correct text matrix. This method is usually not invoked directly but by higher level methods like text. Examples: canvas.font(\"Helvetica\", size: 10) glyphs = canvas.font.decode_utf8(\"Some text here\") canvas.move_text_cursor(offset: [15, 100]) canvas.show_glyphs(glyphs) canvas.text(canvas.text_cursor.map(&:to_i).join(\", \"), at: [15, 80]) See: text, text_cursor, text_matrix, move_text_cursor, show_glyphs_only show_glyphs_only(glyphs) → canvas ¶ Same operation as with show_glyphs but without updating the text matrix. This method should only be used by advanced text layouting algorithms which perform the necessary calculations themselves! Warning: Since this method doesn’t update the text matrix, all following results from text_cursor and other methods using the current text matrix are invalid until the next call that sets the text matrix. Examples: canvas.font(\"Helvetica\", size: 10) glyphs = canvas.font.decode_utf8(\"Some text here\") canvas.move_text_cursor(offset: [15, 100]) canvas.show_glyphs_only(glyphs) canvas.text(canvas.text_cursor.map(&:to_i).join(\", \"), at: [15, 80]) skew(a, b, origin: nil) → canvas ¶ skew(a, b, origin: nil) { block } → canvas ¶ Skews the the x-axis by a degrees and the y-axis by b degress and returns self. If the optional origin is specified, skewing is done from that point. If invoked with a block, the skewing is only active during the block by saving and restoring the graphics state. Note that the origin of the coordinate system itself doesn’t change! origin The point from which the axes are skewed. Examples: canvas.stroke_color(\"hp-gray-light\"). rectangle(10, 10, 40, 20).stroke # The rectangle that gets skewed canvas.skew(0, 30) do # Point (10, 10) is now actually (15, 10) canvas.stroke_color(\"hp-blue\"). rectangle(10, 10, 40, 20).stroke # Now a parallelogram end canvas.skew(30, 30, origin: [-50, 50]) do # Skew from (-50, 50) canvas.stroke_color(\"hp-orange\"). rectangle(-50, 50, 20, 20).stroke end See: transform stroke → canvas ¶ Strokes the path and returns self. Examples: canvas.polyline(10, 10, 120, 40, 50, 160) canvas.stroke See: PDF2.0 s8.5.3.1, s8.5.3.2, close_stroke, close_fill_stroke stroke_color → current_stroke_color ¶ stroke_color(gray) → canvas ¶ stroke_color(r, g, b) → canvas ¶ stroke_color(c, m, y, k) → canvas ¶ stroke_color(string) → canvas ¶ stroke_color(color_object) → canvas ¶ stroke_color(array) → canvas ¶ stroke_color(color_spec) { block } → canvas ¶ The stroke color defines the color used for stroking operations, i.e. for painting paths. There are several ways to define the color that should be used: A single numeric argument specifies a gray color (see ColorSpace::DeviceGray::Color). Three numeric arguments specify an RGB color (see ColorSpace::DeviceRGB::Color). A string in the format “RRGGBB” where “RR” is the hexadecimal number for the red, “GG” for the green
and “BB” for the blue color value also specifies an RGB color. As does a string in the format “RGB” where “RR”, “GG” and “BB” would be used as the hexadecimal numbers for the red, green and blue color values of an RGB color. Any other string is treated as a color name. HexaPDF supports CSS Color Module Level 3 color names (see www.w3.org/TR/css-color-3/#svg-color) as well as HexaPDF design colors. Four numeric arguments specify a CMYK color (see ColorSpace::DeviceCMYK::Color). A color object is used directly (normally used for color spaces other than DeviceRGB, DeviceCMYK and DeviceGray). An array is treated as if its items were specified separately as arguments. Returns the current stroke color (see GraphicsState#stroke_color) when no argument is given. Otherwise sets the stroke color using the given arguments and returns self. The setter version can also be called in the stroke_color= form. If the arguments and a block are provided, the changed stroke color is only active during the block by saving and restoring the graphics state. Examples: canvas.line_width(5) # With no arguments just returns the current color canvas.stroke_color # => DeviceGray.color(0.0) # Same gray color because integer values are normalized to the range of 0.0 to 1.0 canvas.stroke_color(102).rectangle(10, 170, 20, 20).stroke canvas.stroke_color(0.4).rectangle(40, 170, 20, 20).stroke # Specifying RGB color yellow in all possible formats canvas.stroke_color(255, 255, 0).rectangle(10, 140, 20, 20).stroke canvas.stroke_color(1.0, 1.0, 0).rectangle(40, 140, 20, 20).stroke canvas.stroke_color(\"FFFF00\").rectangle(70, 140, 20, 20).stroke canvas.stroke_color(\"FF0\").rectangle(100, 140, 20, 20).stroke canvas.stroke_color(\"yellow\").rectangle(130, 140, 20, 20).stroke # Specifying CMYK colors canvas.stroke_color(100, 100, 0, 60).rectangle(10, 110, 20, 20).stroke canvas.stroke_color(1.0, 1.0, 0, 0.6).rectangle(40, 110, 20, 20).stroke # Can use a color object directly, only numeric normalization is performed color = HexaPDF::Content::ColorSpace::DeviceRGB.new.color(0, 255, 0) canvas.stroke_color(color).rectangle(10, 80, 20, 20).stroke # An array argument is destructured - these calls are all equal canvas.stroke_color(0, 255, 0).rectangle(40, 80, 20, 20).stroke canvas.stroke_color([0, 255, 0]).rectangle(70, 80, 20, 20).stroke canvas.stroke_color = [0, 255, 0] canvas.rectangle(100, 80, 20, 20).stroke # As usual, can be invoked with a block to limit the effects canvas.stroke_color(102) do canvas.stroke_color # => ColorSpace::DeviceGray.color(0.4) end See: PDF2.0 s8.6, ColorSpace Also aliased as: stroke_color= stroke_color=(*color, &block)¶ Alias for: stroke_color text(text) → canvas ¶ text(text, at: [x, y]) → canvas ¶ Shows the given text string, either at the current or the provided position. Returns self. If no position is provided, the text is positioned at the current position of the text cursor (see text_cursor). The text string may contain any valid Unicode newline separator and if so, multiple lines are shown, using leading for offsetting the lines. If no leading has been set, a leading equal to the font size will be set.. Note that there are no provisions to make sure that all text is visible! So if the text string is too long, it may be outside the cropped page and be cut off. Examples: canvas.font('Times', size: 12) # Sets leading=12 because mulitple lines are drawn canvas.text(\"This is a \\n multiline text\", at: [15, 150]) # Starts right after the last text canvas.text(\". Some more text\\nafter the newline.\") See: leading, font, font_size, show_glyphs, www.unicode.org/reports/tr18/#Line_Boundaries text_cursor → [x, y] ¶ Returns the position of the text cursor, i.e. the origin of text space. This is where the first glyph of the next drawn text will be placed. Note that this method can only be called while the current graphic object is a text object since the text matrix is otherwise undefined. Examples: canvas.font(\"Helvetica\", size: 10) canvas.text(\"Some sample text\", at: [30, 150]) tx, ty = canvas.text_cursor # Cursor is directly after the text canvas.stroke_color(\"hp-blue\"). circle(tx, ty, 0.5). circle(tx, ty, 5).stroke canvas.text(\"Last cursor: (#{tx.round(2)}, #{ty.round(2)})\", at: [30, 100]) See: move_text_cursor text_matrix(a, b, c, d, e, f) → canvas ¶ Sets the text matrix (and the text line matrix) to the given matrix and returns self. The text matrix determines where and how the glyphs are rendered. The most common use is to translate the text space origin since the text drawing operations always use the text space origin as starting point for drawing the glyphs. This translation operation can more easily be specified using move_text_cursor. The given values are interpreted as a matrix in the following way: a b 0 c d 0 e f 1 If the current graphics object is not a text object, begin_text is automatically called because the text matrix is only available within a text object. Examples: canvas.font(\"Helvetica\", size: 10) canvas.begin_text # Not necessary canvas.text_matrix(1, 0, 0, 1, 50, 100) # Translate text origin to (50, 100) canvas.text(\"This is some text\") canvas.text_matrix(2, 1, 3, 0.5, 50, 50) canvas.text(\"This is some text\") See: PDF2.0 s9.4.2, move_text_cursor, text_cursor text_rendering_mode → current_text_rendering_mode ¶ text_rendering_mode(mode) → canvas ¶ text_rendering_mode(mode) { block } → canvas ¶ The text rendering mode determines if and how glyphs are rendered. The mode parameter can be one of the following (also see TextRenderingMode): :fill or 0 The text is filled (default) :stroke or 1 The text is stroked. :fill_stroke or 2 The test is filled, then stroked. :invisible or 3 The text is neither filled nor stroked. :fill_clip or 4 The text is filled and added to the clipping path. :stroke_clip or 5 The text is stroked and added to the clipping path. :fill_stroke_clip or 6 The text is filled, then stroked and added to the clipping path. :clip or 7 The text is added to the clipping path. either be a valid integer or one of the symbols :fill, :stroke, Note that the return value is always a normalized text rendering mode value. Returns the current text rendering mode value (see GraphicsState#text_rendering_mode) when no argument is given. Otherwise sets the text rendering mode using the mode argument and returns self. The setter version can also be called in the text_rendering_mode= form. If the mode and a block are provided, the changed text rendering mode is only active during the block by saving and restoring the graphics state. Examples: canvas.text_rendering_mode(:fill) canvas.text_rendering_mode # => #<NamedValue @name=:fill, @value = 0> canvas.text_rendering_mode = :stroke # => #<NamedValue @name=:stroke, @value = 1> canvas.text_rendering_mode(3) do canvas.text_rendering_mode # => #<NamedValue @name=:invisible, @value = 3> end canvas.text_rendering_mode # => #<NamedValue @name=:stroke, @value = 1> # visual example canvas.font(\"Helvetica\", size: 25) canvas.stroke_color(\"green\") [:fill, :stroke, :fill_stroke, :invisible].each_with_index do |trm, index| canvas.text_rendering_mode = trm canvas.text(\"#{trm} text.\", at: [20, 150 - 30 * index]) end See: PDF2.0 s9.3.6, GraphicsState::TextRenderingMode Also aliased as: text_rendering_mode= text_rendering_mode=(m = nil, &bk)¶ Alias for: text_rendering_mode text_rise → current_text_rise ¶ text_rise(amount) → canvas ¶ text_rise(amount) { block } → canvas ¶ The text rise specifies the vertical distance to move the baseline up or down from its default location. Positive values move the baseline up, negative values down. Returns the current text rise value (see GraphicsState#text_rise) when no argument is given. Otherwise sets the text rise using the amount argument and returns self. The setter version can also be called in the text_rise= form. If the amount and a block are provided, the changed text rise is only active during the block by saving and restoring the graphics state. Examples: canvas.text_rise(5) canvas.text_rise # => 5 canvas.text_rise = 10 # => 10 canvas.text_rise(15) do canvas.text_rise # => 15 end canvas.text_rise # => 10 # visual example canvas.font(\"Helvetica\", size: 10) canvas.text_rise = 0 # Set the default value canvas.text(\"Hello\", at: [20, 150]) canvas.text_rise = 10 canvas.text(\"from up here\") canvas.text_rise = -10 canvas.text(\"and also down here\") See: PDF2.0 s9.3.7 Also aliased as: text_rise= text_rise=(amount = nil, &bk)¶ Alias for: text_rise transform(a, b, c, d, e, f) → canvas ¶ transform(a, b, c, d, e, f) { block } → canvas ¶ Transforms the coordinate system by applying the given matrix to the current transformation matrix and returns self. If invoked with a block, the transformation is only active during the block by saving and restoring the graphics state. The given values are interpreted as a matrix in the following way: a b 0 c d 0 e f 1 Example: canvas.transform(1, 0, 0, 1, 100, 100) do # Translate origin to (100, 100) canvas.stroke_color(\"hp-blue\"). line(0, 0, 100, 50).stroke # Actually from (100, 100) to (200, 150) end canvas.line(0, 0, 100, 50).stroke # Really from (0, 0) to (100, 50) See: PDF2.0 s8.3, s8.4.4 translate(x, y) → canvas ¶ translate(x, y) { block } → canvas ¶ Translates the coordinate system coordinate system origin to the given x and y coordinates and returns self. If invoked with a block, the translation of the coordinate system is only active during the block by saving and restoring the graphics state. Examples: canvas.stroke_color(\"hp-gray-light\"). rectangle(0, 0, 40, 20).stroke # Rectangle from (0, 0) to (40, 20) canvas.translate(50, 50) do # Origin is now at (50, 50) canvas.stroke_color(\"hp-blue\"). rectangle(0, 0, 40, 20).stroke # Actually (50, 50) to (90, 70) end See: transform word_spacing → current_word_spacing ¶ word_spacing(amount) → canvas ¶ word_spacing(amount) { block } → canvas ¶ If the font’s PDF encoding supports this, the word spacing determines how much
additional space is added when the ASCII space character is encountered in a text. For horizontal writing positive values increase the distance between two words, whereas for vertical writing negative values increase the distance. Important: In HexaPDF only the standard 14 PDF Type1 fonts support this property! When using any other font, for example a TrueType font, this property has no effect. Returns the current word spacing value (see GraphicsState#word_spacing) when no argument is given. Otherwise sets the word spacing using the amount argument and returns self. The setter version can also be called in the word_spacing= form. If the amount and a block are provided, the changed word spacing is only active during the block by saving and restoring the graphics state. Examples: canvas.word_spacing(0.25) canvas.word_spacing # => 0.25 canvas.word_spacing = 0.5 # => 0.5 canvas.word_spacing(0.10) do canvas.word_spacing # => 0.10 end canvas.word_spacing # => 0.5 # visual example canvas.font(\"Helvetica\", size: 10) canvas.word_spacing = 0 # initial value canvas.text(\"This is an example text.\", at: [10, 150]) canvas.word_spacing = 10 canvas.text(\"This is an example text.\", at: [10, 100]) See: PDF2.0 s9.3.3, character_spacing, horizontal_scaling Also aliased as: word_spacing= word_spacing=(amount = nil, &bk)¶ Alias for: word_spacing xobject(filename, at:, width: nil, height: nil) → xobject ¶ xobject(io, at:, width: nil, height: nil) → xobject ¶ xobject(image_object, at:, width: nil, height: nil) → image_object ¶ xobject(form_object, at:, width: nil, height: nil) → form_object ¶ Draws the given XObject (either an image XObject or a form XObject) at the specified position and returns the XObject. Any image format for which a HexaPDF::ImageLoader object is available and registered with the configuration option ‘image_loader’ can be used. PNG (lossless), JPEG (lossy) and PDF (vector) images are supported out of the box. If the filename or the IO specifies a PDF file, the first page of this file is used to create a form XObject which is then drawn. The at argument has to be an array containing two numbers specifying the bottom left corner at which to draw the XObject. If width and height are specified, the drawn XObject will have exactly these dimensions. If only one of them is specified, the other dimension is automatically calculated so that the aspect ratio is retained. If neither is specified, the width and height of the XObject are used (for images, 1 pixel being represented by 1 PDF point, i.e. 72 DPI). Note: If a form XObject is drawn, all currently set graphics state parameters influence the rendering of the form XObject. This means, for example, that when the line width is set to 20, all lines of the form XObject are drawn with that line width unless the line width is changed in the form XObject itself. Examples: canvas.xobject(machu_picchu, at: [10, 10], width: 90) # bottom left file = File.new(machu_picchu, 'rb') # top left canvas.xobject(file, at: [10, 110], height: 50) image = doc.images.add(machu_picchu) canvas.xobject(image, at: [110, 10], width: 50, height: 90) # bottom right form = doc.add({Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 100]}) form.canvas.stroke_color(\"hp-blue\").line(10, 10, 90, 90).stroke canvas.line_width = 20 canvas.xobject(form, at: [100, 100]) # top right See: PDF2.0 s8.8, s.8.10.1, HexaPDF::Type::Image, HexaPDF::Type::Form, HexaPDF::ImageLoader Also aliased as: image "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/CanvasComposer.html","title":"HexaPDF::Content::CanvasComposer","tags":"","text":" AttributescanvasdocumentframeClass MethodsnewInstance Methodsdraw_boxmethod_missingstyle class HexaPDF::Content::CanvasComposer Parent Object The CanvasComposer class allows using the document layout functionality for a single canvas. It works in a similar manner as the HexaPDF::Composer class. See: HexaPDF::Composer, HexaPDF::Document::Layout Attributes canvas[R]¶ The associated canvas. document[R]¶ The associated HexaPDF::Document instance. frame[R]¶ The HexaPDF::Layout::Frame instance into which the boxes are laid out. Public Class Methods new(canvas, margin: 0)¶ Creates a new CanvasComposer instance for the given canvas. The margin can be any value allowed by HexaPDF::Layout::Style::Quad#set and defines the margin that should not be used during composition. For the remaining area of the canvas a frame object will be created. Public Instance Methods draw_box(box)¶ Draws the given HexaPDF::Layout::Box and returns the last drawn box. The box is drawn into the frame. If it doesn’t fit, the box is split. If it still doesn’t fit, a new region of the frame is determined and then the process starts again. If none or only some parts of the box fit into the frame, an exception is thrown. method_missing(name, *args, **kwargs, &block)¶ Draws any box that can be created using HexaPDF::Document::Layout. This includes all named boxes defined in the ‘layout.boxes.map’ configuration option. Examples: canvas.composer(margin: 10) do |composer| composer.text(\"Some text\", position: :float) composer.image(machu_picchu, height: 30, align: :right) composer.lorem_ipsum(sentences: 1, margin: [0, 0, 5]) composer.list(item_spacing: 2) do |list| composer.document.config['layout.boxes.map'].each do |name, klass| list.formatted_text([{text: name.to_s, fill_color: \"hp-blue-dark\"}, {text: \"\\n#{klass}\"}], font_size: 6) end end end See: HexaPDF::Document::Layout#box Calls superclass method style(name, base: :base, **properties)¶ Invokes HexaPDF::Document::Layout#style with the given arguments to create/update and return a style object. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/index.html","title":"HexaPDF::Content::ColorSpace","tags":"","text":" ConstantsCOLOR_NAMESClass Methodsdevice_color_from_specificationfor_componentsprenormalized_device_colorserialize_device_color module HexaPDF::Content::ColorSpace This module contains the color space implementations. General Information¶ ↑ The PDF specification defines several color spaces. Probably the most used ones are the device color spaces DeviceRGB, DeviceCMYK and DeviceGray. However, there are several others. For example, patterns are also implemented via color spaces. HexaPDF provides implementations for the most common color spaces. Additional ones can easily be added. After implementing one it just has to be registered on the global configuration object under the ‘color_space.map’ key. Color space implementations are currently used so that different colors can be distinguished and to provide better error handling. Color Space Implementations¶ ↑ A color space implementation consists of two classes: one for the color space and one for its colors. The class for the color space needs to respond to the following methods: initialize(definition) Creates the color space using the given array with the color space definition. The first item in the array is always the color space family, the other items are color space specific. family Returns the PDF name of the color space family this color space belongs to. definition Returns the color space definition as array or symbol. default_color Returns the default color for this color space. color(*args) Returns the color corresponding to the given arguments which may be normalized to conform to the PDF spec. The number and types of the arguments differ from one color space to another. prenormalized_color(*args) Returns the color corresponding to the given arguments without applying value normalization. The number and types of the arguments differ from one color space to another. This method should be used when the arguments are already normalized (e.g. when loaded from a content stream). The class representing a color in the color space needs to respond to the following methods: color_space Returns the associated color space object. components Returns an array of components that uniquely identifies this color within the color space. See: PDF2.0 s8.6 Constants COLOR_NAMES¶ Mapping of color names (CSS Color Module Level 3 names - see www.w3.org/TR/css-color-3/#svg-color - and HexaPDF design color names) to RGB and gray values. Visual listing of all colors: canvas.font(\"Helvetica\", size: 7.5) map = HexaPDF::Content::ColorSpace::COLOR_NAMES map.each_slice(43).each_with_index do |slice, col| x = 10 + col * 100 slice.each_with_index do |(name, rgb), row| canvas.fill_color(rgb).rectangle(x, 380 - row * 9, 9, 9).fill canvas.fill_color(\"black\").text(name, at: [x + 15, 380 - row * 9 + 2]) end end Public Class Methods device_color_from_specification(gray) → color ¶ device_color_from_specification(r, g, b) → color ¶ device_color_from_specification(c, m, y, k) → color ¶ device_color_from_specification(string) → color ¶ device_color_from_specification(array) → color ¶ Creates and returns a device color object from the given color specification. There are several ways to define the color that should be used: A single numeric argument specifies a gray color (see DeviceGray::Color). Three numeric arguments specify an RGB color (see DeviceRGB::Color). A string in the format “RRGGBB” where “RR” is the hexadecimal number for the red, “GG” for the green and “BB” for the blue color value also specifies an RGB color. As does a string in the format “RGB” where “RR”, “GG” and “BB” would be used as the hexadecimal numbers for the red, green and blue color values of an RGB color. Any other string is treated as a color name (CSS Color Module Level 3 and HexaPDF design color names are supported - see COLOR_NAMES). Four numeric arguments specify a CMYK color (see DeviceCMYK::Color). An array is treated as if its items were specified separately as arguments. Note that it makes a difference whether integer or float values are used because the given values are first normalized (expected range by the PDF specification is 0.0 - 1.0) - see DeviceGray#color, DeviceRGB#color and
DeviceCMYK#color for details. Examples: cs = HexaPDF::Content::ColorSpace canvas.line_width(5) # Note that Canvas#stroke_color implicitly uses this method, so # explicitly using it like in this example is not needed canvas.stroke_color(cs.device_color_from_specification(160)) canvas.line(10, 10, 10, 190).stroke canvas.stroke_color(cs.device_color_from_specification(0, 128, 255)) canvas.line(35, 10, 35, 190).stroke canvas.stroke_color(cs.device_color_from_specification(\"0088FF\")) canvas.line(60, 10, 60, 190).stroke canvas.stroke_color(cs.device_color_from_specification(\"08F\")) canvas.line(85, 10, 85, 190).stroke canvas.stroke_color(cs.device_color_from_specification(\"gold\")) canvas.line(110, 10, 110, 190).stroke canvas.stroke_color(cs.device_color_from_specification(\"hp-blue\")) canvas.line(135, 10, 135, 190).stroke canvas.stroke_color(cs.device_color_from_specification(10, 50, 0, 60)) canvas.line(160, 10, 160, 190).stroke canvas.stroke_color(cs.device_color_from_specification([0, 128, 255])) canvas.line(185, 10, 185, 190).stroke for_components(components)¶ Returns the name of the device color space that should be used for creating a color object from the components array. prenormalized_device_color(components)¶ Returns a device color object for the given components array without applying value normalization. serialize_device_color(color, type: :fill)¶ Serializes the given device color into the form expected by PDF content streams. The type argument can either be :stroke to serialize as stroke color operator or :fill as fill color operator. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/ColorUtils.html","title":"HexaPDF::Content::ColorSpace::ColorUtils","tags":"","text":" Class Methodsnormalize_valueInstance Methods== module HexaPDF::Content::ColorSpace::ColorUtils This module includes utility functions that are useful for all color classes. Public Class Methods normalize_value(value, upper)¶ Normalizes the given color value so that it is in the range from 0.0 to 1.0. The conversion is done in the following way: If the color value is an Integer, it is converted to a float and divided by upper. If the color value is greater than 1.0, it is set to 1.0. If the color value is less than 0.0, it is set to 0.0. Public Instance Methods ==(other)¶ Compares this color to another one by looking at their associated color spaces and their components. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/DeviceCMYK/index.html","title":"HexaPDF::Content::ColorSpace::DeviceCMYK","tags":"","text":" ConstantsDEFAULTClass MethodsnewInstance Methodscolordefault_colordefinitionfamilyprenormalized_color class HexaPDF::Content::ColorSpace::DeviceCMYK Parent Object The DeviceCMYK color space. Constants DEFAULT¶ The one (and only) DeviceCMYK color space. Public Class Methods new(_definition = nil)¶ Returns the DeviceCMYK color space object. Public Instance Methods color(c, m, y, k)¶ Returns the color object for the given cyan, magenta, yellow and black components. Color values can either be integers in the range from 0 to 100 or floating point numbers between 0.0 and 1.0. The integer color values are automatically normalized to the DeviceCMYK color value range of 0.0 to 1.0. default_color()¶ Returns the default color for the DeviceCMYK color space. definition()¶ Alias for: family family()¶ Returns :DeviceCMYK. Also aliased as: definition prenormalized_color(c, m, y, k)¶ Returns the color object for the cyan, magenta, yellow and black components without applying value normalization. See: color "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/DeviceCMYK/Color.html","title":"HexaPDF::Content::ColorSpace::DeviceCMYK::Color","tags":"","text":" Class MethodsnewInstance Methodscolor_spacecomponents class HexaPDF::Content::ColorSpace::DeviceCMYK::Color Parent Object Included Modules HexaPDF::Content::ColorSpace::ColorUtils A color in the DeviceCMYK color space. See: PDF2.0 s8.6.4.4 Public Class Methods new(c, m, y, k)¶ Initializes the color with the c (cyan), m (magenta), y (yellow) and k (black) components. Each argument has to be a float between 0.0 and 1.0. Public Instance Methods color_space()¶ Returns the DeviceCMYK color space module. components()¶ Returns the CMYK color as an array of normalized color values. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/DeviceGray/index.html","title":"HexaPDF::Content::ColorSpace::DeviceGray","tags":"","text":" ConstantsDEFAULTClass MethodsnewInstance Methodscolordefault_colordefinitionfamilyprenormalized_color class HexaPDF::Content::ColorSpace::DeviceGray Parent Object The DeviceGray color space. Constants DEFAULT¶ The one (and only) DeviceGray color space. Public Class Methods new(_definition = nil)¶ Returns the DeviceGray color space object. Public Instance Methods color(gray)¶ Returns the color object for the given gray component. Color values can either be integers in the range from 0 to 255 or floating point numbers between 0.0 and 1.0. The integer color values are automatically normalized to the DeviceGray color value range of 0.0 to 1.0. default_color()¶ Returns the default color for the DeviceGray color space. definition()¶ Alias for: family family()¶ Returns :DeviceGray. Also aliased as: definition prenormalized_color(gray)¶ Returns the color object for the gray component without applying value normalization. See: color "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/DeviceGray/Color.html","title":"HexaPDF::Content::ColorSpace::DeviceGray::Color","tags":"","text":" Class MethodsnewInstance Methodscolor_spacecomponents class HexaPDF::Content::ColorSpace::DeviceGray::Color Parent Object Included Modules HexaPDF::Content::ColorSpace::ColorUtils A color in the DeviceGray color space. See: PDF2.0 s8.6.4.2 Public Class Methods new(gray)¶ Initializes the color with the gray component. The argument gray has to be a float between 0.0 and 1.0. Public Instance Methods color_space()¶ Returns the DeviceGray color space module. components()¶ Returns the normalized gray value as an array. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/DeviceRGB/index.html","title":"HexaPDF::Content::ColorSpace::DeviceRGB","tags":"","text":" ConstantsDEFAULTClass MethodsnewInstance Methodscolordefault_colordefinitionfamilyprenormalized_color class HexaPDF::Content::ColorSpace::DeviceRGB Parent Object The DeviceRGB color space. Constants DEFAULT¶ The one (and only) DeviceRGB color space. Public Class Methods new(_definition = nil)¶ Returns the DeviceRGB color space object. Public Instance Methods color(r, g, b)¶ Returns the color object for the red, green and blue components. Color values can either be integers in the range from 0 to 255 or floating point numbers between 0.0 and 1.0. The integer color values are automatically normalized to the DeviceRGB color value range of 0.0 to 1.0. default_color()¶ Returns the default color for the DeviceRGB color space. definition()¶ Alias for: family family()¶ Returns :DeviceRGB. Also aliased as: definition prenormalized_color(r, g, b)¶ Returns the color object for the red, green and blue components without applying value normalization. See: color "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/DeviceRGB/Color.html","title":"HexaPDF::Content::ColorSpace::DeviceRGB::Color","tags":"","text":" Class MethodsnewInstance Methodscolor_spacecomponents class HexaPDF::Content::ColorSpace::DeviceRGB::Color Parent Object Included Modules HexaPDF::Content::ColorSpace::ColorUtils A color in the DeviceRGB color space. See: PDF2.0 s8.6.4.3 Public Class Methods new(r, g, b)¶ Initializes the color with the r (red), g (green) and b (blue) components. Each argument has to be a float between 0.0 and 1.0. Public Instance Methods color_space()¶ Returns the DeviceRGB color space module. components()¶ Returns the RGB color as an array of normalized color values. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/Universal/index.html","title":"HexaPDF::Content::ColorSpace::Universal","tags":"","text":" AttributesdefinitionClass MethodsnewInstance Methods==colordefault_colorfamilyprenormalized_color class HexaPDF::Content::ColorSpace::Universal Parent Object This class represents a “universal” color space that is used for all color spaces that aren’t implemented yet. Attributes definition[R]¶ The color space definition used for creating this universal color space. Public Class Methods new(definition)¶ Creates the universal color space for the given color space definition. Public Instance Methods ==(other)¶ Compares this universal color space to another one by looking at their definitions. color(*args)¶ Creates a new universal color object. The number of arguments isn’t restricted. Also aliased as: prenormalized_color default_color()¶ The default universal color. family()¶ Returns the PDF color space family this color space belongs to. prenormalized_color(*args)¶ Alias for: color "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/ColorSpace/Universal/Color.html","title":"HexaPDF::Content::ColorSpace::Universal::Color","tags":"","text":" Attributescolor_spacecomponentsClass Methodsnew class HexaPDF::Content::ColorSpace::Universal::Color Parent Object Included Modules HexaPDF::Content::ColorSpace::ColorUtils A single color in the universal color space. This doesn’t represent a real color but is a place holder for a color in a color space that isn’t implemented yet. Attributes color_space[R]¶ Returns the specific Universal color space used for this color. components[R]¶ Returns the componets of the universal color, i.e. all arguments provided on initialization. Public Class Methods new(color_space, *components)¶ Creates a new universal color with the given components.
"},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/GraphicObject/index.html","title":"HexaPDF::Content::GraphicObject","tags":"","text":" module HexaPDF::Content::GraphicObject Overview¶ ↑ This module contains classes describing graphic objects that can be drawn on a Canvas. Since the PDF specification only provides the most common path creation operators, more complex graphic objects need more than one operator for their creation. By defining this graphic object interface (see below) such complex objects can be drawn in a consistent manner on a Canvas. A graphic object should only use the path creation methods or other graphic objects when it is drawn. Stroking and filling, or optionally clipping, is left to the user. The Canvas class provides a Canvas#draw method that can be used to draw complex graphic objects as well as a Canvas#graphic_object method to retrieve an instance of a graphic object for custom use. The latter method uses graphic object factories that can be registered via a name using the document specific ‘graphic_object.map’ configuration option. Implementation of a Graphic Object¶ ↑ Graphic objects are usually implemented as classes since this automatically allows using the class itself as the graphic object’s factory. A graphic object factory is an object that responds to configure(**kwargs) and returns a configured graphic object. When the factory is implemented as a class, the configure method should be a class method returning properly configured instances of the class. A graphic object itself has to respond to two methods: configure(**kwargs) This method is used for re-configuring the graphic object and it should return the graphic object itself, not a new object. draw(canvas) This method is used for drawing the graphic object on the given Canvas. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/GraphicObject/Arc.html","title":"HexaPDF::Content::GraphicObject::Arc","tags":"","text":" Attributesabclockwisecxcyend_angleinclinationmax_curvesstart_angleClass MethodsconfigurenewInstance Methodsconfigurecurvesdrawend_pointpoint_atstart_point class HexaPDF::Content::GraphicObject::Arc Parent Object Included Modules HexaPDF::Utils::MathHelpers This class describes an elliptical arc in center parameterization that is approximated using Bezier curves. It can be used to draw circles, circular arcs, ellipses and elliptical arcs, all either in clockwise or counterclockwise direction and optionally inclined in respect to the x-axis. Note that only the path of the arc itself is added to the canvas. So depending on the use-case the path itself still has to be, for example, stroked. This graphic object is registered under the :arc key for use with the HexaPDF::Content::Canvas class. Examples: arc = canvas.graphic_object(:arc, a: 100, b: 50, end_angle: 150) canvas.draw(arc).stroke See: ELL - spaceroots.org/documents/ellipse/elliptical-arc.pdf Attributes a[R]¶ Length of semi-major axis which (without altering the inclination) is parallel to the x-axis, defaults to 1. Examples: arc = canvas.graphic_object(:arc, a: 30, b: 30) canvas.draw(arc).stroke canvas.stroke_color(\"hp-blue\").draw(arc, a: 60).stroke b[R]¶ Length of semi-minor axis which (without altering the inclination) is parallel to the y-axis, defaults to 1. Examples: arc = canvas.graphic_object(:arc, a: 30, b: 30) canvas.draw(arc).stroke canvas.stroke_color(\"hp-blue\").draw(arc, b: 60).stroke clockwise[R]¶ Direction of arc - if true in clockwise direction, else in counterclockwise direction (the default). This is needed when filling paths using the nonzero winding number rule to achieve different effects. Examples: arc = canvas.graphic_object(:arc, a: 40, b: 40) canvas.fill_color(\"hp-blue\"). draw(arc, cx: -50).draw(arc, cx: 50). draw(arc, cx: -50, b: 80). draw(arc, cx: 50, b: 80, clockwise: true). fill(:nonzero) cx[R]¶ x-coordinate of center point, defaults to 0. Examples: arc = canvas.graphic_object(:arc, a: 30, b: 20) canvas.draw(arc).stroke canvas.stroke_color(\"hp-blue\").draw(arc, cx: 50).stroke cy[R]¶ y-coordinate of center point, defaults to 0. Examples: arc = canvas.graphic_object(:arc, a: 30, b: 20) canvas.draw(arc).stroke canvas.stroke_color(\"hp-blue\").draw(arc, cy: 50).stroke end_angle[R]¶ End angle of the arc in degrees, defaults to 0. Examples: arc = canvas.graphic_object(:arc, a: 30, b: 30) canvas.draw(arc, end_angle: 160).stroke inclination[R]¶ Inclination in degrees of the semi-major axis with respect to the x-axis, defaults to 0. Examples: arc = canvas.graphic_object(:arc, a: 60, b: 30) canvas.draw(arc, inclination: 45).stroke max_curves[RW]¶ The maximal number of curves used for approximating a complete ellipse. The higher the value the better the approximation will be but it will also take longer to compute. The value should not be lower than 4. Default value is 6 which already provides a good approximation. Examples: arc = canvas.graphic_object(:arc, cx: -50, a: 40, b: 40, max_curves: 2) canvas.draw(arc) canvas.draw(arc, cx: 50, max_curves: 10) canvas.stroke start_angle[R]¶ Start angle of the arc in degrees, defaults to 0. Examples: arc = canvas.graphic_object(:arc, a: 30, b: 30) canvas.draw(arc, start_angle: 110).stroke Public Class Methods configure(**kwargs)¶ Creates and configures a new elliptical arc object. See configure for the allowed keyword arguments. new()¶ Creates an elliptical arc with default values (a counterclockwise unit circle at the origin). Examples: canvas.draw(:arc).stroke Public Instance Methods configure(cx: nil, cy: nil, a: nil, b: nil, start_angle: nil, end_angle: nil, inclination: nil, clockwise: nil, max_curves: nil)¶ Configures the arc with center point (cx, cy), semi-major axis a, semi-minor axis b, start angle of start_angle degrees, end angle of end_angle degrees and an inclination in respect to the x-axis of inclination degrees, as well as the maximal number of curves max_curves used for approximation. The clockwise argument determines if the arc is drawn in the counterclockwise direction (false) or in the clockwise direction (true). For the meaning of max_curves see the description of max_curves. Any arguments not specified are not modified and retain their old value, see initialize for the inital values. Returns self. Examples: arc = canvas.graphic_object(:arc) arc.configure(cx: 50, a: 40, b: 20, inclination: 10) canvas.draw(arc).stroke curves()¶ Returns an array of arrays that contain the points for the Bezier curves which are used for approximating the elliptical arc between start_point and end_point. One subarray consists of [end_point_x, end_point_y, p1: control_point_1, p2: control_point_2] The first start point is the one returned by start_point, the other start points are the end points of the curve before. The format of the subarray is chosen so that it can be fed to the Canvas#curve_to method by using array splatting. See: ELL s3.4.1 (especially the last box on page 18) draw(canvas, move_to_start: true)¶ Draws the arc on the given Canvas. If the argument move_to_start is true, a Canvas#move_to operation is executed to move the current point to the start point of the arc. Otherwise it is assumed that the current point already coincides with the start point. This functionality is used, for example, by the SolidArc implementation. The max_curves value, if not already changed, is set to the value of the configuration option ‘graphic_object.arc.max_curves’ before drawing. Examples: arc = canvas.graphic_object(:arc, a: 40, b: 30) canvas.stroke_color(\"hp-blue\").move_to(-50, 0) arc.draw(canvas, move_to_start: false) canvas.stroke end_point()¶ Returns the end point of the elliptical arc. Examples: arc = canvas.graphic_object(:arc, a: 40, b: 30, end_angle: 245) canvas.draw(arc).stroke canvas.fill_color(\"hp-blue\").circle(*arc.end_point, 2).fill point_at(angle)¶ Returns the point at angle degrees on the ellipse. Note that the point may not lie on the arc itself! Examples: arc = canvas.graphic_object(:arc, a: 40, b: 30, end_angle: 245) canvas.draw(arc).stroke canvas.fill_color(\"hp-blue\"). circle(*arc.point_at(150), 2). circle(*arc.point_at(290), 2). fill start_point()¶ Returns the start point of the elliptical arc. Examples: arc = canvas.graphic_object(:arc, a: 40, b: 30, start_angle: 60) canvas.draw(arc).stroke canvas.fill_color(\"hp-blue\").circle(*arc.start_point, 2).fill "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/GraphicObject/EndpointArc.html","title":"HexaPDF::Content::GraphicObject::EndpointArc","tags":"","text":" Attributesabclockwiseinclinationlarge_arcmax_curvesxyClass MethodsconfigurenewInstance Methodsconfiguredraw class HexaPDF::Content::GraphicObject::EndpointArc Parent Object Included Modules HexaPDF::Utils HexaPDF::Utils::MathHelpers This class describes an elliptical arc in endpoint parameterization. It allows one to generate an arc from the current point to a given point, similar to Canvas#line_to. Behind the scenes the endpoint parameterization is turned into a center parameterization and drawn with Arc. Note that only the path of the arc itself is added to the canvas. So depending on the use-case the path itself still has to be, for example, stroked. This graphic object is registered under the :endpoint_arc key for use with the HexaPDF::Content::Canvas class. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 10) canvas.move_to(0, 0).draw(arc).stroke See: Arc, ARC - www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes (in the version of about 2016, see web.archive.org/web/20160310153722/https://www.w3.org/TR/SVG/implnote.html). Attributes a[R]¶ Length of semi-major axis, defaults to 0. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\").move_to(0, 0).draw(arc, a: 40).stroke b[R]¶ Length of semi-minor axis, defaults to 0. Examples: arc =
canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\").move_to(0, 0).draw(arc, b: 50).stroke clockwise[R]¶ Direction of arc - if true in clockwise direction, else in counterclockwise direction (the default). This is needed, for example, when filling paths using the nonzero winding number rule to achieve different effects. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\").move_to(0, 0).draw(arc, clockwise: true).stroke inclination[R]¶ Inclination in degrees of semi-major axis in respect to x-axis, defaults to 0. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\").move_to(0, 0).draw(arc, inclination: 45).stroke large_arc[R]¶ Large arc choice - if true (the default) use the large arc (i.e. the one spanning more than 180 degrees), else the small arc Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\"). move_to(0, 0).draw(arc, large_arc: false, clockwise: true).stroke max_curves[RW]¶ The maximal number of curves used for approximating a complete ellipse. See Arc#max_curves for details. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc, max_curves: 1).stroke canvas.stroke_color(\"hp-blue\"). move_to(0, 0).draw(arc, max_curves: 2).stroke x[R]¶ x-coordinate of endpoint, defaults to 0. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\").move_to(0, 0).draw(arc, x: -50).stroke y[R]¶ y-coordinate of endpoint, defaults to 0. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 20) canvas.move_to(0, 0).draw(arc).stroke canvas.stroke_color(\"hp-blue\").move_to(0, 0).draw(arc, y: -20).stroke Public Class Methods configure(**kwargs)¶ Creates and configures a new endpoint arc object. See configure for the allowed keyword arguments. new()¶ Creates an endpoint arc with default values x=0, y=0, a=0, b=0, inclination=0, large_arc=true, clockwise=false (a line to the origin). Examples: canvas.move_to(30, 30).draw(:endpoint_arc).stroke Public Instance Methods configure(x: nil, y: nil, a: nil, b: nil, inclination: nil, large_arc: nil, clockwise: nil, max_curves: nil)¶ Configures the endpoint arc with endpoint (x, y), semi-major axis a, semi-minor axis b, an inclination in respect to the x-axis of inclination degrees, the given large_arc flag, the given clockwise flag and. the given maximum number of approximation curves. The large_arc option determines whether the large arc, i.e. the one spanning more than 180 degrees, is used (true) or the small arc (false). The clockwise option determines if the arc is drawn in the counterclockwise direction (false) or in the clockwise direction (true). Any arguments not specified are not modified and retain their old value, see initialize for the inital values. Returns self. Examples: arc = canvas.graphic_object(:endpoint_arc) arc.configure(x: 50, y: 20, a: 30, b: 10) canvas.move_to(0, 0).draw(arc).stroke draw(canvas)¶ Draws the arc on the given Canvas. Since this method doesn’t have any other arguments than canvas, it is usually better and easier to use Canvas#draw. Examples: arc = canvas.graphic_object(:endpoint_arc, x: 50, y: 20, a: 30, b: 10) canvas.move_to(-20, -20) arc.draw(canvas) canvas.stroke "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/GraphicObject/Geom2D.html","title":"HexaPDF::Content::GraphicObject::Geom2D","tags":"","text":" Attributesobjectpath_onlypoint_radiusClass MethodsconfigurenewInstance Methodsconfiguredraw class HexaPDF::Content::GraphicObject::Geom2D Parent Object This class provides support for drawing Geom2D objects like line segments and polygons. By default, the paths for the objects are not only added to the canvas but are also stroked or filled (depending on the specific Geom2D object). Supported Geom2D objects are: Geom2D::Point Geom2D::Segment Geom2D::Polygon Geom2D::PolygonSet Examples: canvas.draw(:geom2d, object: ::Geom2D::Point(-10, 10)) canvas.draw(:geom2d, object: ::Geom2D::Polygon([10, 10], [30, 20], [0, 50])) See: Geom2D - github.com/gettalong/geom2d Attributes object[RW]¶ The Geom2D object that should be drawn. This attribute must be set before drawing. path_only[RW]¶ Specifies whether only paths should be drawn or if they should be stroked/filled too (the default). Examples: canvas.draw(:geom2d, object: ::Geom2D::Segment([0, 0], [0, 50])) canvas.draw(:geom2d, object: ::Geom2D::Segment([0, 0], [50, 0]), path_only: true) point_radius[RW]¶ The radius to use when drawing Geom2D::Point objects, defaults to 1. Examples: canvas.draw(:geom2d, object: ::Geom2D::Point(0, 0)) canvas.draw(:geom2d, object: ::Geom2D::Point(50, 0), point_radius: 5) Public Class Methods configure(**kwargs)¶ Creates and configures a new Geom2D drawing support object. See configure for the allowed keyword arguments. new()¶ Creates a Geom2D drawing support object. A call to configure is mandatory afterwards to set the object to be drawn. Public Instance Methods configure(object: nil, point_radius: nil, path_only: nil)¶ Configures the Geom2D drawing support object. The following arguments are allowed: :object The object that should be drawn. If this argument has not been set before and is also not given, an error will be raised when calling draw. :point_radius The radius of the points when drawing points. :path_only Whether only the path should be drawn. Any arguments not specified are not modified and retain their old value, see the getter methods for the inital values. Returns self. Examples: obj = canvas.graphic_object(:geom2d, object: ::Geom2D::Point(0, 0)) canvas.draw(obj) canvas.opacity(fill_alpha: 0.5).fill_color(\"hp-blue\"). draw(obj, point_radius: 10) draw(canvas)¶ Draws the Geom2D object onto the given Canvas. Examples: obj = canvas.graphic_object(:geom2d, object: ::Geom2D::Point(0, 0)) obj.draw(canvas) "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/GraphicObject/SolidArc.html","title":"HexaPDF::Content::GraphicObject::SolidArc","tags":"","text":" Attributescxcyend_angleinclinationinner_ainner_bouter_aouter_bstart_angleClass MethodsconfigurenewInstance Methodsconfiguredraw class HexaPDF::Content::GraphicObject::SolidArc Parent Object This graphic object represents a solid elliptical arc, i.e. an arc that has an inner and an outer set of a/b values. Note that only the path itself is added to the canvas. So depending on the use-case the path itself still has to be, for example, stroked. This graphic object is registered under the :solid_arc key for use with the HexaPDF::Content::Canvas class. It can be used to create an (elliptical) disk (when the inner a/b are zero and the difference between start and end angles is greater than or equal to 360), canvas.fill_color(\"hp-blue\"). draw(:solid_arc, outer_a: 80, outer_b: 50). fill_stroke an (elliptical) sector (when the inner a/b are zero and the difference between start and end angles is less than 360), canvas.fill_color(\"hp-blue\"). draw(:solid_arc, outer_a: 80, outer_b: 50, start_angle: 20, end_angle: 230). fill_stroke an (elliptical) annulus (when the inner a/b are nonzero and the difference between start and end angles is greater than or equal to 360), canvas.fill_color(\"hp-blue\"). draw(:solid_arc, outer_a: 80, outer_b: 50, inner_a: 70, inner_b: 30). fill_stroke and an (elliptical) *annular sector* (when the inner a/b are nonzero and the difference between start and end angles is less than 360) canvas.fill_color(\"hp-blue\"). draw(:solid_arc, outer_a: 80, outer_b: 50, inner_a: 70, inner_b: 30, start_angle: 20, end_angle: 230). fill_stroke See: Arc Attributes cx[R]¶ x-coordinate of center point, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50).stroke cy[R]¶ y-coordinate of center point, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cy: 50).stroke end_angle[R]¶ End angle of the solid arc in degrees, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, end_angle: 120).stroke inclination[R]¶ Inclination in degrees of semi-major axis in respect to x-axis, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, inclination: 40).stroke inner_a[R]¶ Length of inner semi-major axis which (without altering the inclination) is parallel to the x-axis, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, inner_a: 5).stroke inner_b[R]¶ Length of inner semi-minor axis which (without altering the inclination) is parallel to the y-axis, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, inner_b: 20).stroke outer_a[R]¶ Length of outer semi-major axis which (without altering the inclination) is parallel to the x-axis, defaults to 1. Examples: solid_arc =
canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, outer_a: 45).stroke outer_b[R]¶ Length of outer semi-minor axis which (without altering the inclination) is parallel to the y-axis, defaults to 1. Examples: solid_arc = canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, outer_b: 40).stroke start_angle[R]¶ Start angle of the solid arc in degrees, defaults to 0. Examples: solid_arc = canvas.graphic_object(:solid_arc, cx: -50, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke canvas.stroke_color(\"hp-blue\").draw(solid_arc, cx: 50, start_angle: 60).stroke Public Class Methods configure(**kwargs)¶ Creates and configures a new solid arc object. See configure for the allowed keyword arguments. new()¶ Creates a solid arc with default values (a unit disk at the origin). Examples: canvas.draw(:solid_arc).stroke Public Instance Methods configure(cx: nil, cy: nil, inner_a: nil, inner_b: nil, outer_a: nil, outer_b: nil, start_angle: nil, end_angle: nil, inclination: nil)¶ Configures the solid arc with center point (cx, cy), inner semi-major axis inner_a, inner semi-minor axis inner_b, outer semi-major axis outer_a, outer semi-minor axis outer_b, start angle of start_angle degrees, end angle of end_angle degrees and an inclination in respect to the x-axis of inclination degrees. Any arguments not specified are not modified and retain their old value, see initialize for the inital values. Returns self. Examples: solid_arc = canvas.graphic_object(:solid_arc) solid_arc.configure(outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) canvas.draw(solid_arc).stroke draw(canvas)¶ Draws the solid arc on the given Canvas. Examples: solid_arc = canvas.graphic_object(:solid_arc, outer_a: 30, outer_b: 20, inner_a: 20, inner_b: 10) solid_arc.draw(canvas) canvas.stroke "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/GraphicsState.html","title":"HexaPDF::Content::GraphicsState","tags":"","text":" Attributesalpha_sourceblend_modecharacter_spacingctmfill_alphafill_colorfontfont_sizehorizontal_scalingleadingline_cap_styleline_dash_patternline_join_styleline_widthmiter_limitrendering_intentscaled_character_spacingscaled_font_sizescaled_horizontal_scalingscaled_word_spacingsoft_maskstroke_adjustmentstroke_alphastroke_colorstroke_color_spacetext_knockouttext_rendering_modetext_risetlmtmword_spacingClass MethodsnewInstance Methodsrestoresavesaved_states? class HexaPDF::Content::GraphicsState Parent Object A GraphicsState object holds all the graphic control parameters needed for correct operation when parsing or creating a content stream with a Processor object. While a content stream is parsed/created, operations may use the current parameters or modify them. The device-dependent graphics state parameters have not been implemented! See: PDF2.0 s8.4.1 Attributes alpha_source[RW]¶ A boolean specifying whether the current soft mask and alpha parameters should be interpreted as shape values or opacity values. blend_mode[RW]¶ The current blend mode for the transparent imaging model. character_spacing[R]¶ The character spacing in unscaled text units. It specifies the additional spacing used for the horizontal or vertical displacement of glyphs. ctm[RW]¶ The current transformation matrix. fill_alpha[RW]¶ The alpha constant for non-stroking operations in the transparent imaging model. fill_color[RW]¶ The current color used for all other (i.e. non-stroking) painting operations. font[R]¶ The font for the text. font_size[R]¶ The font size. horizontal_scaling[R]¶ The horizontal text scaling. The value specifies the percentage of the normal width that should be used. leading[RW]¶ The leading in unscaled text units. It specifies the distance between the baselines of adjacent lines of text. line_cap_style[RW]¶ The current line cap style (for the available values see LineCapStyle). line_dash_pattern[RW]¶ The line dash pattern (see LineDashPattern). line_join_style[RW]¶ The current line join style (for the available values see LineJoinStyle). line_width[RW]¶ The current line width in user space units. miter_limit[RW]¶ The maximum line length of mitered line joins for stroked paths. rendering_intent[RW]¶ The rendering intent (only used for CIE-based colors; for the available values see RenderingIntent). scaled_character_spacing[R]¶ The scaled character spacing used in glyph displacement calculations. This returns the character spacing multiplied by scaled_horizontal_scaling. See PDF2.0 s9.4.4 scaled_font_size[R]¶ The scaled font size used in glyph displacement calculations. This returns the font size multiplied by the scaling factor from glyph space to text space (0.001 for all fonts except Type3 fonts or the scaling specified in /FontMatrix for Type3 fonts) and multiplied by scaled_horizontal_scaling. See PDF2.0 s9.4.4, HexaPDF::Type::FontType3 scaled_horizontal_scaling[R]¶ The scaled horizontal scaling used in glyph displacement calculations. Since the horizontal scaling attribute is stored in percent of 100, this method returns the correct value for calculations. See PDF2.0 s9.4.4 scaled_word_spacing[R]¶ The scaled word spacing used in glyph displacement calculations. This returns the word spacing multiplied by scaled_horizontal_scaling. See PDF2.0 s9.4.4 soft_mask[RW]¶ The soft mask specifying the mask shape or mask opacity value to be used in the transparent imaging model. stroke_adjustment[RW]¶ The stroke adjustment for very small line width. stroke_alpha[RW]¶ The alpha constant for stroking operations in the transparent imaging model. stroke_color[RW]¶ The current color used for stroking operations during painting. stroke_color_space[RW]¶ The current color space for stroking operations during painting. text_knockout[RW]¶ The text knockout, a boolean value. It specifies whether each glyph should be treated as separate elementary object for the purpose of color compositing in the transparent imaging model (knockout = false) or if all glyphs together are treated as one elementary object (knockout = true). text_rendering_mode[RW]¶ The text rendering mode. It determines if and how the glyphs of a text should be shown (for all available values see TextRenderingMode). text_rise[RW]¶ The text rise distance in unscaled text units. It specifies the distance that the baseline should be moved up or down from its default location. tlm[RW]¶ The text line matrix which captures the state of the text matrix at the beginning of a line. As with the text matrix the text line matrix is non-nil only when inside a text object. tm[RW]¶ The text matrix. This attribute is non-nil only when inside a text object. word_spacing[R]¶ The word spacing in unscaled text units. It works like the character spacing but is only applied to the ASCII space character. Public Class Methods new()¶ Initializes the graphics state parameters to their default values. Public Instance Methods restore()¶ Restores the graphics state from the internal stack. Raises an error if the stack is empty. save()¶ Saves the current graphics state on the internal stack. saved_states?()¶ Returns true if the internal stack of saved graphic states contains entries. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/LineCapStyle.html","title":"HexaPDF::Content::LineCapStyle","tags":"","text":" ConstantsBUTT_CAPPROJECTING_SQUARE_CAPROUND_CAPClass Methodsnormalize module HexaPDF::Content::LineCapStyle Defines all available line cap styles as constants. Each line cap style is an instance of NamedValue, see ::normalize. For use with e.g. Canvas#line_cap_style. See: PDF2.0 s8.4.3.3 Constants BUTT_CAP¶ Stroke is squared off at the endpoint of a path. Specify as 0 or :butt. PROJECTING_SQUARE_CAP¶ The stroke continues half the line width beyond the endpoint of a path. Specify as 2 or :projecting_square. ROUND_CAP¶ A semicircular arc is drawn at the endpoint of a path. Specify as 1 or :round. Public Class Methods normalize(style)¶ Returns the argument normalized to a valid line cap style, i.e. a NamedValue instance. 0 or :butt can be used for the BUTT_CAP style. 1 or :round can be used for the ROUND_CAP style. 2 or :projecting_square can be used for the PROJECTING_SQUARE_CAP style. Otherwise an error is raised. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/LineDashPattern.html","title":"HexaPDF::Content::LineDashPattern","tags":"","text":" AttributesarrayphaseClass MethodsnewnormalizeInstance Methods==to_operands class HexaPDF::Content::LineDashPattern Parent Object The line dash pattern defines how a line should be dashed. For use with e.g. Canvas#line_dash_pattern. A dash pattern consists of two parts: the dash array and the dash phase. The dash array defines the length of alternating dashes and gaps (important: starting with dashes). And the dash phase defines the distance into the dash array at which to start. It is easier to show. Following are dash arrays and dash phases and how they would be interpreted: [] 0 No dash, one solid line [3] 0 3 unit dash, 3 unit gap, 3 unit dash, 3 unit gap, ... [3] 1 2 unit dash, 3 unit gap, 3 unit dash, 3 unit gap, ... [2 1] 0 2 unit dash, 1 unit gap, 2 unit dash, 1 unit gap, ... [3 5] 6 2 unit gap, 3 unit dash, 5 unit gap, 3 unit dash, ... [2 3] 6 1 unit dash, 3 unit gap, 2 unit dash, 3 unit gap, ... And visualized it looks like this: See: PDF2.0 s8.4.3.6 Attributes array[R]¶ The dash array. phase[R]¶ The dash phase. Public Class Methods new(array = [], phase = 0)¶ Inititalizes the line dash pattern with the given array and phase. The argument phase must be non-negative and the numbers in the array must be non-negative and must not all be zero. normalize(line_dash_pattern) → line_dash_pattern ¶ normalize(array, phase = 0) →
LineDashPattern.new(array, phase) ¶ normalize(number, phase = 0) → LineDashPattern.new([number], phase) ¶ normalize(0) → LineDashPattern.new ¶ Returns the arguments normalized to a valid LineDashPattern instance. If array is 0, the default line dash pattern representing a solid line will be used. If it is a single number, it will be converted into an array holding that number. Public Instance Methods ==(other)¶ Returns true if the other line dash pattern is the same as this one. to_operands()¶ Converts the LineDashPattern object to an array of operands for the associated PDF content operator. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/LineJoinStyle.html","title":"HexaPDF::Content::LineJoinStyle","tags":"","text":" ConstantsBEVEL_JOINMITER_JOINROUND_JOINClass Methodsnormalize module HexaPDF::Content::LineJoinStyle Defines all available line join styles as constants. Each line join style is an instance of NamedValue, see ::normalize For use with e.g. Canvas#line_join_style. See: PDF2.0 s8.4.3.4 Constants BEVEL_JOIN¶ The two segments are finished with butt caps and the space between the ends is filled with a triangle. Specify as 2 or :bevel. MITER_JOIN¶ The outer lines of the two segments continue until they meet at an angle. Specify as 0 or :miter. ROUND_JOIN¶ An arc of a circle is drawn around the point where the segments meet. Specify as 1 or :round. Public Class Methods normalize(style)¶ Returns the argument normalized to a valid line join style, i.e. a NamedValue instance. 0 or :miter can be used for the MITER_JOIN style. 1 or :round can be used for the ROUND_JOIN style. 2 or :bevel can be used for the BEVEL_JOIN style. Otherwise an error is raised. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/NamedValue.html","title":"HexaPDF::Content::NamedValue","tags":"","text":" AttributesnamevalueClass MethodsnewInstance Methods==to_operands class HexaPDF::Content::NamedValue Parent Object Associates a name with a value, used by various graphics state parameters. See LineCapStyle, LineJoinStyle, TextRenderingMode Attributes name[R]¶ The name for the value. value[R]¶ The value itself. Public Class Methods new(name, value)¶ Creates a new NamedValue object and freezes it. Public Instance Methods ==(other)¶ The object is equal to other if either the name or the value is equal to other, or if the other object is a NamedValue object with the same name and value. to_operands()¶ Returns the value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/index.html","title":"HexaPDF::Content::Operator","tags":"","text":" ConstantsDEFAULT_OPERATORS module HexaPDF::Content::Operator This module contains the content operator implementations. General Information¶ ↑ A PDF content streams consists of a series of instructions, operands followed by an operator name. Each operator has a specific function, for example, the ‘G’ operator sets the stroke color to the specified gray value. Since HexaPDF doesn’t have a content stream rendering facility, it is only interested in the effects an operator has on the graphics state. By calling the invoke method with a Processor as first argument and the operands as the rest of the arguments, the operator can modify the graphics state as needed. This ensures internal consistency and correct operation. Operator objects are designed to be state-less. This means that the operands have to be passed as arguments to the methods that need them. Operator Implementations¶ ↑ HexaPDF comes with operator implementations for all PDF operations. These operator implementations are derived from the BaseOperator class which provides all needed methods. In general, an operator implementation is an object that responds to the following methods: invoke(processor, *operands) When an operator is invoked, it performs its job, e.g. changing the graphics state. serialize(serializer, *operands) Returns the operator together with its operands in serialized form. name Returns the name of the operator as String. See: PDF2.0 s8, s9 Constants DEFAULT_OPERATORS¶ Mapping of operator names to their default operator implementations. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/AppendRectangle.html","title":"HexaPDF::Content::Operator::AppendRectangle","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::AppendRectangle Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘re’ operator. See: PDF2.0 s8.5.2.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/BaseOperator.html","title":"HexaPDF::Content::Operator::BaseOperator","tags":"","text":" AttributesnameClass MethodsnewInstance Methodsinvokeserialize class HexaPDF::Content::Operator::BaseOperator Parent Object Base class for operator implementations. A default implementation for the serialize method is provided. However, for performance reasons each operator should provide a custom serialize method. Attributes name[R]¶ The name of the operator. Public Class Methods new(name)¶ Initialize the operator called name. Public Instance Methods invoke(*)¶ Invokes the operator so that it performs its job. This base version does nothing! serialize(serializer, *operands)¶ Returns the string representation of the operator, i.e. operand1 operand2 operand3 name "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/BeginText.html","title":"HexaPDF::Content::Operator::BeginText","tags":"","text":" class HexaPDF::Content::Operator::BeginText Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘BT’ operator. See: PDF2.0 s9.4.1 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/ClipPath.html","title":"HexaPDF::Content::Operator::ClipPath","tags":"","text":" class HexaPDF::Content::Operator::ClipPath Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘W’ and ‘W*’ operators. See: PDF2.0 s8.5.4 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/ConcatenateMatrix.html","title":"HexaPDF::Content::Operator::ConcatenateMatrix","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::ConcatenateMatrix Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘cm’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/CurveTo.html","title":"HexaPDF::Content::Operator::CurveTo","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::CurveTo Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘c’ operators. See: PDF2.0 s8.5.2.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/CurveToNoFirstControlPoint.html","title":"HexaPDF::Content::Operator::CurveToNoFirstControlPoint","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::CurveToNoFirstControlPoint Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘v’ operators. See: PDF2.0 s8.5.2.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/CurveToNoSecondControlPoint.html","title":"HexaPDF::Content::Operator::CurveToNoSecondControlPoint","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::CurveToNoSecondControlPoint Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘y’ operators. See: PDF2.0 s8.5.2.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/EndPath.html","title":"HexaPDF::Content::Operator::EndPath","tags":"","text":" class HexaPDF::Content::Operator::EndPath Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘S’, ‘s’, ‘f’, ‘F’, ‘f*’, ‘B’, ‘B*’, ‘b’, ‘b*’ and ‘n’ operators. See: PDF2.0 s8.5.3.1 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/EndText.html","title":"HexaPDF::Content::Operator::EndText","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::EndText Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘ET’ operator. See: PDF2.0 s9.4.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/InlineImage.html","title":"HexaPDF::Content::Operator::InlineImage","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::InlineImage Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘BI’ operator which handles the complete inline image, i.e. the ‘ID’ and ‘EI’ operators are never encountered. See: PDF2.0 s8.9.7 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/LineTo.html","title":"HexaPDF::Content::Operator::LineTo","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::LineTo Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘l’ operator. See: PDF2.0 s8.5.2.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new
"},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/MoveText.html","title":"HexaPDF::Content::Operator::MoveText","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::MoveText Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘Td’ operator. See: PDF2.0 s9.4.2 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/MoveTextAndSetLeading.html","title":"HexaPDF::Content::Operator::MoveTextAndSetLeading","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::MoveTextAndSetLeading Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘TD’ operator. See: PDF2.0 s9.4.2 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/MoveTextNextLine.html","title":"HexaPDF::Content::Operator::MoveTextNextLine","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::MoveTextNextLine Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘T*’ operator. See: PDF2.0 s9.4.2 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/MoveTextNextLineAndShowText.html","title":"HexaPDF::Content::Operator::MoveTextNextLineAndShowText","tags":"","text":" Instance Methodsserialize class HexaPDF::Content::Operator::MoveTextNextLineAndShowText Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘ operator. See: PDF2.0 s9.4.3 Public Instance Methods serialize(serializer, text)¶ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/MoveTo.html","title":"HexaPDF::Content::Operator::MoveTo","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::MoveTo Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘m’ operator. See: PDF2.0 s8.5.2.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/NoArgumentOperator.html","title":"HexaPDF::Content::Operator::NoArgumentOperator","tags":"","text":" Instance Methodsserialize class HexaPDF::Content::Operator::NoArgumentOperator Parent HexaPDF::Content::Operator::BaseOperator A specialized operator class for operators that take no arguments. Provides an optimized serialize method. Public Instance Methods serialize(_serializer)¶ An optimized version of the serialization algorithm. See: BaseOperator#serialize "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/RestoreGraphicsState.html","title":"HexaPDF::Content::Operator::RestoreGraphicsState","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::RestoreGraphicsState Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘Q’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SaveGraphicsState.html","title":"HexaPDF::Content::Operator::SaveGraphicsState","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SaveGraphicsState Parent HexaPDF::Content::Operator::NoArgumentOperator Implementation of the ‘q’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetCharacterSpacing.html","title":"HexaPDF::Content::Operator::SetCharacterSpacing","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetCharacterSpacing Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘Tc’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetDeviceCMYKNonStrokingColor.html","title":"HexaPDF::Content::Operator::SetDeviceCMYKNonStrokingColor","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetDeviceCMYKNonStrokingColor Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘k’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetDeviceCMYKStrokingColor.html","title":"HexaPDF::Content::Operator::SetDeviceCMYKStrokingColor","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetDeviceCMYKStrokingColor Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘K’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetDeviceGrayNonStrokingColor.html","title":"HexaPDF::Content::Operator::SetDeviceGrayNonStrokingColor","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetDeviceGrayNonStrokingColor Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘g’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetDeviceGrayStrokingColor.html","title":"HexaPDF::Content::Operator::SetDeviceGrayStrokingColor","tags":"","text":" class HexaPDF::Content::Operator::SetDeviceGrayStrokingColor Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘G’ operator. See: PDF2.0 s8.6.8 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetDeviceRGBNonStrokingColor.html","title":"HexaPDF::Content::Operator::SetDeviceRGBNonStrokingColor","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetDeviceRGBNonStrokingColor Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘rg’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetDeviceRGBStrokingColor.html","title":"HexaPDF::Content::Operator::SetDeviceRGBStrokingColor","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetDeviceRGBStrokingColor Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘RG’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetFontAndSize.html","title":"HexaPDF::Content::Operator::SetFontAndSize","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetFontAndSize Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘Tf’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetGraphicsStateParameters.html","title":"HexaPDF::Content::Operator::SetGraphicsStateParameters","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetGraphicsStateParameters Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘gs’ operator. Note: Only parameters supported by the GraphicsState/TextState classes are assigned, the rest are ignored! See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetHorizontalScaling.html","title":"HexaPDF::Content::Operator::SetHorizontalScaling","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetHorizontalScaling Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘Tz’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetLeading.html","title":"HexaPDF::Content::Operator::SetLeading","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetLeading Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘TL’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetLineCapStyle.html","title":"HexaPDF::Content::Operator::SetLineCapStyle","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetLineCapStyle Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘J’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetLineDashPattern.html","title":"HexaPDF::Content::Operator::SetLineDashPattern","tags":"","text":" Class Methodsnew class
HexaPDF::Content::Operator::SetLineDashPattern Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘d’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetLineJoinStyle.html","title":"HexaPDF::Content::Operator::SetLineJoinStyle","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetLineJoinStyle Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘j’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetLineWidth.html","title":"HexaPDF::Content::Operator::SetLineWidth","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetLineWidth Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘w’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetMiterLimit.html","title":"HexaPDF::Content::Operator::SetMiterLimit","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetMiterLimit Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘M’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetNonStrokingColor.html","title":"HexaPDF::Content::Operator::SetNonStrokingColor","tags":"","text":" class HexaPDF::Content::Operator::SetNonStrokingColor Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘sc’ and ‘scn’ operator. See: PDF2.0 s8.6.8 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetNonStrokingColorSpace.html","title":"HexaPDF::Content::Operator::SetNonStrokingColorSpace","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetNonStrokingColorSpace Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘cs’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetRenderingIntent.html","title":"HexaPDF::Content::Operator::SetRenderingIntent","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetRenderingIntent Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘ri’ operator. See: PDF2.0 s8.4.4 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetSpacingMoveTextNextLineAndShowText.html","title":"HexaPDF::Content::Operator::SetSpacingMoveTextNextLineAndShowText","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetSpacingMoveTextNextLineAndShowText Parent HexaPDF::Content::Operator::BaseOperator Implementation of the “ operator. See: PDF2.0 s9.4.3 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetStrokingColor.html","title":"HexaPDF::Content::Operator::SetStrokingColor","tags":"","text":" class HexaPDF::Content::Operator::SetStrokingColor Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘SC’ and ‘SCN’ operator. See: PDF2.0 s8.6.8 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetStrokingColorSpace.html","title":"HexaPDF::Content::Operator::SetStrokingColorSpace","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetStrokingColorSpace Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘CS’ operator. See: PDF2.0 s8.6.8 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetTextMatrix.html","title":"HexaPDF::Content::Operator::SetTextMatrix","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetTextMatrix Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘Tm’ operator. See: PDF2.0 s9.4.2 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetTextRenderingMode.html","title":"HexaPDF::Content::Operator::SetTextRenderingMode","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetTextRenderingMode Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘Tr’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetTextRise.html","title":"HexaPDF::Content::Operator::SetTextRise","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetTextRise Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘Ts’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SetWordSpacing.html","title":"HexaPDF::Content::Operator::SetWordSpacing","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::SetWordSpacing Parent HexaPDF::Content::Operator::SingleNumericArgumentOperator Implementation of the ‘Tw’ operator. See: PDF2.0 s9.3.1 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/ShowText.html","title":"HexaPDF::Content::Operator::ShowText","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::ShowText Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘Tj’ operator. See: PDF2.0 s9.4.3 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/ShowTextWithPositioning.html","title":"HexaPDF::Content::Operator::ShowTextWithPositioning","tags":"","text":" Class Methodsnew class HexaPDF::Content::Operator::ShowTextWithPositioning Parent HexaPDF::Content::Operator::BaseOperator Implementation of the ‘TJ’ operator. See: PDF2.0 s9.4.3 Public Class Methods new()¶ Creates the operator. Calls superclass method HexaPDF::Content::Operator::BaseOperator::new "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Operator/SingleNumericArgumentOperator.html","title":"HexaPDF::Content::Operator::SingleNumericArgumentOperator","tags":"","text":" Instance Methodsserialize class HexaPDF::Content::Operator::SingleNumericArgumentOperator Parent HexaPDF::Content::Operator::BaseOperator A specialized operator class for operators that take a single numeric argument. Provides an optimized serialize method. Public Instance Methods serialize(serializer, arg)¶ An optimized version of the serialization algorithm. See: BaseOperator#serialize "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Parser.html","title":"HexaPDF::Content::Parser","tags":"","text":" Class MethodsparseInstance Methodsparse class HexaPDF::Content::Parser Parent Object This class knows how to correctly parse a content stream. Overview¶ ↑ A content stream is mostly just a stream of PDF objects. However, there is one exception: inline images. Since inline images don’t follow the normal PDF object parsing rules, they need to be handled specially and this is the reason for this class. Therefore only the BI operator is ever called for inline images because the ID and EI operators are handled by the parser. To parse some contents the parse method needs to be called with the contents to be parsed and a Processor object which is used for processing the parsed operators. Public Class Methods parse(contents, processor = nil, &block)¶ Creates a new Parser object and calls parse. Public Instance Methods parse(contents, processor = nil) { |object, params| ... }¶ Parses the contents and calls the processor object or the given block for each parsed operator. If a full-blown Processor is not needed (e.g. because the graphics state doesn’t need to be maintained), one can use the block form to handle the parsed objects and their parameters. Note: The parameters array is reused for each processed operator, so duplicate it if necessary. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Processor/index.html","title":"HexaPDF::Content::Processor","tags":"","text":" ConstantsOPERATOR_MESSAGE_NAME_MAPAttributesgraphics_objectgraphics_stateoperatorsresourcesClass MethodsnewInstance Methodsdecode_textdecode_text_with_positioningpaint_xobjectprocessresources= class HexaPDF::Content::Processor Parent Object This class is used for processing content operators extracted from a content stream. General Information¶ ↑ When a content stream is read, operators and their operands are extracted. After extracting these operators are usually processed with a Processor instance that ensures that the needed setup (like modifying the graphics state) is done
before further processing. How Processing Works¶ ↑ The operator implementations (see the Operator module) are called first and they ensure that the processing state is consistent. For example, operators that modify the graphics state do actually modify the graphics_state object. However, operator implementations are only used for this task and not more, so they are very specific and normally don’t need to be changed. After that methods corresponding to the operator names are invoked on the processor object (if they exist). Each PDF operator name is mapped to a nicer message name via the OPERATOR_MESSAGE_NAME_MAP constant. For example, the operator ‘q’ is mapped to ‘save_graphics_state“. The task of these methods is to do something useful with the content itself, it doesn’t need to concern itself with ensuring the consistency of the processing state. For example, the processor could use the processing state to extract the text. Or paint the content on a canvas. For inline images only the ‘BI’ operator mapped to ‘inline_image’ is used. Although also the operators ‘ID’ and ‘EI’ exist for inline images, they are not used because they are consumed while parsing inline images and do not reflect separate operators. Text Processing¶ ↑ Two utility methods decode_text and decode_text_with_positioning for extracting text are provided. Both can directly be invoked from the ‘show_text’ and ‘show_text_with_positioning’ methods. Constants OPERATOR_MESSAGE_NAME_MAP¶ Mapping of PDF operator names to message names that are sent to renderer implementations. Attributes graphics_object[RW]¶ The current graphics object. It is not advised to change this attribute manually, it is automatically adjusted according to the processed operators! This attribute can have the following values: :none No current graphics object, i.e. the processor is at the page description level. :path The current graphics object is a path. :clipping_path The current graphics object is a clipping path. :text The current graphics object is text. See: PDF2.0 s8.2 graphics_state[R]¶ The GraphicsState object containing the current graphics state. It is not advised to change this attribute manually, it is automatically adjusted according to the processed operators! operators[R]¶ Mapping from operator name (Symbol) to a callable object. This hash is prepopulated with the default operator implementations (see Operator::DEFAULT_OPERATORS). If a default operator implementation is not satisfactory, it can easily be changed by modifying this hash. resources[R]¶ The resources dictionary used during processing. Public Class Methods new(resources = nil)¶ Initializes a new processor that uses the resources PDF dictionary for resolving resources while processing operators. It is not mandatory to set the resources dictionary on initialization but it needs to be set prior to processing operators! Public Instance Methods process(operator, operands = [])¶ Processes the operator with the given operands. The operator is first processed with an operator implementation (if any) to ensure correct operations and then the corresponding method on this object is invoked. resources=(res)¶ Sets the resources dictionary used during processing. The first time resources are set, they are also stored as the “original” resources. This is needed because form XObject don’t need to have a resources dictionary and can use the page’s resources dictionary instead. Protected Instance Methods decode_text(data)¶ Decodes the given text object and returns it as UTF-8 string. The argument may either be a simple text string (Tj operator) or an array that contains text strings together with positioning information (TJ operator). decode_text_with_positioning(data)¶ Decodes the given text object and returns it as a CompositeBox object. The argument may either be a simple text string (Tj operator) or an array that contains text strings together with positioning information (TJ operator). For each glyph a GlyphBox object is computed. For horizontal fonts the width is predetermined but not the height. The latter is chosen to be the height and offset of the font’s bounding box. paint_xobject(name)¶ Provides a default implementation for the ‘Do’ operator. It checks if the XObject is a Form XObject and if so, processes the contents of the Form XObject. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Processor/CompositeBox.html","title":"HexaPDF::Content::Processor::CompositeBox","tags":"","text":" AttributesboxesClass MethodsnewInstance Methods<<[]eachlower_leftlower_rightstringupper_leftupper_right class HexaPDF::Content::Processor::CompositeBox Parent Object Represents a box composed of GlyphBox objects. The bounding box methods lower_left, lower_right, upper_left, upper_right are computed by just using the first and last boxes, assuming the boxes are arranged from left to right in a straight line. Attributes boxes[R]¶ The glyph boxes contained in this composite box object. Public Class Methods new()¶ Creates an empty object. Public Instance Methods <<(glyph_box)¶ Appends the given text glyph box. [](index)¶ Returns the glyph box at the given index, or nil if the index is out of range. each {|glyph_box| block} → composite ¶ each → Enumerator ¶ Iterates over all contained glyph boxes. lower_left → [llx, lly] ¶ Returns the lower left coordinate lower_right → [lrx, lry] ¶ Returns the lower right coordinate string()¶ Returns the concatenated text of all the glyph boxes. upper_left → [ulx, uly] ¶ Returns the upper left coordinate upper_right → [urx, ury] ¶ Returns the upper right coordinate. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/Processor/GlyphBox.html","title":"HexaPDF::Content::Processor::GlyphBox","tags":"","text":" Attributescode_pointstringClass MethodsnewInstance Methodslower_leftlower_rightpointsupper_leftupper_right class HexaPDF::Content::Processor::GlyphBox Parent Object Represents an (immutable) glyph box with positioning information. Since the glyph may have been transformed by an affine matrix, the bounding box may not be a rectangle in all cases but it is always a parallelogram. Attributes code_point[R]¶ The code point representing the glyph. string[R]¶ The Unicode value of the code point. Public Class Methods new(code_point, string, llx, lly, lrx, lry, ulx, uly)¶ Creates a new glyph box for the given code point/Unicode value pair with the lower left coordinate [llx, lly], the lower right coordinate [lrx, lry], and the upper left coordinate [ulx, uly]. Public Instance Methods lower_left → [llx, lly] ¶ Returns the lower left coordinate lower_right → [lrx, lry] ¶ Returns the lower right coordinate points → [llx, lly, lrx, lry, urx, ury, ulx, uly] ¶ Returns the four corners of the box as an array of coordinates, starting with the lower left corner and going counterclockwise. upper_left → [ulx, uly] ¶ Returns the upper left coordinate upper_right → [urx, ury] ¶ Returns the upper right coordinate which is computed by using the other three points of the parallelogram. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/RenderingIntent.html","title":"HexaPDF::Content::RenderingIntent","tags":"","text":" ConstantsABSOLUTE_COLORIMETRICPERCEPTUALRELATIVE_COLORIMETRICSATURATIONClass Methodsnormalize module HexaPDF::Content::RenderingIntent Defines all available rendering intents as constants. For use with e.g. Canvas#rendering_intent. See: PDF2.0 s8.6.5.8 Constants ABSOLUTE_COLORIMETRIC¶ Colors should be represented solely with respect to the light source. PERCEPTUAL¶ Colous should be represented in a manner that provides a pleasing perceptual appearance. RELATIVE_COLORIMETRIC¶ Colous should be represented with respect to the combination of the light source and the output medium’s white point. SATURATION¶ Colors should be represented in a manner that preserves or emphasizes saturation. Public Class Methods normalize(intent)¶ Returns the argument normalized to a valid rendering intent. If the argument is a valid symbol, it is just returned. Otherwise an error is raised. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/TextRenderingMode.html","title":"HexaPDF::Content::TextRenderingMode","tags":"","text":" ConstantsCLIPFILLFILL_CLIPFILL_STROKEFILL_STROKE_CLIPINVISIBLESTROKESTROKE_CLIPClass Methodsnormalize module HexaPDF::Content::TextRenderingMode Defines all available text rendering modes as constants. Each text rendering mode is an instance of NamedValue. For use with e.g. Canvas#text_rendering_mode. See: PDF2.0 s9.3.6 Constants CLIP¶ Add text to path for clipping. Specify as 7 or :clip. FILL¶ Fill text. Specify as 0 or :fill. FILL_CLIP¶ Fill text and add to path for clipping. Specify as 4 or :fill_clip. FILL_STROKE¶ Fill, then stroke text. Specify as 2 or :fill_stroke. FILL_STROKE_CLIP¶ Fill, then stroke text and add to path for clipping. Specify as 6 or :fill_stroke_clip. INVISIBLE¶ Neither fill nor stroke text (invisible). Specify as 3 or :invisible. STROKE¶ Stroke text. Specify as 1 or :stroke. STROKE_CLIP¶ Stroke text and add to path for clipping. Specify as 5 or :stroke_clip. Public Class Methods normalize(style)¶ Returns the argument normalized to a valid text rendering mode, i.e. a NamedValue instance. 0 or :fill can be used for the FILL mode. 1 or :stroke can be used for the STROKE mode. 2 or :fill_stroke can be used for the FILL_STROKE mode. 3 or :invisible can be used for the INVISIBLE mode. 4 or :fill_clip can be used for the FILL_CLIP mode. 5 or :stroke_clip can be used for the STROKE_CLIP mode. 6 or :fill_stroke_clip can be used for the FILL_STROKE_CLIP mode. 7 or :clip can be used for the CLIP mode. Otherwise an error is raised. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Content/TransformationMatrix.html","title":"HexaPDF::Content::TransformationMatrix","tags":"","text":" AttributesabcdefClass MethodsnewInstance Methods==evaluatepremultiplyrotatescaleskewto_atranslate
class HexaPDF::Content::TransformationMatrix Parent Object Included Modules HexaPDF::Utils::MathHelpers A TransformationMatrix is a matrix used in PDF graphics operations to specify the relationship between different coordinate systems. All matrix operations modify the matrix in place. So if the original matrix should be preserved, duplicate it before the operation. It is important to note that the matrix transforms from the new coordinate system to the untransformed coordinate system. This means that after the transformation all coordinates are specified in the new, transformed coordinate system and to get the untransformed coordinates the matrix needs to be applied. Although all operations are done in 2D space the transformation matrix is a 3x3 matrix because homogeneous coordinates are used. This, however, also means that only six entries are actually used that are named like in the following graphic: a b 0 c d 0 e f 1 Here is a simple transformation matrix to translate all coordinates by 5 units horizontally and 10 units vertically: 1 0 0 0 1 0 5 10 1 Details and some examples can be found in the PDF reference. See: PDF2.0 s8.3 Attributes a[R]¶ The value at the position (1,1) in the matrix. b[R]¶ The value at the position (1,2) in the matrix. c[R]¶ The value at the position (2,1) in the matrix. d[R]¶ The value at the position (2,2) in the matrix. e[R]¶ The value at the position (3,1) in the matrix. f[R]¶ The value at the position (3,2) in the matrix. Public Class Methods new(a = 1, b = 0, c = 0, d = 1, e = 0, f = 0)¶ Initializes the transformation matrix with the given values. Public Instance Methods ==(other)¶ Returns true if the other object is a transformation matrix with the same values. evaluate(x, y)¶ Returns the untransformed coordinates of the given point. premultiply(a, b, c, d, e, f)¶ Transforms this matrix by premultiplying it with the given one (ie. given*this) and returns it. rotate(q)¶ Rotates this matrix by an angle of q degrees and returns it. This equal to premultiply(cos(rad(q)), sin(rad(q)), -sin(rad(q)), cos(rad(q)), x, y). scale(sx, sy)¶ Scales this matrix by sx units horizontally and y units vertically and returns it. This is equal to premultiply(sx, 0, 0, sy, 0, 0). skew(a, b)¶ Skews this matrix by an angle of a degrees for the x axis and by an angle of b degrees for the y axis and returns it. This is equal to premultiply(1, tan(rad(a)), tan(rad(b)), 1, x, y). to_a()¶ Creates an array [a, b, c, d, e, f] from the transformation matrix. translate(x, y)¶ Translates this matrix by x units horizontally and y units vertically and returns it. This is equal to premultiply(1, 0, 0, 1, x, y). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Dictionary.html","title":"HexaPDF::Dictionary","tags":"","text":" Class Methodsdefine_fielddefine_typeeach_fieldfieldtypeInstance Methods[][]=deleteeachempty?key?to_htype class HexaPDF::Dictionary Parent HexaPDF::Object Included Modules HexaPDF::DictionaryFields Implementation of the PDF dictionary type. Subclasses should use the available class method ::define_field to create fields according to the PDF specification. This allows, among other things, automatic type checking and basic validation. Fields defined in superclasses are inherited by their subclasses. This avoids duplicating basic field information. If fields differ from their superclass definition, they can be defined again in the subclass. See: PDF2.0 s7.3.7 Public Class Methods define_field(name, type:, required: false, default: nil, indirect: nil, allowed_values: nil, version: '1.0')¶ Defines an entry for the field name and returns the initalized HexaPDF::DictionaryFields::Field object. A suitable converter module (see HexaPDF::DictionaryFields::Field#converter) is selected based on the type argument. Options: type The class (or an array of classes) that a value of this field must have. Here is a mapping from PDF object types to classes: Boolean [TrueClass, FalseClass] (or use the Boolean constant) Integer Integer Real Float String String (for text strings), PDFByteString (for binary strings) Date PDFDate Name Symbol Array PDFArray or Array Dictionary Dictionary (or any subclass) or Hash Stream Stream (or any subclass) Null NilClass If an array of classes is provided, the value can be an instance of any of these classes. If a Symbol object instead of a class is provided, the class is looked up using the ‘object.type_map’ global configuration option when necessary to support lazy loading. Note that if multiple types are allowed and one of the allowed types is Dictionary (or a Symbol), it has to be the first in the list. Otherwise automatic type conversion functions won’t work correctly. required Specifies whether this field is required, either true or false. default Specifies the default value for the field, if any. indirect Specifies whether the value (or the values in the array value) of this field has to be an indirect object (true), a direct object (false) or if it doesn’t matter (unspecified or nil). allowed_values An array of allowed values for this field. version Specifies the minimum version of the PDF specification needed for this value. define_type(type)¶ Defines the static PDF type of the class in cases where this is possible, i.e. when the class implements one specific PDF type (e.g. the HexaPDF::Type::Catalog class). each_field {|name, data| block } → class ¶ each_field → Enumerator ¶ Calls the block once for each field defined either in this class or in one of the ancestor classes. field(name)¶ Returns the field entry for the given field name. The ancestor classes are also searched for such a field entry if none is found for the current class. type()¶ Returns the statically defined PDF type of the class. See ::define_type Public Instance Methods [](name)¶ Returns the value for the given dictionary entry. This method should be used instead of direct access to the value because it provides numerous advantages: References are automatically resolved. Returns the native Ruby object for values with class HexaPDF::Object. However, all subclasses of HexaPDF::Object are returned as is (it makes no sense, for example, to return the hash that describes the Catalog instead of the Catalog object). Automatically wraps hash values in specific subclasses of this class if field information is available (see ::define_field). Returns the default value if one is specified and no value is available. Note: If field information is available for the entry, a Hash or Array value will always be wrapped by Dictionary or PDFArray. Otherwise, the value will be returned as-is. Note: This method may throw a “can’t add a new key into hash during iteration” error in certain cases because it potentially modifies the underlying hash! []=(name, data)¶ Stores the data under name in the dictionary. Name has to be a Symbol. If the current value for this name has the class HexaPDF::Object (and only this, no subclasses) and the given value has not (including subclasses), the value is stored inside the HexaPDF::Object. delete(name)¶ Deletes the name-value pair from the dictionary and returns the value. If such a pair does not exist, nil is returned. each {|name, value| block} → dict ¶ each → Enumerator ¶ Calls the given block once for every name-value entry that is stored in the dictionary. Note that the yielded value is already preprocessed like in []. empty?()¶ Returns true if the dictionary contains no entries. key?(key)¶ Returns true if the given key is present in the dictionary and not nil. to_h()¶ Returns a dup of the underlying hash. type()¶ Returns, in order or availability, the value of ::type, the /Type field or the result of Object#type. Calls superclass method HexaPDF::Object#type "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/index.html","title":"HexaPDF::DictionaryFields","tags":"","text":" ConstantsBooleanPDFByteStringPDFDate module HexaPDF::DictionaryFields A mixin used by Dictionary that implements the infrastructure and classes for defining fields. The class responsible for holding the field information is the Field class. Additionally, each field object is automatically assigned a stateless converter object that knows if data read from a PDF file potentially needs to be converted into a standard format before use. The available converter objects can be retrieved or modified via the Field.converters method. Converter Objects¶ ↑ The methods that need to be implemented by a stateless converter objects are the following: usable_for?(type) Should return true if the converter is usable for the given type. additional_types Should return nil, a single type class or an array of type classes which will additionally be allowed for the field. convert(data, type, document) Should return the converted data if conversion is possible and nil otherwise. The type argument is the result of the Field#type method call and document is the HexaPDF::Document for which the data should be converted. Since a converter usually doesn’t need to store any data, it can be implemented as a module using class methods. This is how it is done for the built-in converter objects. Constants Boolean¶ This constant should always be used for boolean fields. See: PDF2.0 s7.3.2 PDFByteString¶ PDFByteString is used for defining fields with strings in binary encoding. See: PDF2.0 s7.9.2.4 PDFDate¶ PDFDate is used for defining fields which store a date object as a string. See: PDF2.0 s7.9.4 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/ArrayConverter.html","title":"HexaPDF::DictionaryFields::ArrayConverter","tags":"","text":" Class Methodsadditional_typesconvertusable_for? module HexaPDF::DictionaryFields::ArrayConverter Converter module for fields of type PDFArray. This converter ensures that arrays are wrapped by the PDFArray class for more convenient use. Public Class Methods additional_types()¶ PDFArray fields can also contain simple arrays. convert(data,
_type, document)¶ Wraps a given array in the PDFArray class. Otherwise returns nil. usable_for?(type)¶ This converter is usable if the type is PDFArray. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/DateConverter.html","title":"HexaPDF::DictionaryFields::DateConverter","tags":"","text":" Class Methodsadditional_typesconvertusable_for? module HexaPDF::DictionaryFields::DateConverter Converter module for handling PDF date fields since they are stored as strings. The ISO PDF specification differs from Adobe’s specification in respect to the supported date format. When converting from a date string to a Time object, this is taken into account. See: PDF2.0 s7.9.4, ADB1.7 3.8.3 Public Class Methods additional_types()¶ A date field may contain a string in PDF format, or a Time, Date or DateTime object. convert(str, _type, _document)¶ Checks if the given object is a string and converts into a Time object if possible. Otherwise returns nil. This method takes some forms of mangled date strings into account that were found in the wild. usable_for?(type)¶ This converter is usable if the type is PDFDate. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/DictionaryConverter.html","title":"HexaPDF::DictionaryFields::DictionaryConverter","tags":"","text":" Class Methodsadditional_typesconvertusable_for? module HexaPDF::DictionaryFields::DictionaryConverter Converter module for fields of type Dictionary and its subclasses. The first class in the type array of the field is used for the conversion. Symbol names for classes may also be used since they are automatically resolved. Public Class Methods additional_types()¶ Dictionary fields can also contain simple hashes. convert(data, type, document)¶ Wraps the given data value in the PDF specific type class if it can be converted. Otherwise returns nil. usable_for?(type)¶ This converter is used when either a Symbol is provided as type (for lazy loading) or when the type is a class derived from the Dictionary class. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/Field.html","title":"HexaPDF::DictionaryFields::Field","tags":"","text":" Attributesallowed_valuesindirectversionClass Methodsconverter_forconvertersnewInstance Methodsconvertdefaultdefault?required?typevalid_object? class HexaPDF::DictionaryFields::Field Parent Object A field contains information about one field of a structured PDF object and this information comes directly from the PDF specification. By incorporating this field information into HexaPDF it is possible to do many things automatically, like checking for the correct minimum PDF version to use or converting a date from its string representation to a Time object. Attributes allowed_values[R]¶ Returns an array with the allowed values for this field, or nil if the values are not constrained. indirect[R]¶ Returns true if the value for this field needs to be an indirect object, false if it needs to be a direct object or nil if it can be either. version[R]¶ Returns the PDF version that is required for this field. Public Class Methods converter_for(type)¶ Returns the converter for the given type specification. The converter list from converters is checked for a suitable converter from the front to the back. So if two converters could potentially be used for the same type, the one that appears earlier is used. converters()¶ Returns the list of available converter objects. See ::converter_for for information on how this list is used. new(type, required: false, default: nil, indirect: nil, allowed_values: nil, version: nil)¶ Create a new Field object. See Dictionary::define_field for information on the arguments. Depending on the type entry an appropriate field converter object is chosen from the available converters. Public Instance Methods convert(data, document)¶ Converts the data into a useful object if possible. Otherwise returns nil. default()¶ Returns a duplicated default value. default?()¶ Returns true if a default value is available. required?()¶ Returns true if this field is required. type()¶ Returns the array with valid types for this field. valid_object?(obj)¶ Returns true if the given object is valid for this field. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/FileSpecificationConverter.html","title":"HexaPDF::DictionaryFields::FileSpecificationConverter","tags":"","text":" Class Methodsadditional_typesconvertusable_for? module HexaPDF::DictionaryFields::FileSpecificationConverter Converter module for file specification fields. A file specification in string format is converted to the corresponding file specification dictionary. See: PDF2.0 s7.11, HexaPDF::Type::FileSpecification Public Class Methods additional_types()¶ Filespecs can also be simple hashes or strings. convert(data, type, document)¶ Converts a string file specification or a hash into a full file specification. Otherwise returns nil. usable_for?(type)¶ This converter is only used for the :Filespec type. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/IntegerConverter.html","title":"HexaPDF::DictionaryFields::IntegerConverter","tags":"","text":" Class Methodsusable_for? module HexaPDF::DictionaryFields::IntegerConverter Converter module for fields of type Integer. Public Class Methods usable_for?(type)¶ This converter is usable if the type is Integer. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/PDFByteStringConverter.html","title":"HexaPDF::DictionaryFields::PDFByteStringConverter","tags":"","text":" Class Methodsusable_for? module HexaPDF::DictionaryFields::PDFByteStringConverter Converter module for binary string fields to automatically convert a string into binary encoding. See: PDF2.0 s7.9.2.4 Public Class Methods usable_for?(type)¶ This converter is usable if the type is PDFByteString. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/RectangleConverter.html","title":"HexaPDF::DictionaryFields::RectangleConverter","tags":"","text":" Class Methodsadditional_typesconvertusable_for? module HexaPDF::DictionaryFields::RectangleConverter Converter module for fields of type Rectangle. See: PDF2.0 s7.9.5 Public Class Methods additional_types()¶ Rectangle fields can also contain simple arrays. convert(data, _type, document)¶ Wraps a given array using the Rectangle class or as a Null value if the array is invalid. Otherwise returns nil. usable_for?(type)¶ This converter is usable if the type is Rectangle. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DictionaryFields/StringConverter.html","title":"HexaPDF::DictionaryFields::StringConverter","tags":"","text":" Class Methodsusable_for? module HexaPDF::DictionaryFields::StringConverter Converter module for string fields to automatically convert a string into UTF-8 encoding. See: PDF2.0 s7.9.2 Public Class Methods usable_for?(type)¶ This converter is usable if the type is the String class. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/index.html","title":"HexaPDF::DigitalSignature","tags":"","text":" module HexaPDF::DigitalSignature PDF documents can be signed using digital signatures. Such a signature can be used to authenticate the identity of the signer and the contents of the documents. This module contains all code related to digital signatures in PDF: Signatures provides the convenience interface accessible via Document#signatures. Signature implements the PDF signature dictionary. BaseHandler, CMSHandler and PKCS1Handler are used for verifying existing signatures. The Signing module implements the functionality for creating digital signatures. See: PDF2.0 s12.8 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/CMSHandler.html","title":"HexaPDF::DigitalSignature::CMSHandler","tags":"","text":" Class MethodsnewInstance Methodscertificate_chainsigner_certificatesigner_infosigner_namesigning_timeverify class HexaPDF::DigitalSignature::CMSHandler Parent Handler The signature handler for PKCS#7 a.k.a. CMS signatures. Those include, for example, the adbe.pkcs7.detached and ETSI.CAdES.detached sub-filters. See: PDF2.0 s12.8.3.3 Public Class Methods new(signature_dict)¶ Creates a new signature handler for the given signature dictionary. Calls superclass method Public Instance Methods certificate_chain()¶ Returns the certificate chain. signer_certificate()¶ Returns the signer certificate (an instance of OpenSSL::X509::Certificate). signer_info()¶ Returns the signer information object (an instance of OpenSSL::PKCS7::SignerInfo). signer_name()¶ Returns the common name of the signer. Calls superclass method signing_time()¶ Returns the time of signing. verify(store, allow_self_signed: false)¶ Verifies the signature using the provided OpenSSL::X509::Store object. Calls superclass method "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Handler.html","title":"HexaPDF::DigitalSignature::Handler","tags":"","text":" Attributessignature_dictClass MethodsnewInstance Methodscertificate_chaincheck_certified_signaturesigner_certificatesigner_namesigning_timestore_verification_callbackverifyverify_signing_time class HexaPDF::DigitalSignature::Handler Parent Object The base signature handler providing common functionality. Specific signature handlers need to override methods if necessary and implement the needed ones that don’t have a default implementation. Attributes signature_dict[R]¶ The signature dictionary used by the handler. Public Class Methods new(signature_dict)¶ Creates a new signature handler for the given signature dictionary. Public Instance Methods certificate_chain()¶ Returns the certificate chain. Needs to be implemented by specific handlers. signer_certificate()¶ Returns the certificate used for signing. Needs to be implemented by specific handlers. signer_name()¶ Returns the common
name of the signer (/Name field of the signature dictionary). signing_time()¶ Returns the time of signing (/M field of the signature dictionary). verify(store, allow_self_signed: false)¶ Verifies general signature properties and prepares the provided OpenSSL::X509::Store object for use by concrete implementations. Needs to be called by specific handlers. Protected Instance Methods check_certified_signature(result)¶ Sets an informational message on result whether the signature is a certified signature. store_verification_callback(result, allow_self_signed: false)¶ Returns the block that should be used as the OpenSSL::X509::Store verification callback. result The VerificationResult object that should be updated if problems are found. allow_self_signed Specifies whether self-signed certificates are allowed. verify_signing_time(result)¶ Verifies that the signing time was within the validity period of the signer certificate. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/PKCS1Handler.html","title":"HexaPDF::DigitalSignature::PKCS1Handler","tags":"","text":" Instance Methodscertificate_chainsigner_certificateverify class HexaPDF::DigitalSignature::PKCS1Handler Parent HexaPDF::DigitalSignature::Handler The signature handler for PKCS#1 based sub-filters, the only being the adbe.x509.rsa_sha1 sub-filter. Note that PKCS#1 signatures are deprecated with PDF 2.0. See: PDF2.0 s12.8.3.2 Public Instance Methods certificate_chain()¶ Returns the certificate chain. signer_certificate()¶ Returns the signer certificate (an instance of OpenSSL::X509::Certificate). verify(store, allow_self_signed: false)¶ Verifies the signature using the provided OpenSSL::X509::Store object. Calls superclass method HexaPDF::DigitalSignature::Handler#verify "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signature/index.html","title":"HexaPDF::DigitalSignature::Signature","tags":"","text":" Instance Methodscontentssignature_handlersignature_typesigned_datasigner_namesigning_locationsigning_reasonsigning_timeverify class HexaPDF::DigitalSignature::Signature Parent HexaPDF::Dictionary Represents a digital signature that is used to authenticate a user and the contents of the document. Signature Verification¶ ↑ Verification of signatures is a complex topic and what counts as completely verified may differ from use-case to use-case. Therefore HexaPDF provides as much diagnostic information as possible so that the user can decide whether a signature is valid. By defining a custom signature handler based on BaseHandler or CMSHandler one is able to also customize the signature verification. See: PDF2.0 s12.8.1, HexaPDF::Type::AcroForm::SignatureField Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolOne of: :Sig, :DocTimeStampfalse:SigFilterSymbolfalsenilSubFilterSymbolfalsenilContentsHexaPDF::DictionaryFields::PDFByteString or StringfalsenilCertHexaPDF::PDFArray or HexaPDF::DictionaryFields::PDFByteString or Array or StringfalsenilByteRangeHexaPDF::PDFArray or ArrayfalsenilReferenceHexaPDF::PDFArray or ArrayfalsenilChangesHexaPDF::PDFArray or ArrayfalsenilNameStringfalsenilMHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilLocationStringfalsenilReasonStringfalsenilContactInfoStringfalsenilRIntegerfalsenilVIntegerfalse0Prop_BuildHexaPDF::Dictionary or HashfalsenilProp_AuthTimeIntegerfalsenilProp_AuthTypeSymbolOne of: :PIN, :Password, :Fingerprintfalsenil Public Instance Methods contents()¶ Returns the raw signature value. signature_handler()¶ Returns the signature handler for this signature based on the /SubFilter entry. signature_type()¶ Returns the signature type based on the /SubFilter. signed_data()¶ Returns the signed data as indicated by the /ByteRange entry as binary string. signer_name()¶ Returns the name of the person or authority that signed the document. signing_location()¶ Returns the location of the signing. signing_reason()¶ Returns the reason for the signing. signing_time()¶ Returns the time of the signing. verify(default_paths: true, trusted_certs: [], allow_self_signed: false)¶ Returns a VerificationResult object with the verification information. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signature/SignatureReference.html","title":"HexaPDF::DigitalSignature::Signature::SignatureReference","tags":"","text":" class HexaPDF::DigitalSignature::Signature::SignatureReference Parent HexaPDF::Dictionary Represents a signature reference dictionary. See: PDF2.0 s12.8.1, HexaPDF::DigitalSignature::Signature Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:SigRefTransformMethodSymbolOne of: :DocMDP, :UR, :FieldMDPtruenilTransformParamsHexaPDF::DigitalSignature::Signature::TransformParams or HashfalsenilDataObjectfalsenilDigestMethodSymbolOne of: :MD5, :SHA1, :SHA256, :SHA384, :SHA512, :RIPEMD160falsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signature/TransformParams.html","title":"HexaPDF::DigitalSignature::Signature::TransformParams","tags":"","text":" ConstantsFIELD_ANNOTS_ALLOWED_VALUESFIELD_EF_ALLOWED_VALUESFIELD_FORM_ALLOWED_VALUES class HexaPDF::DigitalSignature::Signature::TransformParams Parent HexaPDF::Dictionary Represents a transform parameters dictionary. The allowed fields depend on the transform method, so not all fields are available all the time. See: PDF2.0 s12.8.2.2, s12.8.2.3, s12.8.2.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:TransformParamsPInteger or TrueClass or FalseClassfalsenilVSymbolOne of: :\"1.2\", :\"2.2\"falsenilDocumentHexaPDF::PDFArray or ArrayfalsenilMsgStringfalsenilAnnotsHexaPDF::PDFArray or ArrayfalsenilFormHexaPDF::PDFArray or ArrayfalsenilSignatureHexaPDF::PDFArray or ArrayfalsenilEFHexaPDF::PDFArray or ArrayfalsenilActionSymbolOne of: :All, :Include, :ExcludefalsenilFieldsHexaPDF::PDFArray or Arrayfalsenil Constants FIELD_ANNOTS_ALLOWED_VALUES¶ All values allowed for the /Annots field FIELD_EF_ALLOWED_VALUES¶ All values allowed for the /EF field FIELD_FORM_ALLOWED_VALUES¶ All values allowed for the /Form field "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signatures.html","title":"HexaPDF::DigitalSignature::Signatures","tags":"","text":" Class MethodsnewInstance Methodsaddcounteachsigning_handler class HexaPDF::DigitalSignature::Signatures Parent Object Included Modules Enumerable This class provides methods for interacting with digital signatures of a PDF file. It is used through HexaPDF::Document#signatures. Public Class Methods new(document)¶ Creates a new Signatures object for the given PDF document. Public Instance Methods add(file_or_io, handler, signature: nil, write_options: {})¶ Adds a signature to the document and returns the corresponding signature object. This method will add a new signature to the document and write the updated document to the given file or IO stream. Afterwards the document can’t be modified anymore and still retain a correct digital signature. To modify the signed document (e.g. for adding another signature) create a new document based on the given file or IO stream instead. signature Can either be a signature object (determined via the /Type key), a signature field or nil. Providing a signature object or signature field provides for more control, e.g.: Setting values for optional signature object fields like /Reason and /Location. (In)directly specifying which signature field should be used. If a signature object is provided and it is not associated with an AcroForm signature field, a new signature field is created and added to the main AcroForm object, creating that if necessary. If a signature field is provided and it already has a signature object as field value, that signature object is discarded. If the signature field doesn’t have a widget, a non-visible one is created on the first page. handler The signing handler that provides the necessary methods for signing and adjusting the signature and signature field objects to one’s liking, see signing_handler and Signing::DefaultHandler. write_options The key-value pairs of this hash will be passed on to the HexaPDF::Document#write method. Note that incremental will be automatically set to ensure proper behaviour. count()¶ Returns the number of signatures in the PDF document. May be zero if the document has no signatures. each {|signature| block } → signatures ¶ each → Enumerator ¶ Iterates over all signatures in the order they are found in the PDF. signing_handler(name: :default, **attributes)¶ Creates a signing handler with the given attributes and returns it. A signing handler name is mapped to a class via the ‘signature.signing_handler’ configuration option. The default signing handler is Signing::DefaultHandler. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signing/index.html","title":"HexaPDF::DigitalSignature::Signing","tags":"","text":" Class Methodsembed_signaturelocate_signature_dictreplace_signature_contents module HexaPDF::DigitalSignature::Signing This module contains everything related to the signing of a PDF document, i.e. signing handlers and the actual code for signing. The DefaultHandler is the standard signing handler and should be sufficient for most cases. The TimestampHandler is used for timestamping purposes. The SignedDataCreator provides the functionality to create custom CMS signed data objects. Public Class Methods embed_signature(io, signature)¶ Embeds the given signature into the /Contents value of the newest signature dictionary of the PDF document given by the io argument. This functionality can be used together with the support for external signing (see DefaultHandler and DefaultHandler#external_signing) to implement asynchronous signing. Note: This will, most probably, only work on documents prepared for external signing by HexaPDF and not by other
libraries. locate_signature_dict(xref_section, start_xref_position, signature_oid)¶ Uses the information in the given cross-reference section as well as the byte offset of the cross-reference section to calculate the offset and length of the signature dictionary with the given object id. replace_signature_contents(signature_data, contents)¶ Replaces the value of the /Contents key in the serialized signature_data with the value of contents. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signing/DefaultHandler.html","title":"HexaPDF::DigitalSignature::Signing::DefaultHandler","tags":"","text":" Attributescertificatecertificate_chaincontact_infodigest_algorithmdoc_mdp_permissionsexternal_signingkeylocationreasonsignature_typetimestamp_handlerClass MethodsnewInstance Methodsdoc_mdp_permissions=finalize_objectssignsignature_size class HexaPDF::DigitalSignature::Signing::DefaultHandler Parent Object This is the default signing handler which provides the ability to sign a document with the adbe.pkcs7.detached or ETSI.CAdES.detached algorithms. It is registered under the :default name. Usage¶ ↑ The signing handler is used by default by all methods that need a signing handler. Therefore it is usually only necessary to provide the actual attribute values. Note: Currently only RSA is supported, DSA and ECDSA are not. See the examples below for how to handle them using external signing. CMS and PAdES Signatures¶ ↑ The handler supports the older standard of CMS signatures as well as the newer PAdES signatures specified in PDF 2.0. By default, CMS signatures are created but this can be changed by setting signature_type to :pades. When creating PAdES signatures the following two PAdES baseline signatures are supported: B-B and B-T. The difference between those two is that a timestamp handler was defined for B-T compatibility. Signing Modes - Internal, External, External/Asynchronous¶ ↑ This handler provides two ways to create the CMS signed-data structure required by Signatures#add: By providing the signing certificate together with the signing key and the certificate chain, HexaPDF itself does the signing internally. It is the preferred way if all the needed information is available. Assign the respective data to the certificate, key and certificate_chain attributes. By using an *external signing mechanism*, a callable object assigned to external_signing. Here the actual signing happens “outside” of HexaPDF, for example, in custom code or even asynchronously. This is needed in case the signing key is not directly available but only an interface to it (e.g. when dealing with a HSM). Depending on whether certificate is set the signing happens differently: If certificate is not set, the callable object is used instead of sign, so it needs to accept the same arguments as sign and needs to return a complete, DER-serialized CMS signed data object. If certificate is set, the CMS signed data object is created by HexaPDF. The callable external_signing object is called with the used digest algorithm and the already digested data which needs to be signed (but not digested) and the signature returned. If the signing process needs to be asynchronous, make sure to set the signature_size appropriately, return an empty string during signing and later use Signatures.embed_signature to embed the actual signature. Optional Data¶ ↑ Besides the required data, some optional attributes can also be specified: Reason, location and contact information Making the signature a certification signature by applying the DocMDP transform method and a DoCMDP permission Examples¶ ↑ # Signing using certificate + key document.sign(\"output.pdf\", certificate: my_cert, key: my_key, certificate_chain: my_chain) # Signing using an external mechanism without certificate set signing_proc = lambda do |io, byte_range| io.pos = byte_range[0] data = io.read(byte_range[1]) io.pos = byte_range[2] data << io.read(byte_range[3]) signing_service.pkcs7_sign(data).to_der end document.sign(\"output.pdf\", signature_size: 10_000, external_signing: signing_proc) # Signing using external mechanism with certificate set signing_proc = lambda do |digest_method, hash| signing_service.sign_raw(digest_method, hash) end document.sign(\"output.pdf\", certificate: my_cert, certificate_chain: my_chain, external_signing: signing_proc) # Signing with DSA or ECDSA certificate/keys signing_proc = lambda do |io, byte_range| io.pos = byte_range[0] data = io.read(byte_range[1]) io.pos = byte_range[2] data << io.read(byte_range[3]) OpenSSL::PKCS7.sign(certificate, key, data, certificate_chain, OpenSSL::PKCS7::DETACHED | OpenSSL::PKCS7::BINARY).to_der end document.sign(\"output.pdf\", signature_size: 10_000, external_signing: signing_proc) Implementing a Signing Handler¶ ↑ This class also serves as an example on how to create a custom handler: The public methods signature_size, finalize_objects and sign are used by the digital signature algorithm. See their descriptions for details. Once a custom signing handler has been created, it can be registered under the ‘signature.signing_handler’ configuration option for easy use. It has to take keyword arguments in its initialize method to be compatible with the Signatures#handler method. Attributes certificate[RW]¶ The certificate with which to sign the PDF. If the certificate is provided, HexaPDF creates the signature object. Otherwise the external_signing callable object has to create it. See the class documentation section “Signing Modes” on how certificate, key and external_signing play together. certificate_chain[RW]¶ The certificate chain that should be embedded in the PDF; usually contains all certificates up to the root certificate. contact_info[RW]¶ The contact information. If used, will be set on the signature dictionary. digest_algorithm[RW]¶ The digest algorithm that should be used when creating the signature. See SignedDataCreator#digest_algorithm for the default value (if nothing is set) and for the allowed values. doc_mdp_permissions[R]¶ The DocMDP permissions that should be set on the document. See doc_mdp_permissions= external_signing[RW]¶ A callable object for custom signing mechanisms. The callable object has two different uses depending on whether certificate is set: If certificate is not set, it fulfills the same role as the sign method and needs to conform to that interface. If certificate is set and key is not, it is just used for signing. Here it needs to accept the used digest algorithm and the already digested data as arguments and return the signature. Also dee the class documentation section “Signing Modes” on how certificate, key and external_signing play together. key[RW]¶ The private key for the certificate. If the key is provided, HexaPDF does the signing. Otherwise the external_signing callable object has to sign the data. See the class documentation section “Signing Modes” on how certificate, key and external_signing play together. location[RW]¶ The signing location. If used, will be set on the signature dictionary. reason[RW]¶ The reason for signing. If used, will be set on the signature dictionary. signature_size[W]¶ The size of the serialized signature that should be reserved. If this attribute is not set, an empty string will be signed using sign to determine the signature size. The size needs to be at least as big as the final signature, otherwise signing results in an error. signature_type[RW]¶ The type of signature to be written (i.e. the value of the /SubFilter key). The value can either be :cms (the default; uses a detached CMS signature) or :pades (uses an ETSI CAdES compatible signature). timestamp_handler[RW]¶ The timestamp handler that should be used for timestamping the signature. If this attribute is set, a timestamp token is embedded into the CMS object. Public Class Methods new(**arguments)¶ Creates a new DefaultHandler instance with the given attributes. Public Instance Methods doc_mdp_permissions=(permissions)¶ Sets the DocMDP permissions that should be applied to the document. Valid values for permissions are: nil Don’t set any DocMDP permissions (default). :no_changes or 1 No changes whatsoever are allowed. :form_filling or 2 Only filling in forms and signing are allowed. :form_filling_and_annotations or 3 Only filling in forms, signing and annotation creation/deletion/modification are allowed. finalize_objects(_signature_field, signature)¶ Finalizes the signature field as well as the signature dictionary before writing. sign(io, byte_range)¶ Returns the DER serialized CMS signed data object containing the signature for the given IO byte ranges. The byte_range argument is an array containing four numbers [offset1, length1, offset2, length2]. The offset numbers are byte positions in the io argument and the to-be-signed data can be determined by reading length bytes at the offsets. signature_size¶ The size of the serialized signature that should be reserved. If this attribute is not set, an empty string will be signed using sign to determine the signature size. The size needs to be at least as big as the final signature, otherwise signing results in an error. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signing/SignedDataCreator.html","title":"HexaPDF::DigitalSignature::Signing::SignedDataCreator","tags":"","text":" ConstantsOIDSAttributescertificatecertificatesdigest_algorithmkeytimestamp_handlerClass MethodscreatenewInstance Methodscreate class HexaPDF::DigitalSignature::Signing::SignedDataCreator Parent Object This class is used for creating a CMS SignedData binary data object, as needed for PDF signing. OpenSSL already provides the ability to access, sign and create such CMS objects but is limited in what it offers in terms of data added to it. Since HexaPDF needs to follow the PDF standard, it needs control over the created structure so as to make it compatible with the various requirements. As the created CMS object is only
meant to be used in the context of PDF signing, it also restricts certain things, like allowing only a single signer. Additionally, only RSA signatures are currently supported! See: PDF2.0 s12.8.3.3, PDF2.0 s12.8.3.4, RFC5652, ETSI TS 102 778 Parts 1-4 Constants OIDS¶ Mapping of ASN.1 object ID names to object ID strings. Attributes certificate[RW]¶ The OpenSSL certificate object which is used to sign the data. certificates[RW]¶ Array of additional OpenSSL certificate objects that should be included. Should include all certificates of the hierarchy of the signing certificate. digest_algorithm[RW]¶ The digest algorithm that should be used. Defaults to ‘sha256’. Allowed values: sha256, sha384, sha512. key[RW]¶ The OpenSSL key object which is used for signing. Needs to correspond to certificate. If the key is not set, a block for signing will need to be provided to sign. timestamp_handler[RW]¶ The timestamp handler instance that should be used for timestamping. Public Class Methods create(data, type: :cms, **attributes, &block)¶ Creates a SignedDataCreator, sets the given attributes if they are not nil and then calls create with the given data, type and block. new()¶ Creates a new SignedData object. Public Instance Methods create(data, type: :cms) { |digested_data| ... }¶ Creates a CMS SignedData binary data object for the given data using the set attributes and returns it in DER-serialized form. If the key attribute is not set, the digest algorithm and the already digested data to be signed is yielded and the block needs to return the signature. type The type can either be :cms when creating standard PDF CMS signatures or :pades when creating PAdES compatible signatures. PAdES signatures are part of PDF 2.0. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/Signing/TimestampHandler.html","title":"HexaPDF::DigitalSignature::Signing::TimestampHandler","tags":"","text":" Attributescontact_infolocationreasontsa_hash_algorithmtsa_policy_idtsa_urlClass MethodsnewInstance Methodsfinalize_objectssignsignature_size class HexaPDF::DigitalSignature::Signing::TimestampHandler Parent Object This is a signing handler for adding a timestamp signature (a PDF2.0 feature) to a PDF document. It is registered under the :timestamp name. The timestamp is provided by a timestamp authority and establishes the document contents at the time indicated in the timestamp. Timestamping a PDF document is usually done in context of long term validation but can also be done standalone. Usage¶ ↑ It is necessary to provide at least the URL of the timestamp authority server (TSA) via tsa_url, everything else is optional and uses default values. The TSA server must not use authentication to be usable. Example: document.sign(\"output.pdf\", handler: :timestamp, tsa_url: 'https://freetsa.org/tsr') Attributes contact_info[RW]¶ The contact information. If used, will be set on the signature dictionary. location[RW]¶ The timestamping location. If used, will be set on the signature dictionary. reason[RW]¶ The reason for timestamping. If used, will be set on the signature dictionary. signature_size[W]¶ The size of the serialized signature that should be reserved. If this attribute has not been set, an empty string will be signed using sign to determine the signature size. Note thtat this will contact the TSA server! The size needs to be at least as big as the final signature, otherwise signing results in an error. tsa_hash_algorithm[RW]¶ The hash algorithm to use for timestamping. Defaults to SHA512. tsa_policy_id[RW]¶ The policy OID to use for timestamping. Defaults to nil. tsa_url[RW]¶ The URL of the timestamp authority server. This value is required. Public Class Methods new(**arguments)¶ Creates a new TimestampHandler with the given attributes. Public Instance Methods finalize_objects(_signature_field, signature)¶ Finalizes the signature field as well as the signature dictionary before writing. sign(io, byte_range)¶ Returns the DER serialized OpenSSL::PKCS7 structure containing the timestamp token for the given IO byte ranges. signature_size¶ The size of the serialized signature that should be reserved. If this attribute has not been set, an empty string will be signed using sign to determine the signature size. Note thtat this will contact the TSA server! The size needs to be at least as big as the final signature, otherwise signing results in an error. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/DigitalSignature/VerificationResult.html","title":"HexaPDF::DigitalSignature::VerificationResult","tags":"","text":" ConstantsMESSAGE_SORT_MAPMessageAttributesmessagesClass MethodsnewInstance Methodsfailure?logsuccess? class HexaPDF::DigitalSignature::VerificationResult Parent Object Holds the result of verifying a signature. Constants Message¶ This structure represents a single status message, containing the type (:info, :warning, or :error) and the content of the message. Attributes messages[R]¶ An array with all result messages. Public Class Methods new()¶ Creates an empty result object. Public Instance Methods failure?()¶ Returns true if there is at least one error message. log(type, content)¶ Adds a new message of the given type to this result object. type One of :info, :warning or :error. content The log message. success?()¶ Returns true if there are no error messages. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/index.html","title":"HexaPDF::Document","tags":"","text":" ConstantsUNSETAttributesconfigrevisionsClass MethodsnewopenInstance Methodsacro_formaddcachecached?catalogclear_cachedeletederefdestinationsdispatch_messageeachencryptencrypted?filesfontsimagesimportlayoutmetadataobjectobject?optional_contentoutlinepagesregister_listenersecurity_handlersignsignaturessigned?tasktrailerunwrapvalidateversionversion=wrapwrite class HexaPDF::Document Parent Object HexaPDF::Document¶ ↑ Represents a PDF document. A PDF document essentially consists of (indirect) objects, so the main job of this class is to provide methods for working with these objects. However, since a PDF document may also be incrementally updated and can therefore contain one or more revisions, there are also methods for working with these revisions (see Revisions for details). Additionally, there are many convenience methods for easily accessing the most important PDF functionality, like encrypting a document (encrypt), working with digital signatures (signatures), accessing the interactive form data (acro_form), working with the pages (pages), fonts (fonts) and images (images). Note: This class provides the basis for working with a PDF document. The higher PDF functionality is not implemented here but either in the appropriate PDF type classes or in special convenience classes. All this functionality can be accessed via the convenience methods described above. Available Message Hooks¶ ↑ The document object provides a basic message dispatch system via register_listener and dispatch_message. Following messages are used by HexaPDF itself: :complete_objects This message is called before the first step of writing a document. Listeners should complete PDF objects that are missing some information. For example, the font system uses this message to complete the font objects with information that is only available once all the used glyphs are known. :before_write This message is called before a document is actually serialized and written. Constants UNSET¶ Attributes config[R]¶ The configuration object for the document. See Configuration for details. revisions[R]¶ The revisions of the document. See Revisions. Public Class Methods new(io: nil, decryption_opts: {}, config: {})¶ Creates a new PDF document, either an empty one or one read from the provided io. When an IO object is provided and it contains an encrypted PDF file, it is automatically decrypted behind the scenes. The decryption_opts argument has to be set appropriately in this case. In case this is not wanted, the configuration option ‘document.auto_decrypt’ needs to be used. Options: io If an IO object is provided, then this document can read PDF objects from this IO object, otherwise it can only contain created PDF objects. decryption_opts A hash with options for decrypting the PDF objects loaded from the IO. The PDF standard security handler expects a :password key to be set to either the user or owner password of the PDF file. config A hash with configuration options that is deep-merged into the default configuration (see HexaPDF::DefaultDocumentConfiguration, meaning that direct sub-hashes are merged instead of overwritten. open(filename, **docargs) → doc ¶ open(filename, **docargs) {|doc| block} → obj ¶ Creates a new PDF Document object for the given file. Depending on whether a block is provided, the functionality is different: If no block is provided, the whole file is instantly read into memory and the PDF Document created for it is returned. If a block is provided, the file is opened and a PDF Document is created for it. The created document is passed as an argument to the block and when the block returns the associated file object is closed. The value of the block will be returned. The block version is useful, for example, when you are dealing with a large file and you only need a small portion of it. The provided keyword arguments (except io) are passed on unchanged to Document.new. Public Instance Methods acro_form(create: false)¶ Returns the main AcroForm object for dealing with interactive forms. The meaning of the create argument is detailed at Type::Catalog#acro_form. See: Type::AcroForm::Form add(obj, **wrap_opts) → indirect_object ¶ Adds the object to the document and returns the wrapped indirect object. The object can either be a native Ruby object (Hash, Array, Integer, …) or a HexaPDF::Object. If it is not the latter, wrap is called with the object and the additional keyword arguments. See: wrap, Revisions#add_object cache(pdf_data,
key, value = UNSET, update: false) { |: value)| ... }¶ Caches and returns the given value or the value of the given block using the given pdf_data and key arguments as composite cache key. If a cached value already exists and update is false, the cached value is just returned. If update is set to true, an update of the cached value is forced. This facility can be used to cache expensive operations in PDF objects that are easy to compute again. Use clear_cache to clear the cache if necessary. cached?(pdf_data, key)¶ Returns true if there is a value cached for the composite key consisting of the given pdf_data and key objects. See: cache catalog()¶ Returns the document’s catalog, the root of the object tree. See: Type::Catalog clear_cache(pdf_data = nil)¶ Clears all cached data or, if a Object::PDFData object is given, just the cache for this one object. It is not recommended to clear the whole cache! Better clear the cache for individual PDF objects! See: cache, cached? delete(ref) ¶ delete(oid) ¶ Deletes the indirect object specified by an exact reference or by an object number from the document. See: Revisions#delete_object deref(obj)¶ Dereferences the given object. Returns the object itself if it is not a reference, or the indirect object specified by the reference. destinations()¶ Returns the Destinations object that provides convenience methods for working with destination objects. dispatch_message(name, *args)¶ Dispatches the message name with the given arguments to all registered listeners. See the main Document documentation for an overview of messages that are used by HexaPDF itself. See: register_listener each(only_current: true, only_loaded: false) {|obj| block } ¶ each(only_current: true, only_loaded: false) {|obj, rev| block } ¶ each(only_current: true, only_loaded: false) → Enumerator ¶ Yields every object and the revision it is in. If only_current is true, only the current version of each object is yielded, otherwise all objects from all revisions. Note that it is normally not necessary or useful to retrieve all objects from all revisions and if it is still done that care has to be taken to avoid an invalid document state. If only_loaded is true, only the already loaded objects are yielded. For details see Revisions#each_object encrypt(name: :Standard, **options)¶ Encrypts the document. Encryption is done by setting up a security handler for this purpose and populating the trailer’s Encrypt dictionary accordingly. The actual encryption, however, is only done when writing the document. The security handler used for encrypting is selected via the name argument. All other arguments are passed on the security handler. If the document should not be encrypted, the name argument has to be set to nil. This removes the security handler and deletes the trailer’s Encrypt dictionary. See: Encryption::SecurityHandler#set_up_encryption and Encryption::StandardSecurityHandler::EncryptionOptions for possible encryption options. encrypted?()¶ Returns true if the document is encrypted. files()¶ Returns the Files object that provides convenience methods for working with embedded files. fonts()¶ Returns the Fonts object that provides convenience methods for working with the fonts used in the PDF file. images()¶ Returns the Images object that provides convenience methods for working with images (e.g. adding them to the PDF or listing them). import(obj) → imported_object ¶ Imports the given object from a different HexaPDF::Document instance and returns the imported object. If the same argument is provided in multiple invocations, the import is done only once and the previously imported object is returned. See: Importer layout()¶ Returns the Layout object that provides convenience methods for working with the HexaPDF::Layout classes for document layout. metadata()¶ Returns the Metadata object that provides a convenience interface for working with the document metadata. Note that invoking this method means that, depending on the settings, the info dictionary as well as the metadata stream will be overwritten when the document gets written. See the “Caveats” section in the Metadata documentation. object(ref) → obj or nil ¶ object(oid) → obj or nil ¶ Returns the current version of the indirect object for the given exact reference (see Reference) or for the given object number. For references to unknown objects, nil is returned but free objects are represented by a PDF Null object, not by nil! See: Revisions#object object?(ref) → true or false ¶ object?(oid) → true or false ¶ Returns true if the the document contains an indirect object for the given exact reference (see Reference) or for the given object number. Even though this method might return true for some references, object may return nil because this method takes all revisions into account. Also see the discussion on each for more information. See: Revisions#object? optional_content()¶ Returns the main object for working with optional content (a.k.a. layers). See: Type::Catalog#optional_content outline()¶ Returns the entry object to the document outline (a.k.a. bookmarks). See: Type::Outline pages()¶ Returns the Pages object that provides convenience methods for working with the pages of the PDF file. See: Pages, Type::PageTreeNode register_listener(name, callable) → callable ¶ register_listener(name) {|*args| block} → block ¶ Registers the given listener for the message name. If callable is provided, it needs to be an Object responding to call. Otherwise the block has to be provided. The arguments that are provided to the call method depend on the message. See: dispatch_message security_handler()¶ Returns the security handler that is used for decrypting or encrypting the document, or nil if none is set. If the document was created by reading an existing file and the document was automatically decrypted, then this method returns the handler for decrypting. Once the encrypt method is called, the specified security handler for encrypting is returned. sign(file_or_io, handler: :default, signature: nil, write_options: {}, **handler_options)¶ Signs the document and writes it to the given file or IO object. For details on the arguments file_or_io, signature and write_options see DigitalSignature::Signatures#add. The signing handler to be used is determined by the handler argument together with the rest of the keyword arguments (see DigitalSignature::Signatures#signing_handler for details). If not changed, the default signing handler is DigitalSignature::Signing::DefaultHandler. Note: Once signing is done the document cannot be changed anymore since it was written during the signing process. If a document needs to be signed multiple times, it needs to be loaded again afterwards. signatures()¶ Returns a DigitalSignature::Signatures object that allows working with the digital signatures of this document. signed?()¶ Returns true if the document is signed, i.e. contains digital signatures. task(name, **opts, &block)¶ Executes the given task and returns its result. Tasks provide an extensible way for performing operations on a PDF document without cluttering the Document interface. See: Task trailer()¶ Returns the trailer dictionary for the document. See: Type::Trailer unwrap(obj) → unwrapped_obj ¶ Recursively unwraps the object to get native Ruby objects (i.e. Hash, Array, Integer, … instead of HexaPDF::Reference and HexaPDF::Object). validate(auto_correct: true, only_loaded: false) { |msg, correctable, object| ... }¶ Validates all current objects, or, if only_loaded is true, only loaded objects, with optional auto-correction, and returns true if everything is fine. If a block is given, it is called on validation problems. See Object#validate for more information. version()¶ Returns the PDF document’s version as string (e.g. ‘1.4’). This method takes the file header version and the catalog’s /Version key into account. If a version has been set manually and the catalog’s /Version key refers to a later version, the later version is used. See: PDF2.0 s7.2.2 version=(value)¶ Sets the version of the PDF document. The argument value must be a string in the format ‘M.N’ where M is the major version and N the minor version (e.g. ‘1.4’ or ‘2.0’). wrap(obj, type: nil, subtype: nil, oid: nil, gen: nil, stream: nil)¶ Wraps the given object inside a HexaPDF::Object (sub)class which allows one to use convenience functions to work with the object. The obj argument can also be a HexaPDF::Object object so that it can be re-wrapped if necessary. The class of the returned object is always a subclass of HexaPDF::Object (or of HexaPDF::Stream if stream is given). Which subclass is used, depends on the values of the type and subtype options as well as on the ‘object.type_map’ and ‘object.subtype_map’ global configuration options: First type is used to try to determine the class. If it is not provided and if obj is a hash with a :Type field, the value of this field is used instead. If the resulting object is already a Class object, it is used, otherwise the type is looked up in ‘object.type_map’. If subtype is provided or can be determined because obj is a hash with a :Subtype or :S field, the type and subtype together are used to look up a special subtype class in ‘object.subtype_map’. Additionally, if there is no type but a subtype, all required fields of the subtype class need to have values; otherwise the subtype class is not used. This is done to better prevent invalid mappings when only partial knowledge (:Type key is missing) is available. If there is no valid class after the above steps, HexaPDF::Stream is used if a stream is given, HexaPDF::Dictionary if the given object is a hash, HexaPDF::PDFArray if it is an array or else HexaPDF::Object. Options: :type (Symbol or Class) The type of a PDF object that should be used for wrapping. This could be, for example, :Pages. If a class object is provided, it is used directly instead of determining the class through the type detection system.
:subtype (Symbol) The subtype of a PDF object which further qualifies a type. For example, image objects in PDF have a type of :XObject and a subtype of :Image. :oid (Integer) The object number that should be set on the wrapped object. Defaults to 0 or the value of the given object’s object number. :gen (Integer) The generation number that should be set on the wrapped object. Defaults to 0 or the value of the given object’s generation number. :stream (String or StreamData) The stream object which should be set on the wrapped object. write(filename, incremental: false, validate: true, update_fields: true, optimize: false) ¶ write(io, incremental: false, validate: true, update_fields: true, optimize: false) ¶ Writes the document to the given file (in case io is a String) or IO stream. Before the document is written, it is validated using validate and an error is raised if the document is not valid. However, this step can be skipped if needed. Options: incremental Use the incremental writing mode which just adds a new revision to an existing document. This is needed, for example, when modifying a signed PDF and the original signature should stay valid. See: PDF2.0 s7.5.6 validate Validates the document and raises an error if an uncorrectable problem is found. update_fields Updates the /ID field in the trailer dictionary as well as the /ModDate field in the trailer’s /Info dictionary so that it is clear that the document has been updated. optimize Optimize the file size by using object and cross-reference streams. This will raise the PDF version to at least 1.5. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Destinations/index.html","title":"HexaPDF::Document::Destinations","tags":"","text":" Class MethodsnewInstance Methods[]addcreatecreate_fit_bounding_boxcreate_fit_bounding_box_horizontalcreate_fit_bounding_box_verticalcreate_fit_pagecreate_fit_page_horizontalcreate_fit_page_verticalcreate_fit_rectanglecreate_xyzdeleteeachresolveuse_or_create class HexaPDF::Document::Destinations Parent Object Included Modules Enumerable This class provides methods for creating and managing the destinations of a PDF file. A destination describes a particular view of a PDF document, consisting of the page, the view location and a magnification factor. See Destination for details. Such destinations may be directly specified where needed, e.g. for link annotations, or they may be named and later referenced through the name. This class allows to create destinations with or without a name. See: PDF2.0 s12.3.2 Public Class Methods new(document)¶ Creates a new Destinations object for the given PDF document. Public Instance Methods destinations[name] → destination ¶ Returns the destination registered under the given name (a String) or nil if no destination was registered under that name. add(name, destination) ¶ Adds the given destination under name (a String) to the destinations name tree. If the name does already exist, an error is raised. create(type, page, **options) → dest or name ¶ Creates a new destination array with the given type (see Destination for all available type names; PDF internal type names are also allowed) and page by calling the respective create_type method. create_fit_bounding_box(page) → dest ¶ create_fit_bounding_box(page, name: nil) → name ¶ Creates a new fit to bounding box destination array for the given arguments and returns it or, in case a name is given, the name. The argument page is described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_fit_bounding_box_horizontal(page, top: nil) → dest ¶ create_fit_bounding_box_horizontal(page, name: nil, top: nil) → name ¶ Creates a new fit bounding box horizontal destination array for the given arguments and returns it or, in case a name is given, the name. The arguments +page and top are described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_fit_bounding_box_vertical(page, left: nil) → dest ¶ create_fit_bounding_box_vertical(page, name: nil, left: nil) → name ¶ Creates a new fit bounding box vertical destination array for the given arguments and returns it or, in case a name is given, the name. The arguments +page and left are described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_fit_page(page) → dest ¶ create_fit_page(page, name: nil) → name ¶ Creates a new fit to page destination array for the given arguments and returns it or, in case a name is given, the name. The argument page is described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_fit_page_horizontal(page, top: nil) → dest ¶ create_fit_page_horizontal(page, name: nil, top: nil) → name ¶ Creates a new fit page horizontal destination array for the given arguments and returns it or, in case a name is given, the name. The arguments +page and top are described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_fit_page_vertical(page, left: nil) → dest ¶ create_fit_page_vertical(page, name: nil, left: nil) → name ¶ Creates a new fit page vertical destination array for the given arguments and returns it or, in case a name is given, the name. The arguments +page and left are described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_fit_rectangle(page, left:, bottom:, right:, top:) → dest ¶ create_fit_rectangle(page, name: nil, left:, bottom:, right:, top:) → name ¶ Creates a new fit to rectangle destination array for the given arguments and returns it or, in case a name is given, the name. The arguments page, left, bottom, right and top are described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. create_xyz(page, left: nil, top: nil, zoom: nil) → dest ¶ create_xyz(page, name: nil, left: nil, top: nil, zoom: nil) → name ¶ Creates a new xyz destination array for the given arguments and returns it or, in case a name is given, the name. The arguments page, left, top and zoom are described in detail in the Destination class description. If the argument name is given, the created destination array is added to the destinations name tree under that name for reuse later, overwriting an existing entry if there is one. delete(name) → destination ¶ Deletes the destination specified via name (a String) from the destinations name tree and returns it or nil if no destination was registered under that name. each {|name, dest| block } → destinations ¶ each → Enumerator ¶ Iterates over all named destinations of the PDF, yielding the name and the destination wrapped into a Destination object. resolve(string_name) → destination or nil ¶ resolve(symbol_name) → destination or nil ¶ resolve(dest_array) → destination or nil ¶ Resolves the given value to a valid destination object, if possible, or otherwise returns nil. If the given value is a string, it is treated as a destination name and looked up in the destination name tree. If the given value is a symbol, it is treated as an old-style destination name and looked up in the destination dictionary. If the given value is an array, it is treated as a destination array itself. use_or_create(name) → name ¶ use_or_create(destination) → destination ¶ use_or_create(page) → destination ¶ use_or_create(type:, page, **options) → destination ¶ Uses the given destination name/array or creates a destination array based on the given arguments. This is the main utility method for other parts of HexaPDF for getting a valid destination array based on various different types of the given arguments: String If a string is provided, it is assumed to be a named destination. If the named destination exists, the destination itself is returned. Otherwise an error is raised. Array If a valid destination array is provided, it is returned. Otherwise an error is raised. Page dictionary If the value is a valid page dictionary object, a fit to page (create_fit_page) destination array is created and returned. Integer If the value is an integer, it is interpreted as a zero-based page index and a fit to page (create_fit_page) destination array is created and returned. Hash containing at least :type and :page If the value is a hash, the :type key specifies the type of the destination that should be created and the :page key the target page. Which other keys are allowed depends on the destination type, so see the various create_XXX methods. Uses create to do the job. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Destinations/Destination.html","title":"HexaPDF::Document::Destinations::Destination","tags":"","text":" Class Methodsnewvalid?Instance Methodsbottomleftpageremote?righttoptypevalid?valuezoom class HexaPDF::Document::Destinations::Destination Parent Object Wraps an explicit destination array to allow easy access to query its properties. A *destination array* has the
form [page, type, *arguments] where page is either a page object or a page number (in case of a destination to a page in a remote PDF document), type is the destination type (see below) and arguments are the required arguments for the specific type of destination. Destination Types¶ ↑ There are eight different types of destinations, each taking different arguments. The arguments are marked up in the list below and are in the correct order for use in the destination array. The first name in the list is the PDF internal name, the second one the explicit, more descriptive one used by HexaPDF (though the PDF internal name can also be used): :XYZ, :xyz Display the page with the given (left, top) coordinate at the upper-left corner of the window and the specified magnification (zoom) factor. A nil value for any argument means not changing it from the current value. :Fit, :fit_page Display the page so that it fits horizontally and vertically within the window. :FitH, :fit_page_horizontal Display the page so that it fits horizontally within the window, with the given top coordinate being at the top of the window. A nil value for top means not changing it from the current value. :FitV, :fit_page_vertical Display the page so that it fits vertically within the window, with the given left coordinate being at the left of the window. A nil value for left means not changing it from the current value. :FitR, :fit_rectangle Display the page so that the rectangle specified by (left, bottom)-(right, top) fits horizontally and vertically within the window. :FitB, :fit_bounding_box Display the page so that its bounding box fits horizontally and vertically within the window. :FitBH, :fit_bounding_box_horizontal Display the page so that its bounding box fits horizontally within the window, with the given top coordinate being at the top of the window. A nil value for top means not changing it from the current value. :FitBV, :fit_bounding_box_vertical Display the page so that its bounding box fits vertically within the window, with the given left coordinate being at the left of the window. A nil value for left means not changing it from the current value. Public Class Methods new(destination)¶ Creates a new Destination for the given destination specification which may be an explicit destination array or a dictionary with a /D entry (as allowed for a named destination). valid?(destination)¶ Returns true if the destination is valid. Public Instance Methods bottom()¶ Returns the argument bottom if used by the destination, raises an error otherwise. left()¶ Returns the argument left if used by the destination, raises an error otherwise. page()¶ Returns the referenced page. The return value is either a page object or, in case of a destination to a remote document, a page number. remote?()¶ Returns true if the destination references a destination in a remote document. right()¶ Returns the argument right if used by the destination, raises an error otherwise. top()¶ Returns the argument top if used by the destination, raises an error otherwise. type()¶ Returns the type of destination. valid?()¶ Returns true if the destination is valid. value()¶ Returns the wrapped destination array. zoom()¶ Returns the argument zoom if used by the destination, raises an error otherwise. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Files.html","title":"HexaPDF::Document::Files","tags":"","text":" Class MethodsnewInstance Methodsaddeach class HexaPDF::Document::Files Parent Object Included Modules Enumerable This class provides methods for managing file specifications of a PDF file. Note that for a given PDF file not all file specifications may be found, e.g. when a file specification is only a string. Therefore this module can only handle those file specifications that are indirect file specification dictionaries with the /Type key set. Public Class Methods new(document)¶ Creates a new Files object for the given PDF document. Public Instance Methods add(filename, name: nil, description: nil, embed: true) → file_spec ¶ add(io, name:, description: nil) → file_spec ¶ Adds the file or IO to the PDF document and returns the corresponding file specification object. Options: name The name that should be used for the file path. This name is also used for registering the file in the EmbeddedFiles name tree. When a filename is given, the basename of the file is used by default for name if it is not specified. description A description of the file. embed When an IO object is given, it is always embedded and this option is ignored. When a filename is given and this option is true, then the file is embedded. Otherwise only a reference to it is stored. See: HexaPDF::Type::FileSpecification each(search: false) {|file_spec| block } → files ¶ each(search: false) → Enumerator ¶ Iterates over indirect file specification dictionaries of the PDF. By default, only the file specifications in their standard locations, i.e. in the EmbeddedFiles name tree and in the page annotations, are returned. If the search option is true, then all indirect objects are searched for file specification dictionaries which can be much slower. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Fonts.html","title":"HexaPDF::Document::Fonts","tags":"","text":" Class MethodsnewInstance Methodsaddconfigured_fonts class HexaPDF::Document::Fonts Parent Object This class provides utility functions for working with fonts. It is available through the HexaPDF::Document#fonts method. Public Class Methods new(document)¶ Creates a new Fonts object for the given PDF document. Public Instance Methods add(name, **options) → font ¶ Adds the font to the document and returns it (using the font loaders specified with the configuration option ‘font_loaders’). If a font with the same parameters has been loaded before, the cached font object is used. configured_fonts()¶ Returns a hash of the form ‘font_name => [variants, …]’ with all the fonts that are configured. These fonts can be added to the document by using the add method. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Images.html","title":"HexaPDF::Document::Images","tags":"","text":" Class MethodsnewInstance Methodsaddeach class HexaPDF::Document::Images Parent Object Included Modules Enumerable This class provides methods for managing the images embedded in a PDF file. It is available through the HexaPDF::Document#images method. Images themselves are represented by the HexaPDF::Type::Image class.Since an image can be used as a mask for another image, not all image objects found in a PDF are really used as images. Such cases are all handled by this class automatically. Public Class Methods new(document)¶ Creates a new Images object for the given PDF document. Public Instance Methods add(file) → image ¶ add(io) → image ¶ Adds the image from the given file or IO to the PDF document and returns the image object. If the image has been added to the PDF before (i.e. if there is an image object with the same path name), the already existing image object is returned. each {|image| block } → images ¶ each → Enumerator ¶ Iterates over all images in the PDF document. Note that only real images are yielded which means, for example, that images used as soft mask are not. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Layout/index.html","title":"HexaPDF::Document::Layout","tags":"","text":" AttributesstylesClass MethodsnewInstance Methodsboxformatted_text_boximage_boxinline_boxlorem_ipsum_boxmethod_missingstyletable_boxtext_boxtext_fragments class HexaPDF::Document::Layout Parent Object This class provides methods for working with classes in the HexaPDF::Layout module. Often times the layout related classes are used through HexaPDF::Composer which makes it easy to create documents. However, sometimes one wants to have a bit more control or do something special and use the HexaPDF::Layout classes directly. This is possible but it is better to use those classes through an instance of this class because it makes it more convenient and ties everything together. Incidentally, HexaPDF::Composer relies on this class for a good part of its work. Boxes¶ ↑ The main focus of the class is on providing convenience methods for creating box objects. The most often used box classes like HexaPDF::Layout::TextBox or HexaPDF::Layout::ImageBox can be created through dedicated methods: text_box formatted_text_box image_box lorem_ipsum_box Other, more general boxes don’t have their own method but can be created through the general box method. This method uses the ‘layout.boxes.map’ configuration option. Additionally, the _box suffix can be omitted, so calling text, formatted_text and image also works. Furthermore, all box names defined in the ‘layout.boxes.map’ configuration option can be used as method names (with or without a _box suffix) and will invoke box, i.e. column and column_box will also work. Box Styles¶ ↑ All box creation methods accept Layout::Style objects or names for style objects (defined via style). This allows one to predefine certain styles (like first level heading, second level heading, paragraph, …) and consistently use them throughout the document creation process. One style property, Layout::Style#font, is handled specially: If no font is set on a style, the font “Times” is automatically set because otherwise there would be problems with text drawing operations (font is the only style property that has no valid default value). Standard style objects only allow font wrapper objects to be set via the Layout::Style#font method. This class makes usage easier by allowing strings or an array [name, options_hash] to be used, like with e.g Content::Canvas#font. So to use Helvetica as font, one could just do: style.font = 'Helvetica' And if Helvetica in its bold variant should be used it would be: style.font = ['Helvetica', variant: :bold] Attributes styles[R]¶ The mapping of
style name (a Symbol) to Layout::Style instance. Public Class Methods new(document)¶ Creates a new Layout object for the given PDF document. Public Instance Methods box(name = :base, width: 0, height: 0, style: nil, **box_options, &block)¶ Creates the named box and returns it. The name argument refers to the registered name of the box class that is looked up in the ‘layout.boxes.map’ configuration option. The box_options are passed as-is to the initialization method of that box class. If a block is provided, a ChildrenCollector is yielded and the collected children are passed to the box initialization method via the :children keyword argument. There is one exception to this rule in case name is base: The provided block is passed to the initialization method of the base box class to function as drawing method. See text_box for details on width, height and style (note that there is no style_properties argument). Example: layout.box(:column, columns: 2, gap: 15) # => column_box_instance layout.box(:column) do |column| # column box with one child column.lorem_ipsum end layout.box(width: 100) do |canvas, box| canvas.line(0, 0, box.content_width, box.content_height).stroke end formatted_text_box(data, width: 0, height: 0, style: nil, properties: nil, box_style: nil, **style_properties)¶ Creates a HexaPDF::Layout::TextBox like text_box but allows parts of the text to be formatted differently. The argument data needs to be an array of String, HexaPDF::Layout::InlineBox and/or Hash objects and is transformed so that it is suitable as argument for the text box initialization method. A String object is treated like {text: data}. A HexaPDF::Layout::InlineBox is used without modification. Hashes can contain any style properties and the following special keys: text The text to be formatted. If this is set and :box is not, the hash will be transformed into text fragments. link A URL that should be linked to. If no text is provided but a link, the link is used for the text. If this is set and :box is not, the hash will be transformed into text fragments with an appropriate link overlay. style The style to use as base style instead of the style created from the style and style_properties arguments. This can either be a style name set via style or anything HexaPDF::Layout::Style::create allows. If any style properties are set, the used style is duplicated and the additional properties applied. The final style is used for a created text fragment. properties The custom properties that should be set on the created text fragments. box An inline box to be used. If this is set, the hash will be transformed into an inline box. The value must be one or more (as an array) positional arguments to be used with the inline_box method. The rest of the hash keys are passed as keyword arguments to inline_box except for :block which would be passed as the block. See text_box for details on width, height, style, style_properties, properties and box_style. Examples: # Text without special styling layout.formatted_text_box([\"Some string\"]) # A predefined inline box ibox = layout.inline_box(:text, 'Hello') layout.formatted_text_box([ibox]) # Text with styling properties layout.formatted_text_box([{text: \"string\", fill_color: 128}]) # Text referencing a base style layout.formatted_text_box([{text: \"string\", style: :bold}]) # Text with a link layout.formatted_text_box([{link: \"https://example.com\", fill_color: 'blue', text: \"Example\"}]) # Inline boxes created from the given data layout.formatted_text_box([{box: [:text, \"string\"], valign: :top}]) block = lambda {|list| list.text(\"First item\"); list.text(\"Second item\") } layout.formatted_text_box([\"Some \", {box: :list, item_spacing: 10, block: block}]) # Combining the above variants layout.formatted_text_box([\"Hello\", {box: [:text, 'World!']}, \"Here comes a \", {link: 'https://example.com', text: 'link'}, '!', {text: 'And more!', style: :bold, font_size: 20}]) See: text_box, inline_box, HexaPDF::Layout::TextBox, HexaPDF::Layout::TextFragment, HexaPDF::Layout::InlineBox image_box(file, width: 0, height: 0, properties: nil, style: nil, **style_properties)¶ Creates a HexaPDF::Layout::ImageBox for the given image. The file argument can be anything that is accepted by HexaPDF::Document::Images#add or a HexaPDF::Type::Form object. See text_box for details on width, height, style, style_properties and properties. Examples: layout.image_box(machu_picchu, border: {width: 3}) layout.image_box(machu_picchu, height: 30) See: HexaPDF::Layout::ImageBox inline_box(box_or_name, *args, valign: :baseline, **kwargs, &block)¶ Creates an inline box for use together with text fragments. The valign argument ist used to specify the vertical alignment of the box within the text line. See HexaPDF::Layout::Line for details. If a box instance is provided as first argument, it is used. Otherwise the first argument has to be the name of a box creation method and args, kwargs and block are passed to it. Example: layout.inline_box(:text, \"Hallo\") layout.inline_box(:list) {|list| list.text(\"Hallo\") } lorem_ipsum_box(sentences: 4, count: 1, **text_box_properties)¶ Uses text_box to create count paragraphs with sentences number of sentences (1 to 4) of lorem ipsum text. The text_box_properties arguments are passed as is to text_box. method_missing(name, *args, **kwargs, &block)¶ Allows creating boxes using more convenient method names: text for text_box formatted_text for formatted_text_box image for image_box lorem_ipsum for lorem_ipsum_box The name of a pre-defined box class like column will invoke box appropriately. Same if used with a ‘_box’ suffix. Calls superclass method style(name) → style ¶ style(name, base: :base, **properties) → style ¶ Creates or updates the Layout::Style object called name with the given property values and returns it. If neither base nor any style properties are specified, the style name is just returned. This method allows convenient access to the stored styles and to update them. Such styles can then be used by name in the various box creation methods, e.g. text_box or image_box. If the style name does not exist yet and the argument base specifies the name of another style, that style is duplicated and used as basis for the style. This also means that the referenced base style needs be defined first! The special name :base should be used for setting the base style which is used for the base argument when no specific style is specified. Note that the style property ‘font’ is handled specially, see the class documentation for details. Example: layout.style(:base, font_size: 12, leading: 1.2) layout.style(:header, font: 'Helvetica', fill_color: \"008\") layout.style(:header1, base: :header, font_size: 30) See: HexaPDF::Layout::Style table_box(data, column_widths: nil, header: nil, footer: nil, cell_style: nil, width: 0, height: 0, style: nil, properties: nil, **style_properties) { |collector| ... }¶ Creates a HexaPDF::Layout::TableBox for the given table data. This method is a small wrapper around the actual class and mainly facilitates transforming the contents of the data into the box instances needed by the table box implementation. In addition to everything the table box implementation allows for data, it is also possible to specify strings as cell contents. Those strings will be converted to text boxes by using the text_box method. Note that this functionality is not available for the header and footer! Additional arguments for the text_box invocations can be specified using the optional block that yields a CellArgumentCollector instance. This allows customization of the text boxes. By specifying the special key :cell it is also possible to assign style properties to the cells themselves. See HexaPDF::Layout::TableBox::new for details on column_widths, header, footer, and cell_style. See text_box for details on width, height, style, style_properties and properties. Examples: layout.table_box([[layout.text('A'), layout.text('B')], [layout.image(image_path), layout.text('D')]] layout.table_box([['A', 'B'], [layout.image(image_path), 'D]]) # same as above layout.table_box([['A', 'B'], ['C', 'D]]) do |args| # assign the predefined style :cell_text to all texts args[] = {style: :cell_text} # row 0 has a grey background and bold text args[0] = {font: ['Helvetica', variant: :bold], cell: {background_color: 'eee'}} # text in last column is right aligned args[0..-1, -1] = {text_align: :right} end See: HexaPDF::Layout::TableBox text_box(text, width: 0, height: 0, style: nil, properties: nil, box_style: nil, **style_properties)¶ Creates a HexaPDF::Layout::TextBox for the given text. This method is of the two main methods for creating text boxes, the other being formatted_text_box. width, height The arguments width and height are used as constraints and are respected when fitting the box. The default value of 0 means that no constraints are set. style, style_properties The box and the text are styled using the given style. This can either be a style name set via style or anything Layout::Style::create accepts. If any additional style_properties are specified, the style is duplicated and the additional styles are applied. properties This can be used to set custom properties on the created text box. See Layout::Box#properties for details and usage. box_style Sometimes it is necessary for the box to have a different style than the text, e.g. when using overlays. In such a case use box_style for specifiying the style of the box (a style name set via style or anything Layout::Style::create accepts). The style together with the style_properties will be used for the text style. Examples: layout.text_box(\"Test is on \" * 15) layout.text_box(\"Now \" * 7, width: 100) layout.text_box(\"Another test\", font_size: 15, fill_color: \"hp-blue\") layout.text_box(\"Different box style\", fill_color: 'white', box_style: { underlays: [->(c, b) { c.rectangle(0, 0, b.content_width, b.content_height).fill }]
}) See: formatted_text_box, HexaPDF::Layout::TextBox, HexaPDF::Layout::TextFragment text_fragments(text, style: nil, properties: nil, **style_properties)¶ Creates an array of HexaPDF::Layout::TextFragment objects for the given text. This method uses the configuration option ‘font.on_invalid_glyph’ to map Unicode characters without a valid glyph in the given font to zero, one or more glyphs in a fallback font. style, style_properties The text is styled using the given style. This can either be a style name set via style or anything Layout::Style::create accepts. If any additional style_properties are specified, the style is duplicated and the additional styles are applied. properties This can be used to set custom properties on the created text fragments. See Layout::Box#properties for details and usage. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Layout/CellArgumentCollector.html","title":"HexaPDF::Document::Layout::CellArgumentCollector","tags":"","text":" ConstantsArgumentInfoAttributesargument_infosClass MethodsnewInstance Methods[]=retrieve_arguments_for class HexaPDF::Document::Layout::CellArgumentCollector Parent Object This helper class is used by Layout#table_box to allow specifying the keyword arguments used when converting cell data to box instances. Constants ArgumentInfo¶ Stores a single keyword argument definition for a number of rows/columns. Attributes argument_infos[R]¶ Returns all stored ArgumentInfo instances. Public Class Methods new(number_of_rows, number_of_columns)¶ Creates a new instance, providing the number of rows and columns of the table. Public Instance Methods []=(rows = 0..-1, cols = 0..-1, args)¶ Stores the keyword arguments in args for the given 0-based rows and columns which can either be a single number or a range of numbers. retrieve_arguments_for(row, col)¶ Retrieves the merged keyword arguments for the cell in row and col. Earlier defined arguments are overridden by later ones. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Layout/ChildrenCollector.html","title":"HexaPDF::Document::Layout::ChildrenCollector","tags":"","text":" AttributeschildrenClass Methodscollectnew class HexaPDF::Document::Layout::ChildrenCollector Parent Object This class is used when a box can contain child boxes and the creation of such boxes should be seemlessly doable when creating the parent node. It is yieled, for example, by Layout#box to collect the children for the created box. A box can be added to the list of collected children in the following ways: << This appends the given box to the list. text_box, formatted_text_box, image_box, … Any method accepted by the Layout class. text, formatted_text, image, … Any method accepted by the Layout class without the _box suffix. list, column, … Any name registered with the configuration option layout.boxes.map. The special method multiple allows adding multiple boxes as a single array to the collected children. Example: document.layout.box(:list) do |list| # list is a ChildrenCollector list.text_box(\"Some text here\") # layout method list.image(image_path) # layout method without _box suffix list.column(columns: 3) do |column| # registered box name column.text(\"Text in column\") column << document.layout.lorem_ipsum_box # adding a Box instance end end Attributes children[R]¶ The collected children Public Class Methods collect(layout) { |collector| ... }¶ Creates a children collector, yields it and then returns the collected children. new(layout)¶ Create a new ChildrenCollector for the given layout (a HexaPDF::Document::Layout) instance. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Metadata/index.html","title":"HexaPDF::Document::Metadata","tags":"","text":" ConstantsPREDEFINED_NAMESPACESPREDEFINED_PROPERTIESClass MethodsnewInstance Methodsauthorcreation_datecreatordefault_languagekeywordsmodification_datenamespaceproducerpropertyregister_namespaceregister_property_typesubjecttitletrappedwrite_info_dictwrite_info_dict?write_metadata_streamwrite_metadata_stream? class HexaPDF::Document::Metadata Parent Object This class provides methods for reading and writing the document-level metadata. When an instance is created (usually through HexaPDF::Document#metadata), the metadata is read from the document’s information dictionary (see HexaPDF::Type::Info) and made available through the various methods. By default, the metadata is written to the information dictionary as well as to the document’s metadata stream (see HexaPDF::Type::Metadata) once the document is written. This can be controlled via the write_info_dict and write_metdata_stream methods. While HexaPDF is able to write an XMP packet (using a limited form) to the document’s metadata stream, it provides no way for reading XMP metadata. If reading functionality or extended writing functionality is needed, make sure this class does not write the metadata and read/create the metadata stream yourself. Caveats¶ ↑ Disabling writing to the information dictionary will only prevent parts from being written. The producer is always written to the information dictionary as per the AGPL license terms. The modification_date may be written depending on the arguments to HexaPDF::Document#write. If writing the metadata stream is enabled, any existing metadata stream is completely overwritten. This means the metadata stream is not updated with the changed information. Adding custom metadata properties¶ ↑ All the properties specified for the information dictionary are supported. Furthermore, HexaPDF supports writing custom properties to the metadata stream. For this to work the used XMP namespaces need to be registered using register_namespace. Additionally, the types of all used XMP properties need to be registered using register_property. The following types for XMP properties are supported: String Maps to the XMP simple string value. Values need to be of type String. Date Maps to the XMP simple string value, correctly formatted. Values need to be of type Time, Date, or DateTime URI Maps to the XMP simple value variant of URI. Values need to be of type String or URI. Boolean Maps to the XMP simple string value, correctly formatted. Values need to be either true or false. OrderedArray Maps to the XMP ordered array. Values need to be of type Array and items must be XMP simple values. UnorderedArray Maps to the XMP unordered array. Values need to be of type Array and items must be simple values. LanguageArray Maps to the XMP language alternatives array. Values need to be of type Array and items must either be strings (they are associated with the set default language) or LocalizedString instances. See: PDF2.0 s14.3, www.adobe.com/products/xmp.html Constants PREDEFINED_NAMESPACES¶ Contains a mapping of predefined prefixes for XMP namespaces for metadata. PREDEFINED_PROPERTIES¶ Contains a mapping of predefined XMP properties to their types, i.e. from namespace to property and then type. Public Class Methods new(document)¶ Creates a new Metadata object for the given PDF document. Public Instance Methods author → author or nil ¶ author(value) → value ¶ Returns the name of the person who created the document (author) if no argument is given. Otherwise sets the author to the given value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name dc:creator. creation_date → creation_date or nil ¶ creation_date(value) → value ¶ Returns the date and time (a Time object) the document was created if no argument is given. Otherwise sets the creation date to the given value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name xmp:CreateDate. creator → creator or nil ¶ creator(value) → value ¶ Returns the name of the PDF processor that created the original document from which this PDF was converted if no argument is given. Otherwise sets the name of the creator tool to the given value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name xmp:CreatorTool. default_language → language ¶ default_language(value) → value ¶ Returns the default language in RFC3066 format used for unlocalized strings if no argument is given. Otherwise sets the default language to the given language. The initial default lanuage is taken from the document catalog’s /Lang entry. If that is not set, the default language is assumed to be English (‘en’). keywords → keywords or nil ¶ keywords(value) → value ¶ Returns the keywords associated with the document if no argument is given. Otherwise sets keywords to the given value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name pdf:Keywords. modification_date → modification_date or nil ¶ modification_date(value) → value ¶ Returns the date and time (a Time object) the document was most recently modified if no argument is given. Otherwise sets the modification date to the given value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name xmp:ModifyDate. namespace(ns)¶ Returns the namespace URI associated with the given prefix. producer → producer or nil ¶ producer(value) → value ¶ Returns the name of the PDF processor that converted the original document to PDF if no argument is given. Otherwise sets the name of the producer to the given value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name
pdf:Producer. property(ns_prefix, name) → property_value ¶ property(ns_prefix, name, value) → value ¶ Returns the value for the property specified via the namespace prefix ns_prefix and name if the value argument is not provided. Otherwise sets the property to value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. register_namespace(prefix, uri)¶ Registers the prefix for the given namespace uri. register_property_type(prefix, property, type)¶ Registers the property for the namespace specified via prefix as the given type. The argument type has to be one of the following: ‘String’, ‘Date’, ‘URI’, ‘Boolean’, ‘OrderedArray’, ‘UnorderedArray’, or ‘LanguageArray’. subject → subject or nil ¶ subject(value) → value ¶ Returns the subject of the document if no argument is given. Otherwise sets the subject to the given value. The language for the subject is specified via default_language. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name dc:description. title → title or nil ¶ title(value → value ¶ Returns the document’s title if no argument is given. Otherwise sets the document’s title to the given value. The language for the title is specified via default_language. The value nil is returned if the property is not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name dc:title. trapped → trapped or nil ¶ trapped(value) → value ¶ Returns true if the document has been modified to include trapping information if no argument is given. Otherwise sets the trapped status to the given boolean value. The value nil is returned if the property ist not set. And by using nil as value the property is deleted from the metadata. This metadata property is represented by the XMP name pdf:Trapped. write_info_dict(value)¶ Makes HexaPDF write the information dictionary if value is true. See the class documentation for caveats. write_info_dict?()¶ Returns true if the information dictionary should be written. write_metadata_stream(value)¶ Makes HexaPDF write the metadata stream if value is true. See the class documentation for caveats. write_metadata_stream?()¶ Returns true if the metadata stream should be written. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Metadata/LocalizedString.html","title":"HexaPDF::Document::Metadata::LocalizedString","tags":"","text":" Attributeslanguage class HexaPDF::Document::Metadata::LocalizedString Parent String Represents a localized XMP string, i.e. as string with an attached language. Attributes language[RW]¶ The language identifier for the string in RFC3066 format. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Document/Pages.html","title":"HexaPDF::Document::Pages","tags":"","text":" Class MethodsnewInstance Methods<<[]addadd_labelling_rangecountcreatedeletedelete_atdelete_labelling_rangeeacheach_labelling_rangeinsertlengthmovepage_labelrootsize class HexaPDF::Document::Pages Parent Object Included Modules Enumerable This class provides methods for managing the pages and page labels of a PDF file. For page manipulation it uses the methods of HexaPDF::Type::PageTreeNode underneath but provides a more convenient interface. Page Labels¶ ↑ In addition to page manipulation, the class provides methods for managing the page labels which are alternative descriptions for the pages. In contrast to the page indices which are fixed the page labels can be freely defined. The way this works is that one can assign page label objects (HexaPDF::Type::PageLabel) to page ranges via the /PageLabels number tree in the catalog. The page label objects specify how the pages in their range shall be labeled. See HexaPDF::Type::PageLabel for examples of page labels. To facilitate the easy use of page labels the following methods are provided: page_label each_labelling_range add_labelling_range delete_labelling_range Public Class Methods new(document)¶ Creates a new Pages object for the given PDF document. Public Instance Methods pages << page → pages ¶ Appends the given page at the end and returns the pages object itself to allow chaining. [](index)¶ Returns the page for the zero-based index, or nil if no such page exists. Negative indices count backwards from the end, i.e. -1 is the last page. add → new_page ¶ add(page) → page ¶ add(media_box, orientation: nil) → new_page ¶ Adds the given page or a new empty page at the end and returns it. If called with a page object as argument, that page object is used. Otherwise create is called with the arguments media_box and orientation to create a new page. add_labelling_range(start_index, numbering_style: nil, prefix: nil, start_number: nil)¶ Adds a new labelling range starting at start_index and returns it. See HexaPDF::Type::PageLabel for information on the arguments numbering_style, prefix, and start_number. If a labelling range already exists for the given start_index, its value will be overwritten. If there are no existing labelling ranges and the given start_index isn’t 0, a default labelling range using start index 0 and numbering style :decimal is added. count()¶ Returns the number of pages in the PDF document. May be zero if the document has no pages yet. Also aliased as: size, length create(media_box: nil, orientation: nil)¶ Creates a page object and returns it without adding it to the page tree. media_box If this argument is nil/not specified, the value is taken from the configuration option ‘page.default_media_box’. If the resulting value is an array with four numbers (specifying the media box), the new page will have these exact dimensions. If the value is a symbol, it is taken as a reference to a pre-defined media box in HexaPDF::Type::Page::PAPER_SIZE. The orientation can then be used to specify the page orientation. orientation If this argument is not specified, it is taken from ‘page.default_media_orientation’. It is only used if media_box is a symbol and not an array. delete(page)¶ Deletes the given page object from the document’s page tree and the document. Also see: HexaPDF::Type::PageTreeNode#delete_page delete_at(index)¶ Deletes the page object at the given index from the document’s page tree and the document. Also see: HexaPDF::Type::PageTreeNode#delete_page delete_labelling_range(start_index)¶ Deletes the page labelling range starting at start_index and returns the associated page label object. Note: The page label for the range starting at zero can only be deleted last! each {|page| block } → pages ¶ each → Enumerator ¶ Iterates over all pages inorder. each_labelling_range {|first_index, count, page_label| block } → pages ¶ each_labelling_range → Enumerator ¶ Iterates over all defined labelling ranges inorder, yielding the page index of the first page in the labelling range, the number of pages in the range, and the associated page label object. The last yielded count might be equal or lower than zero in case the document has fewer pages than anticipated by the labelling ranges. insert(index, page = nil)¶ Inserts the page or a new empty page at the zero-based index and returns it. Negative indices count backwards from the end, i.e. -1 is the last page. When using negative indices, the page will be inserted after that element. So using an index of -1 will insert the page after the last page. length()¶ Alias for: count move(page, to_index) ¶ move(index, to_index) ¶ Moves the given page or the page at the position specified by the zero-based index to the to_index position. If the page that should be moved, doesn’t exist or is invalid, an error is raised. Negative indices count backwards from the end, i.e. -1 is the last page. When using a negative index, the page will be moved after that element. So using an index of -1 will move the page after the last page. page_label(page_index)¶ Returns the constructed page label for the given page index. If no page labels are defined, nil is returned. See HexaPDF::Type::PageLabel for examples. root()¶ Returns the root of the page tree, a HexaPDF::Type::PageTreeNode object. size()¶ Alias for: count "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/index.html","title":"HexaPDF::Encryption","tags":"","text":" ConstantsFastARC4 module HexaPDF::Encryption Overview¶ ↑ A PDF document may be encrypted so that certain permissions are respected when the document is opened, a password must be specified so that a document can be openend, or so that a password must be specified to remove the restrictions and allow full access. This module contains all encryption and security related code to facilitate PDF encryption. Security Handlers¶ ↑ Security handlers manage the process of encrypting and decrypting a PDF document. One of the main responsibilities of them is providing the encryption key that is then used by the selected encryption algorithm (see below). However, security handlers may also provide additional information. The Encryption::SecurityHandler is the base class for all such security handlers. It defines the interface and all common code for encrypting and decrypting strings and streams. The PDF specification also defines a password-based standard security handler that additionally allows setting permission information. This security handler is implemented by the Encryption::StandardSecurityHandler class. There is also a certificate-based security handler defined by the PDF specification. However, that handler is not implemented. Encryption Algorithms¶ ↑ PDF security is based on two algorithms with varying key lengths: ARC4 and AES. The ARC4 and AES modules contain code common to their specific algorithm and are adapted to work together with any SecurityHandler. There are at least two versions of each algorithm present: FastAES and FastARC4 The preferred versions which are based on
OpenSSL and therefore rely on the OpenSSL library and a C extension. RubyAES and RubyARC4 Pure Ruby implementations of the algorithms which are naturally much slower than the OpenSSL based ones. However, these implementation can be used on any Ruby implementation. The ARC4 algorithm is deprecated with PDF 2.0 and should not be used when creating new documents. See: PDF2.0 s7.6 Constants FastARC4¶ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/AES/index.html","title":"HexaPDF::Encryption::AES","tags":"","text":" ConstantsBLOCK_SIZEVALID_KEY_LENGTHClass Methodsnew module HexaPDF::Encryption::AES Common interface for AES algorithms This module defines the common interface that is used by the security handlers to encrypt or decrypt data with AES. It has to be prepended by any specific AES algorithm class. See the ClassMethods module for available class level methods of AES algorithms. Implementing an AES Class¶ ↑ An AES class needs to define at least the following methods: initialize(key, iv, mode) Initializes the AES algorithm with the given key and initialization vector. The mode determines how the AES algorithm object works: If the mode is :encrypt, the object encrypts the data, if the mode is :decrypt, the object decrypts the data. process(data) Processes the data and returns the encrypted/decrypted data. The method can assume that the passed in data always has a length that is a multiple of BLOCK_SIZE. Constants BLOCK_SIZE¶ The AES block size VALID_KEY_LENGTH¶ Valid AES key lengths Public Class Methods new(key, iv, mode)¶ Creates a new AES object using the given encryption key and initialization vector. The mode must either be :encrypt or :decrypt. Classes prepending this module have to have their own initialization method as this method just performs basic checks. Calls superclass method "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/AES/ClassMethods.html","title":"HexaPDF::Encryption::AES::ClassMethods","tags":"","text":" Instance Methodsdecryptdecryption_fiberencryptencryption_fiberrandom_bytes module HexaPDF::Encryption::AES::ClassMethods Convenience methods for decryption and encryption that operate according to the PDF specification. These methods will be available on the class object that prepends the AES module. Public Instance Methods decrypt(key, data)¶ Decrypts the given data using the key. It is assumed that the initialization vector is included in the first BLOCK_SIZE bytes of the data. After the decryption the PKCS#5 padding is removed. See: PDF2.0 s7.6.3 decryption_fiber(key, source)¶ Returns a Fiber object that decrypts the data from the given source fiber with the key. Padding and the initialization vector are handled like in decrypt. encrypt(key, data)¶ Encrypts the given data using the key and a randomly generated initialization vector. The data is padded using the PKCS#5 padding scheme and the initialization vector is prepended to the encrypted data, See: PDF2.0 s7.6.3 encryption_fiber(key, source)¶ Returns a Fiber object that encrypts the data from the given source fiber with the key. Padding and the initialization vector are handled like in encrypt. random_bytes(n)¶ Returns a string of n random bytes. The specific AES algorithm class can override this class method to provide another method for generating random bytes. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/ARC4/index.html","title":"HexaPDF::Encryption::ARC4","tags":"","text":" module HexaPDF::Encryption::ARC4 Common interface for ARC4 algorithms This module defines the common interface that is used by the security handlers to encrypt or decrypt data with ARC4. It has to be prepended by any ARC4 algorithm class. See the ClassMethods module for available class level methods of ARC4 algorithms. Implementing an ARC4 Class¶ ↑ An ARC4 class needs to define at least the following methods: initialize(key) Initializes the ARC4 algorithm with the given key. process(data) Processes the data and returns the encrypted/decrypted data. Since the ARC4 algorithm is symmetric in regards to its inner workings, the same method can be used for encryption and decryption. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/ARC4/ClassMethods.html","title":"HexaPDF::Encryption::ARC4::ClassMethods","tags":"","text":" Instance Methodsdecryptdecryption_fiberencryptencryption_fiber module HexaPDF::Encryption::ARC4::ClassMethods Convenience methods for decryption and encryption that operate according to the PDF specification. These methods will be available on the class object that prepends the ARC4 module. Public Instance Methods decrypt(key, data)¶ Alias for: encrypt decryption_fiber(key, source)¶ Alias for: encryption_fiber encrypt(key, data)¶ Encrypts the given data with the key. See: PDF2.0 s7.6.3 Also aliased as: decrypt encryption_fiber(key, source)¶ Returns a Fiber object that encrypts the data from the given source fiber with the key. Also aliased as: decryption_fiber "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/EncryptionDictionary.html","title":"HexaPDF::Encryption::EncryptionDictionary","tags":"","text":" Instance Methodsmust_be_indirect? class HexaPDF::Encryption::EncryptionDictionary Parent HexaPDF::Dictionary Base class for all encryption dictionaries. Contains entries common to all encryption dictionaries. If a specific security handler needs further fields it should derive a new subclass and add the new fields there. See: PDF2.0 s7.6.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFilterSymboltruenilSubFilterSymbolfalsenilVIntegerOne of: 0, 1, 2, 3, 4, 5truenilLenthIntegerfalse40CFHexaPDF::Dictionary or HashfalsenilStmFSymbolfalse:IdentityStrFSymbolfalse:IdentityEFFSymbolfalsenil Public Instance Methods must_be_indirect?()¶ Returns true because some PDF readers stumble when encountering a non-indirect encryption dictionary. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/FastAES.html","title":"HexaPDF::Encryption::FastAES","tags":"","text":" Class Methodsnewrandom_bytesInstance Methodsprocess class HexaPDF::Encryption::FastAES Parent Object Implementation of the general encryption algorithm AES using OpenSSL as backend. Since OpenSSL is a native Ruby extension (that comes bundled with Ruby) it is much faster than the pure Ruby version and it can use the AES-NI instruction set on CPUs when available. This implementation is using AES in Cipher Block Chaining (CBC) mode. See: PDF2.0 s7.6.3 Public Class Methods new(key, iv, mode)¶ Creates a new FastAES object using the given encryption key and initialization vector. The mode must either be :encrypt or :decrypt. random_bytes(n)¶ Uses OpenSSL to generate the requested random bytes. See AES::ClassMethods#random_bytes for more information. Public Instance Methods process(data)¶ Encrypts or decrypts the given data whose length must be a multiple of 16. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/FastARC4.html","title":"HexaPDF::Encryption::FastARC4","tags":"","text":" Class MethodsnewInstance Methodsdecryptencryptprocess class HexaPDF::Encryption::FastARC4 Parent Object Implementation of the general encryption algorithm ARC4 using OpenSSL as backend. See: PDF2.0 s7.6.3 Public Class Methods new(key)¶ Creates a new FastARC4 object using the given encryption key. Public Instance Methods decrypt(data)¶ Alias for: process encrypt(data)¶ Alias for: process process(data)¶ Processes the given data. Since this is a symmetric algorithm, the same method can be used for encryption and decryption. Also aliased as: decrypt, encrypt "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/Identity.html","title":"HexaPDF::Encryption::Identity","tags":"","text":" Class Methodsdecryptdecryption_fiberencryptencryption_fiber module HexaPDF::Encryption::Identity The identity encryption/decryption algorithm. This “algorithm” does nothing, i.e. it returns the given data as is without encrypting or decrypting it. See: PDF2.0 s7.6.6 Public Class Methods decrypt(_key, data)¶ Alias for: encrypt decryption_fiber(_key, source)¶ Alias for: encryption_fiber encrypt(_key, data)¶ Just returns the given data. Also aliased as: decrypt encryption_fiber(_key, source)¶ Just returns the given source fiber. Also aliased as: decryption_fiber "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/RubyAES.html","title":"HexaPDF::Encryption::RubyAES","tags":"","text":" Class MethodsnewInstance Methodsprocess class HexaPDF::Encryption::RubyAES Parent Object Implementation of the general encryption algorithm AES. Since this algorithm is implemented in pure Ruby, it is not very fast. Therefore the FastAES class based on OpenSSL should be used when possible. For reference: This implementation is about 5000 times slower when decrypting and about 1800 times slower when encrypting than the FastAES version. This implementation is using AES in Cipher Block Chaining (CBC) mode. See: PDF2.0 s7.6.3 Public Class Methods new(key, iv, mode)¶ Creates a new AES object using the given encryption key and initialization vector. The mode must either be :encrypt or :decrypt. Public Instance Methods process(data)¶ Encrypts or decrypts the given data whose length must be a multiple of BLOCK_SIZE. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/RubyARC4.html","title":"HexaPDF::Encryption::RubyARC4","tags":"","text":" ConstantsINITIAL_STATEClass MethodsnewInstance Methodsdecryptencryptprocess class HexaPDF::Encryption::RubyARC4 Parent Object Pure Ruby implementation of the general encryption algorithm ARC4. Since this algorithm is implemented in pure Ruby, it is not very fast. Therefore the FastARC4 class based on OpenSSL should be used when possible. For reference: This implementation is about 250 times slower than the FastARC4 version. See: PDF2.0 s7.6.3 Constants
INITIAL_STATE¶ The initial state which is then modified by the key-scheduling algorithm Public Class Methods new(key)¶ Creates a new ARC4 object using the given encryption key. Public Instance Methods decrypt(data)¶ Alias for: process encrypt(data)¶ Alias for: process process(data)¶ Processes the given data. Since this is a symmetric algorithm, the same method can be used for encryption and decryption. Also aliased as: decrypt, encrypt "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/SecurityHandler/index.html","title":"HexaPDF::Encryption::SecurityHandler","tags":"","text":" Attributesencryption_detailsClass Methodsnewset_up_decryptionset_up_encryptionInstance Methodsdecryptencrypt_streamencrypt_stringencryption_key_valid?set_up_decryptionset_up_encryption class HexaPDF::Encryption::SecurityHandler Parent Object Base class for all security handlers. Creating SecurityHandler Instances¶ ↑ The base class provides two class methods for this: The method ::set_up_encryption is used when a security handler instance should be created that populates the document’s encryption dictionary. The method ::set_up_decryption is used when a security handler should be created from the document’s encryption dictionary. It is not recommended to create security handlers manually but only with those two methods listed above. Using SecurityHandler Instances¶ ↑ The SecurityHandler base class provides the methods for decrypting an indirect object and for encrypting strings and streams: decrypt encrypt_string encrypt_stream How the decryption/encryption key is actually computed is deferred to a sub class, as per the PDF specification. Additionally, the encryption_key_valid? method can be used to check whether the SecurityHandler instance is built from/built for the current version of the encryption dictionary. Note that any manual changes to the encryption dictionary will invalidate the key and lead to an error! Implementing a SecurityHandler Class¶ ↑ Each security handler has to implement the following methods: prepare_encryption(**options) Prepares the security handler for use in encrypting the document. See the set_up_encryption documentation for information on which options are passed on to this method. Returns the encryption key as well as the names of the string, stream and embedded file algorithms. prepare_decryption(**options) Prepares the security handler for decryption by using the information from the document’s encryption dictionary as well as the provided arguments. See the set_up_decryption documentation for additional information. Returns the encryption key that should be used for decryption. Additionally, the following methods can be overridden to provide a more specific meaning: encryption_dictionary_class Returns the class that is used for the encryption dictionary. Should be derived from the EncryptionDictionary class. Attributes encryption_details[R]¶ A hash containing information about the used encryption. This information is only available once the security handler has been set up for decryption or encryption. Available keys: :version The version of the security handler in use. :string_algorithm The algorithm used for encrypting/decrypting strings. :stream_algorithm The algorithm used for encrypting/decrypting streams. :embedded_file_algorithm The algorithm used for encrypting/decrypting embedded files. :key_length The key length in bits. Public Class Methods new(document)¶ Creates a new SecurityHandler for the given document. set_up_decryption(document, **options) → handler ¶ Sets up and returns the security handler that is used for decrypting the given document and modifies the document’s object loader so that the decryption is handled automatically behind the scenes. The decryption_opts has to contain decryption options specific to the security handler that is used by the PDF file. See: set_up_decryption set_up_encryption(document, handler_name, **options) → handler ¶ Sets up and returns the security handler with the specified name for the document and modifies then document’s encryption dictionary accordingly. The encryption_opts can contain any encryption options for the specific security handler and the common encryption options. See: set_up_encryption (for the common encryption options). Public Instance Methods decrypt(obj)¶ Decrypts the strings and the possibly attached stream of the given indirect object in place. See: PDF2.0 s7.6.3 encrypt_stream(obj)¶ Returns a Fiber that encrypts the contents of the given stream object. Note that some streams *must not be* encrypted. For those, their standard stream encoding fiber is returned. encrypt_string(str, obj)¶ Returns the encrypted version of the string that resides in the given indirect object. Note that some strings won’t be encrypted as per the specification. The returned string, however, is always a different object. See: PDF2.0 s7.6.3 encryption_key_valid?()¶ Checks if the encryption key computed by this security handler is derived from the document’s encryption dictionary. set_up_decryption(dictionary, **options)¶ Uses the given encryption dictionary to set up the security handler for decrypting the document. The security handler specific options are passed on to the prepare_decryption method. See: PDF2.0 s7.6.2 set_up_encryption(key_length: 128, algorithm: :aes, force_v4: false, **options)¶ Computes the encryption key, sets up the algorithms for encrypting the document based on the given options, and returns the corresponding encryption dictionary. The security handler specific options as well as the algorithm argument are passed on to the prepare_encryption method. Options for all security handlers: key_length The key length in bits. Possible values are in the range of 40 to 128 and 256 and it needs to be divisible by 8. algorithm The encryption algorithm. Possible values are :arc4 for ARC4 encryption with key lengths of 40 to 128 bit or :aes for AES encryption with key lengths of 128 or 256 bit. force_v4 Forces the use of protocol version 4 when key_length=128 and algorithm=:arc4. See: PDF2.0 s7.6.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/SecurityHandler/EncryptedStreamData.html","title":"HexaPDF::Encryption::SecurityHandler::EncryptedStreamData","tags":"","text":" AttributesalgorithmkeyClass MethodsnewInstance Methodsfiberundecrypted_fiber class HexaPDF::Encryption::SecurityHandler::EncryptedStreamData Parent StreamData Provides additional encryption specific information for HexaPDF::StreamData objects. Attributes algorithm[R]¶ The encryption algorithm. key[R]¶ The encryption key. Public Class Methods new(obj, key, algorithm)¶ Creates a new encrypted stream data object by utilizing the given stream data object obj as template. The arguments key and algorithm are used for decrypting purposes. Public Instance Methods fiber(*args)¶ Returns a fiber like HexaPDF::StreamData#fiber, but one wrapped in a decrypting fiber. Calls superclass method Also aliased as: undecrypted_fiber undecrypted_fiber(*args)¶ Alias for: fiber "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/StandardEncryptionDictionary.html","title":"HexaPDF::Encryption::StandardEncryptionDictionary","tags":"","text":" class HexaPDF::Encryption::StandardEncryptionDictionary Parent HexaPDF::Encryption::EncryptionDictionary The specialized encryption dictionary for the StandardSecurityHandler. Contains additional fields that are used for storing the information needed for retrieving the encryption key and a set of permissions. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFilterSymboltruenilSubFilterSymbolfalsenilVIntegerOne of: 0, 1, 2, 3, 4, 5truenilLenthIntegerfalse40CFHexaPDF::Dictionary or HashfalsenilStmFSymbolfalse:IdentityStrFSymbolfalse:IdentityEFFSymbolfalsenilRIntegerOne of: 2, 3, 4, 5, 6truenilOHexaPDF::DictionaryFields::PDFByteString or StringtruenilOEHexaPDF::DictionaryFields::PDFByteString or StringfalsenilUHexaPDF::DictionaryFields::PDFByteString or StringtruenilUEHexaPDF::DictionaryFields::PDFByteString or StringfalsenilPIntegertruenilPermsHexaPDF::DictionaryFields::PDFByteString or StringfalsenilEncryptMetadataTrueClass or FalseClassfalsetrue "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/StandardSecurityHandler/index.html","title":"HexaPDF::Encryption::StandardSecurityHandler","tags":"","text":" ConstantsPASSWORD_PADDINGInstance Methodsdecryption_password_typeencrypt_streamencryption_key_valid?permissions class HexaPDF::Encryption::StandardSecurityHandler Parent HexaPDF::Encryption::SecurityHandler The password-based standard security handler of the PDF specification, identified by a /Filter value of /Standard. Overview¶ ↑ The PDF specification defines one security handler that should be implemented by all conforming PDF libraries and applications. This standard security handler allows access permissions and a user password as well as an owner password to be set. See StandardSecurityHandler::EncryptionOptions for all valid options that can be used with this security handler when encrypting a document. And see prepare_decryption for all allowed options when decrypting a document. The access permissions (see StandardSecurityHandler::Permissions) can be used to restrict what a user is allowed to do with a PDF file. When a user or owner password is specified, a PDF file can only be opened when the correct password is supplied. To open such an encrypted PDF file, the decryption_opts provided to HexaPDF::Document.new needs to contain a :password key with the password. See: PDF2.0 s7.6.4 Constants PASSWORD_PADDING¶ The padding used for passwords with fewer than 32 bytes. Only used for revisions <= 4. See: PDF2.0 s7.6.4.3 Public Instance Methods decryption_password_type()¶ Returns the type of password used for decrypting the PDF document. The return value is one of the following: :none No password was needed for decryption. :user The provided user
password was used for decryption. :owner The provided owner password was used for decryption. :unknown The document was not decrypted, only encrypted. encrypt_stream(obj)¶ Calls superclass method HexaPDF::Encryption::SecurityHandler#encrypt_stream encryption_key_valid?()¶ Additionally checks that the document trailer’s ID has not changed. See: SecurityHandler#encryption_key_valid? Calls superclass method HexaPDF::Encryption::SecurityHandler#encryption_key_valid? permissions()¶ Returns the permissions of the managed dictionary as array of symbol values. See: Permissions "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/StandardSecurityHandler/EncryptionOptions.html","title":"HexaPDF::Encryption::StandardSecurityHandler::EncryptionOptions","tags":"","text":" Attributesalgorithmencrypt_metadataowner_passwordpermissionsuser_password class HexaPDF::Encryption::StandardSecurityHandler::EncryptionOptions Parent Object Defines all possible options that can be passed to a StandardSecurityHandler when setting up encryption. Attributes algorithm[RW]¶ The encryption algorithm. encrypt_metadata[RW]¶ Specifies whether metadata should be encrypted. owner_password[RW]¶ The owner password. If this attribute is not specified but the virtual password attribute is, then the latter is used. permissions[RW]¶ The permissions. Either an integer with the needed permission bits set or an array of permission symbols. See: Permissions user_password[RW]¶ The user password. If this attribute is not specified but the virtual password attribute is, then the latter is used. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Encryption/StandardSecurityHandler/Permissions.html","title":"HexaPDF::Encryption::StandardSecurityHandler::Permissions","tags":"","text":" ConstantsALLASSEMBLE_DOCUMENTCOPY_CONTENTEXTRACT_CONTENTFILL_IN_FORMSHIGH_QUALITY_PRINTMODIFY_ANNOTATIONMODIFY_CONTENTPERMISSION_TO_SYMBOLPRINTRESERVEDSYMBOL_TO_PERMISSION module HexaPDF::Encryption::StandardSecurityHandler::Permissions Defines all available permissions. It is possible to use an array of permission symbols instead of an integer to describe the permission set. The used symbols are the lower case versions of the constants, i.e. the symbol for MODIFY_CONSTANT would be :modify_constant. See: PDF2.0 s7.6.4.2 Constants ALL¶ Allows everything ASSEMBLE_DOCUMENT¶ Assembling of the document (inserting, rotating or deleting of pages and creation of bookmarks or thumbnail images) COPY_CONTENT¶ Copying of content EXTRACT_CONTENT¶ Extracting content PDF 2.0 specifies that this bit should always be set by writers and should be ignored by readers. Therefore this is part of the RESERVED constant. FILL_IN_FORMS¶ Filling in form fields HIGH_QUALITY_PRINT¶ High quality printing MODIFY_ANNOTATION¶ Modifying annotations MODIFY_CONTENT¶ Modification of the content by operations that are different from those controlled by MODIFY_ANNOTATION, FILL_IN_FORMS and ASSEMBLE_DOCUMENT PERMISSION_TO_SYMBOL¶ Maps a permission value to its symbol PRINT¶ Printing (if HIGH_QUALITY_PRINT is also set, then high quality printing is allowed) RESERVED¶ Reserved permission bits that should always be set SYMBOL_TO_PERMISSION¶ Maps permission symbols to their respective value "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/EncryptionError.html","title":"HexaPDF::EncryptionError","tags":"","text":" Attributespdf_object class HexaPDF::EncryptionError Parent HexaPDF::Error Raised when there are problems while encrypting or decrypting a document. Attributes pdf_object[RW]¶ The PDF object that caused the problem. May not be set in case of general problems unrelated to a specific PDF object. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Error.html","title":"HexaPDF::Error","tags":"","text":" class HexaPDF::Error Parent StandardError A general error. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FiberDoubleForString.html","title":"HexaPDF::FiberDoubleForString","tags":"","text":" Class MethodsnewInstance Methodsalive?lengthresume class HexaPDF::FiberDoubleForString Parent Object Implements part of the Fiber interface so that it can be used instead of a Fiber by HexaPDF when only a single string should be returned. Public Class Methods new(str = nil, &block)¶ Creates a new FiberDoubleForString instance for the given string str or for the string returned by invoking the block. Public Instance Methods alive?()¶ Returns true if resume has not yet been called. length()¶ Returns the length in bytes of the wrapped string. May only be called before resume! resume()¶ Returns the wrapped string on the first invocation, nil otherwise. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FiberWithLength.html","title":"HexaPDF::FiberWithLength","tags":"","text":" AttributeslengthClass Methodsnew class HexaPDF::FiberWithLength Parent Fiber This special Fiber class should be used when the total length of the data yielded by the fiber is known beforehand. HexaPDF uses this information to avoid unnecessary memory usage. Attributes length[R]¶ The total length of the data that will be yielded by this fiber. If the return value is negative the total length is not known. Public Class Methods new(length, &block)¶ Initializes the Fiber and sets the length. A length of nil is equal to -1. Calls superclass method "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/index.html","title":"HexaPDF::Filter","tags":"","text":" Class Methodssource_from_filesource_from_iosource_from_procsource_from_stringstring_from_source module HexaPDF::Filter Overview¶ ↑ A stream filter is used to compress a stream or to encode it in an ASCII compatible way; or to reverse this process. Some filters can be used for any content, like FlateDecode, others are specifically designed for image streams, like DCTDecode. Each filter is implemented via fibers. This allows HexaPDF to easily process either small chunks or a whole stream at once, depending on the memory restrictions and to create flexible filter pipelines. It also allows the easy re-processing of a stream without first decoding and the encoding it. Such functionality is useful, for example, when a PDF file should be decrypted and streams compressed in one step. Implementation of a Filter Object¶ ↑ Each filter is an object (normally a module) that responds to two methods: #encoder and #decoder. Both of these methods are given a source (a Fiber) and options (a Hash) and have to return a Fiber object. The returned fiber should resume the source fiber to get the next chunk of binary data (possibly only one byte of data, so this situation should be handled gracefully). Once the fiber has processed this chunk, it should yield the processed chunk as binary string. This should be done as long as the source fiber is alive? and doesn’t return nil when resumed. Such a fiber should not return nil unless this signifies that no more data is coming! See: PDF2.0 s7.4 Public Class Methods source_from_file(filename, pos: 0, length: -1, chunk_size: 0)¶ Returns a Fiber that can be used as a source for decoders/encoders and that reads chunks from a file. Note that there will be a problem if the size of the file changes between the invocation of this method and the actual consumption of the file! See ::source_from_io for a description of the pos, length and chunk_size options. source_from_io(io, pos: 0, length: -1, chunk_size: 0)¶ Returns a Fiber that can be used as a source for decoders/encoders and that reads chunks of data from an IO object. Each time a chunk is read, the position pointer of the IO is adjusted. This should be taken into account when working with the IO object. Options: :pos The position from where the reading should start. A negative position is treated as zero. Default: 0. :length The length indicating the number of bytes to read. An error is raised if not all specified bytes could be read. A negative length means reading until the end of the IO stream. Default: -1. :chunk_size The size of the chunks that should be returned in each iteration. A chunk size of less than or equal to 0 means using the biggest chunk size available (can change between versions!). Default: 0. source_from_proc(&block)¶ Returns a FiberDoubleForString that uses the string returned by the provided block and can be used as a source for decoders/encoders. source_from_string(str)¶ Returns a FiberDoubleForString that returns the given string and can be used as a source for decoders/encoders. string_from_source(source)¶ Returns the concatenated string chunks retrieved by resuming the given source Fiber until it is dead. The returned string is always a string with binary (= ASCII-8BIT) encoding. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/ASCII85Decode.html","title":"HexaPDF::Filter::ASCII85Decode","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::ASCII85Decode This filter module implements the ASCII-85 filter which can encode arbitrary data into an ASCII compatible format that expands the original data only by a factor of 4:5. See: HexaPDF::Filter, PDF2.0 s7.4.2 Public Class Methods decoder(source, _ = nil)¶ See HexaPDF::Filter encoder(source, _ = nil)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/ASCIIHexDecode.html","title":"HexaPDF::Filter::ASCIIHexDecode","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::ASCIIHexDecode This filter module implements the ASCII hex decode/encode filter which can encode arbitrary data into the two byte ASCII hex format that expands the original data by a factor of 1:2. See: HexaPDF::Filter, PDF2.0 s7.4.2 Public Class Methods decoder(source, _ = nil)¶ See HexaPDF::Filter encoder(source, _ = nil)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/Crypt.html","title":"HexaPDF::Filter::Crypt","tags":"","text":" Class
Methodsdecoder module HexaPDF::Filter::Crypt This filter module implements the Crypt filter. The only supported part is using the Identity filter. Public Class Methods decoder(source, options)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/Encryption.html","title":"HexaPDF::Filter::Encryption","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::Encryption This filter module allows access to the standard encryption and decryption routines implemented by the SecurityHandler using the standard Filter interface. The options hash for ::decoder and ::encoder must contain two keys: :key (the encryption/decryption key) and :algorithm (the class used for encrypting/decrypting). This module must not be confused with the Crypt filter specified in the PDF specification! Public Class Methods decoder(source, options)¶ See HexaPDF::Filter encoder(source, options)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/FlateDecode.html","title":"HexaPDF::Filter::FlateDecode","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::FlateDecode Implements the Deflate filter using the Zlib library. See: HexaPDF::Filter, PDF2.0 s7.4.4 Public Class Methods decoder(source, options = nil)¶ See HexaPDF::Filter The decoder also handles the case of an empty string not deflated to a correct flate stream but just output as an empty string. encoder(source, options = nil)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/LZWDecode.html","title":"HexaPDF::Filter::LZWDecode","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::LZWDecode Implements the LZW filter. Since LZW uses a tightly packed bit stream in which codes are of varying bit lengths and are not aligned to byte boundaries, this filter is not as fast as the other filters. If speed is a concern, the FlateDecode filter should be used instead. See: HexaPDF::Filter, PDF2.0 s7.4.4 Public Class Methods decoder(source, options = nil)¶ See HexaPDF::Filter encoder(source, options = nil)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/PassThrough.html","title":"HexaPDF::Filter::PassThrough","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::PassThrough The PassThrough filter just passes the source on unmodified. This is enough for basic read-write capabilities but not if the unfiltered bytes are needed. See: HexaPDF::Filter, PDF2.0 s7.4 Public Class Methods decoder(source, _ = nil)¶ See HexaPDF::Filter encoder(source, _ = nil)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/Predictor.html","title":"HexaPDF::Filter::Predictor","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::Predictor Implements the predictor for the LZWDecode and FlateDecode filters. Although a predictor isn’t a full PDF filter, it is implemented as one in HexaPDF terms to allow easy chaining of the predictor. See: PDF2.0 s7.4.4.3, s7.4.4.4, partners.adobe.com/public/developer/en/tiff/TIFF6.pdf (p64f), www.w3.org/TR/PNG-Filters.html Public Class Methods decoder(source, options)¶ See HexaPDF::Filter encoder(source, options)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Filter/RunLengthDecode.html","title":"HexaPDF::Filter::RunLengthDecode","tags":"","text":" Class Methodsdecoderencoder module HexaPDF::Filter::RunLengthDecode Implements the run length filter. See: HexaPDF::Filter, PDF2.0 s7.4.5 Public Class Methods decoder(source, _ = nil)¶ See HexaPDF::Filter encoder(source, _ = nil)¶ See HexaPDF::Filter "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FilterError.html","title":"HexaPDF::FilterError","tags":"","text":" class HexaPDF::FilterError Parent HexaPDF::Error Raised when a filter encounters a problem during decoding or encoding. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/index.html","title":"HexaPDF::Font","tags":"","text":" class HexaPDF::Font Parent "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/CMap/index.html","title":"HexaPDF::Font::CMap","tags":"","text":" AttributesnameorderingregistrysupplementwmodeClass Methodscreate_to_unicode_cmapfor_namenewparsepredefined?Instance Methodsadd_cid_mappingadd_cid_rangeadd_codespace_rangeadd_unicode_mappingread_codesto_cidto_unicodeuse_cmap class HexaPDF::Font::CMap Parent Object Represents a CMap, a mapping from character codes to CIDs (character IDs) or to their Unicode value. See: PDF2.0 s9.7.5, s9.10.3; Adobe Technical Notes #5014 and #5411 Attributes name[RW]¶ The name of the CMap. ordering[RW]¶ The ordering part of the CMap version. registry[RW]¶ The registry part of the CMap version. supplement[RW]¶ The supplement part of the CMap version. wmode[RW]¶ The writing mode of the CMap: 0 for horizontal, 1 for vertical writing. Public Class Methods create_to_unicode_cmap(mapping)¶ Returns a string containing a ToUnicode CMap that represents the given code to Unicode codepoint mapping. See: Writer#create_to_unicode_cmap for_name(name)¶ Creates a new CMap object by parsing a predefined CMap with the given name. Raises an error if the given CMap is not found. new()¶ Creates a new CMap object. parse(string)¶ Creates a new CMap object from the given string which needs to contain a valid CMap file. predefined?(name)¶ Returns true if the given name specifies a predefined CMap. Public Instance Methods add_cid_mapping(code, cid)¶ Adds an individual mapping from character code to CID. add_cid_range(start_code, end_code, start_cid)¶ Adds a CID range, mapping characters codes from start_code to end_code to CIDs starting with start_cid. add_codespace_range(first, *rest)¶ Add a codespace range using an array of ranges for the individual bytes. This means that the first range is checked against the first byte, the second range against the second byte and so on. add_unicode_mapping(code, string)¶ Adds a mapping from character code to Unicode string in UTF-8 encoding. read_codes(string)¶ Parses the string and returns all character codes. An error is raised if the string contains invalid bytes. to_cid(code)¶ Returns the CID for the given character code, or 0 if no mapping was found. to_unicode(code)¶ Returns the Unicode string in UTF-8 encoding for the given character code, or nil if no mapping was found. use_cmap(cmap)¶ Add all mappings from the given CMap to this CMap. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/CMap/Parser.html","title":"HexaPDF::Font::CMap::Parser","tags":"","text":" Instance Methodsparse class HexaPDF::Font::CMap::Parser Parent Object Parses CMap files. See: Adobe Technical Notes #5014 and #5411 Public Instance Methods parse(string)¶ Parses the given string and returns a CMap object. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/CMap/Writer.html","title":"HexaPDF::Font::CMap::Writer","tags":"","text":" ConstantsMAX_ENTRIES_IN_SECTIONInstance Methodscreate_to_unicode_cmap class HexaPDF::Font::CMap::Writer Parent Object Creates a CMap file. Currently only ToUnicode CMaps are supported. Constants MAX_ENTRIES_IN_SECTION¶ Maximum number of entries in one section. Public Instance Methods create_to_unicode_cmap(mapping)¶ Returns a ToUnicode CMap for the given input code to Unicode codepoint mapping which needs to be sorted by input codes. Note that the returned CMap always uses a 16-bit input code space! "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/index.html","title":"HexaPDF::Font::Encoding","tags":"","text":" Class Methodsfor_name module HexaPDF::Font::Encoding Contains implementations of the encodings used for fonts. Public Class Methods for_name(name)¶ Returns the encoding object for the given name, or nil if no such encoding is available. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/Base.html","title":"HexaPDF::Font::Encoding::Base","tags":"","text":" Attributescode_to_nameencoding_nameClass MethodsnewInstance Methodscodenameunicode class HexaPDF::Font::Encoding::Base Parent Object Base for encoding classes that are used for mapping codes in the range of 0 to 255 to glyph names. Attributes code_to_name[R]¶ The hash mapping codes to names. encoding_name[R]¶ The name of the encoding or nil if the encoding has not been assigned a name. Public Class Methods new()¶ Creates a new encoding object containing no default mappings. Public Instance Methods code(name)¶ Returns the code for the given glyph name (a Symbol) or nil if there is no code for the given glyph name. If multiple codes reference the given glyph name, the first found is always returned. name(code)¶ Returns the name for the given code, or .notdef if no glyph for the code is defined. The returned value is always a Symbol object! unicode(code)¶ Returns the Unicode value in UTF-8 for the given code, or nil if the code cannot be mapped. Note that this method caches the result of the Unicode mapping and therefore should only be called after all codes have been defined. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/DifferenceEncoding.html","title":"HexaPDF::Font::Encoding::DifferenceEncoding","tags":"","text":" Attributesbase_encodingClass MethodsnewInstance Methodscodename class HexaPDF::Font::Encoding::DifferenceEncoding Parent HexaPDF::Font::Encoding::Base The difference encoding uses a base encoding that can be overlayed with additional mappings. See: PDF2.0 s9.6.5.1 Attributes base_encoding[R]¶ The base encoding. Public Class Methods new(base_encoding)¶ Initializes the Differences object with the given base encoding object. Calls superclass method HexaPDF::Font::Encoding::Base::new Public Instance Methods code(name)¶ Returns the code for the given glyph name, either from this object, if a code references the name, or from the base encoding.
name(code)¶ Returns the name for the given code, either from this object, if it contains the code, or from the base encoding. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/GlyphList.html","title":"HexaPDF::Font::Encoding::GlyphList","tags":"","text":" Class Methodsname_to_unicodenewunicode_to_nameInstance Methodsname_to_unicodeunicode_to_name class HexaPDF::Font::Encoding::GlyphList Parent Object Provides access to and mapping functionality for the Adobe Glyph List. The Adobe Glyph List is used for mapping glyph names to Unicode values. The mapping itself is not a one-to-one mapping because some glyphs are mapped to the same Unicode sequence, e.g. the glyph name for ‘A’ and the glyph name for ‘small capital A’. Since a reverse mapping is needed for converting UTF-8 strings to glyph names when encoding text, this (not unique) reverse mapping is also available. However, only the first occurence of a particular Unicode string is reverse-mapped. See: github.com/adobe-type-tools/agl-aglfn github.com/adobe-type-tools/agl-specification Public Class Methods name_to_unicode(name, zapf_dingbats: false)¶ See name_to_unicode new()¶ Creates and returns the single GlyphList instance. Calls superclass method unicode_to_name(unicode, zapf_dingbats: false)¶ See unicode_to_name Public Instance Methods name_to_unicode(name, zapf_dingbats: false)¶ Maps the given name to a string by following the Adobe Glyph Specification. Returns nil if the name has no correct mapping. If this method is invoked when dealing with the ZapfDingbats font, the zapf_dingbats option needs to be set to true. Assumes that the name is a Symbol and that it includes just one component (no underscores)! unicode_to_name(unicode, zapf_dingbats: false)¶ Maps the given Unicode codepoint/string to a name in the Adobe Glyph List, or to .notdef if there is no mapping. If this method is invoked when dealing with the ZapfDingbats font, the zapf_dingbats option needs to be set to true. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/MacExpertEncoding.html","title":"HexaPDF::Font::Encoding::MacExpertEncoding","tags":"","text":" class HexaPDF::Font::Encoding::MacExpertEncoding Parent HexaPDF::Font::Encoding::Base The MacExpertEncoding for Latin texts. See: PDF2.0 sD.4 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/MacRomanEncoding.html","title":"HexaPDF::Font::Encoding::MacRomanEncoding","tags":"","text":" class HexaPDF::Font::Encoding::MacRomanEncoding Parent HexaPDF::Font::Encoding::Base The Mac Roman standard encoding for Latin texts. See: PDF2.0 sD.1, sD.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/StandardEncoding.html","title":"HexaPDF::Font::Encoding::StandardEncoding","tags":"","text":" class HexaPDF::Font::Encoding::StandardEncoding Parent HexaPDF::Font::Encoding::Base The Adobe standard encoding for Latin texts. See: PDF2.0 sD.1, sD.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/SymbolEncoding.html","title":"HexaPDF::Font::Encoding::SymbolEncoding","tags":"","text":" class HexaPDF::Font::Encoding::SymbolEncoding Parent HexaPDF::Font::Encoding::Base The built-in encoding of the Symbol font. See: PDF2.0 sD.5 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/WinAnsiEncoding.html","title":"HexaPDF::Font::Encoding::WinAnsiEncoding","tags":"","text":" class HexaPDF::Font::Encoding::WinAnsiEncoding Parent HexaPDF::Font::Encoding::Base The Windows Code Page 1252, the standard Windows encoding for Latin texts. See: PDF2.0 sD.1, sD.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Encoding/ZapfDingbatsEncoding.html","title":"HexaPDF::Font::Encoding::ZapfDingbatsEncoding","tags":"","text":" Instance Methodsunicode class HexaPDF::Font::Encoding::ZapfDingbatsEncoding Parent HexaPDF::Font::Encoding::Base The built-in encoding of the ZapfDingbats font. See: PDF2.0 sD.6 Public Instance Methods unicode(code)¶ The ZapfDingbats font uses a special glyph list, so we need to specialize this method. See: Encoding#unicode "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/InvalidGlyph.html","title":"HexaPDF::Font::InvalidGlyph","tags":"","text":" Attributesfont_wrapperstrClass MethodsnewInstance Methodsapply_word_spacing?control_char?idnamevalid?widthx_maxx_miny_maxy_min class HexaPDF::Font::InvalidGlyph Parent Object Represents an invalid glyph, i.e. a Unicode character that has no representation in the used font. Attributes font_wrapper[R]¶ The associated font wrapper object, either a Type1Wrapper or a TrueTypeWrapper. str[R]¶ The string that could not be represented as a glyph. Public Class Methods new(font_wrapper, str)¶ Creates a new Glyph object. Public Instance Methods apply_word_spacing?()¶ Word spacing is never applied for the invalid glyph, so false is returned. control_char?()¶ Returns true if this glyph represents a control character like tabulator or newline. id()¶ Returns the appropriate missing glyph id based on the used font. Also aliased as: name name()¶ Alias for: id valid?()¶ Returns false since this is an invalid glyph. width()¶ Alias for: x_min x_max()¶ Alias for: x_min x_min()¶ Returns 0. Also aliased as: x_max, y_min, y_max, width y_max()¶ Alias for: x_min y_min()¶ Alias for: x_min "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/index.html","title":"HexaPDF::Font::TrueType","tags":"","text":" module HexaPDF::Font::TrueType This module provides classes for handling TrueType fonts. Note that currently not all parts of the file format are supported, only those needed for using the fonts with PDF. This means that the implementation is not a complete font handling library but is designed to allow reading font files and extracting information. Furthermore creating a font subset is also possible which is not the same as writing a complete font file from scratch. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Builder.html","title":"HexaPDF::Font::TrueType::Builder","tags":"","text":" Class Methodsbuild module HexaPDF::Font::TrueType::Builder Builds a TrueType font file given a hash of TrueType tables. Public Class Methods build(tables)¶ Returns a TrueType font file representing the given TrueType tables (a hash mapping table names (strings) to table data). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Font.html","title":"HexaPDF::Font::TrueType::Font","tags":"","text":" ConstantsDEFAULT_CONFIGAttributesconfigioClass MethodsnewInstance Methods[]ascenderbounding_boxcap_heightdescenderdirectorydominant_vertical_stem_widthfamily_namefeaturesfont_namefull_nameitalic_anglemissing_glyph_idstrikeout_positionstrikeout_thicknessunderline_positionunderline_thicknessweightx_height class HexaPDF::Font::TrueType::Font Parent Object Represents a font in the TrueType font file format. Constants DEFAULT_CONFIG¶ The default configuration: font.ttf.table_mapping The default mapping from table tag as symbol to table class name. font.ttf.unknown_format Action to take when encountering unknown subtables. Can either be :ignore which ignores them or :raise which raises an error. Attributes config[R]¶ The configuration for the TrueType font. io[R]¶ The IO stream associated with this file. Public Class Methods new(io, config: {})¶ Creates a new TrueType font file object for the given IO object. The config hash can contain configuration options. Public Instance Methods [](tag)¶ Returns the table instance for the given tag (a symbol), or nil if no such table exists. ascender()¶ Returns the ascender of the font. bounding_box()¶ Returns the bounding of the font. cap_height()¶ Returns the cap height of the font. descender()¶ Returns the descender of the font. directory()¶ Returns the font directory. dominant_vertical_stem_width()¶ Returns the dominant width of vertical stems. Note: This attribute does not actually exist in TrueType fonts, so it is estimated based on the weight. family_name()¶ Returns the family name of the font. features()¶ Returns a set of features this font supports. Features that may be available are for example :kern or :liga. font_name()¶ Returns the PostScript font name. full_name()¶ Returns the full name of the font. italic_angle()¶ Returns the italic angle of the font, in degrees counter-clockwise from the vertical. missing_glyph_id()¶ Returns th glyph ID of the missing glyph, i.e. 0. strikeout_position()¶ Returns the distance from the baseline to the top of the strikeout line. strikeout_thickness()¶ Returns the stroke width for the strikeout line. underline_position()¶ Returns the distance from the baseline to the top of the underline. underline_thickness()¶ Returns the stroke width for the underline. weight()¶ Returns the weight of the font. x_height()¶ Returns the x-height of the font. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Optimizer.html","title":"HexaPDF::Font::TrueType::Optimizer","tags":"","text":" Class Methodsbuild_for_pdf module HexaPDF::Font::TrueType::Optimizer Provides methods for optimizing a TrueType font file in various ways. Public Class Methods build_for_pdf(font)¶ Returns for the given font a TrueType font file as binary string that is optimized for use in a PDF (i.e. only the essential tables are retained). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Subsetter.html","title":"HexaPDF::Font::TrueType::Subsetter","tags":"","text":" Class MethodsnewInstance Methodsbuild_fontsubset_glyph_iduse_glyph class HexaPDF::Font::TrueType::Subsetter Parent Object Subsets a TrueType font in the context of PDF. TrueType fonts can be embedded into PDF either as a simple font or as a composite font. This subsetter implements the functionality needed when embedding a TrueType subset for a composite font. This means in particular that the resulting font file
cannot be used outside of the PDF. Public Class Methods new(font)¶ Creates a new Subsetter for the given TrueType Font object. Public Instance Methods build_font()¶ Builds the subset font file and returns it as a binary string. subset_glyph_id(glyph_id)¶ Returns the new subset glyph ID for the given glyph ID, or nil if the glyph isn’t subset. use_glyph(glyph_id)¶ Includes the glyph with the given ID in the subset and returns the new subset glyph ID. Can be called multiple times with the same glyph ID, always returning the correct new subset glyph ID. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/index.html","title":"HexaPDF::Font::TrueType::Table","tags":"","text":" ConstantsTIME_EPOCHAttributesfontClass Methodscalculate_checksumnewInstance Methodschecksum_valid?directory_entryraw_data class HexaPDF::Font::TrueType::Table Parent Object Implementation of a generic table inside a sfnt-formatted font file. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6.html Constants TIME_EPOCH¶ The time Epoch used in sfnt-formatted font files. Attributes font[R]¶ The TrueType font object associated with this table. Public Class Methods calculate_checksum(data)¶ Calculates the checksum for the given data. new(font, entry)¶ Creates a new Table object for the given font and initializes it by reading the data from the font’s associated IO stream See: parse_table Public Instance Methods checksum_valid?()¶ Returns true if the checksum stored in the directory entry of the table matches the tables data. directory_entry()¶ Returns the directory entry for this table. See: Directory raw_data()¶ Returns the raw table data. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Cmap.html","title":"HexaPDF::Font::TrueType::Table::Cmap","tags":"","text":" AttributestablesversionInstance Methodspreferred_table class HexaPDF::Font::TrueType::Table::Cmap Parent HexaPDF::Font::TrueType::Table The ‘cmap’ table contains subtables for mapping character codes to glyph indices. See: CmapSubtable developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6cmap.html Attributes tables[RW]¶ The available cmap subtables. version[RW]¶ The version of the cmap table. Public Instance Methods preferred_table()¶ Returns the preferred of the available cmap subtables. A preferred table is always a table mapping Unicode characters. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/index.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable","tags":"","text":" ConstantsPLATFORM_MICROSOFTPLATFORM_UNICODEAttributescode_mapencoding_idformatgid_maplanguageplatform_idClass MethodsnewInstance Methods[]gid_to_codeparseunicode? class HexaPDF::Font::TrueType::Table::CmapSubtable Parent Object Generic base class for all cmap subtables. cmap format 8.0 is currently not implemented because use of the format is discouraged in the specification and no font with a format 8.0 cmap subtable was available for testing. The preferred cmap format is 12.0 because it supports all of Unicode and allows for fast and memory efficient code-to-gid as well as gid-to-code mappings. See: Cmap developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6cmap.html Constants PLATFORM_MICROSOFT¶ The platform identifier for Microsoft. PLATFORM_UNICODE¶ The platform identifier for Unicode. Attributes code_map[RW]¶ The complete code map. Is only fully initialized for existing fonts when a mapping is first accessed via []. encoding_id[RW]¶ The platform-specific encoding identifier. format[R]¶ The cmap format or nil if the subtable wasn’t read from a file. gid_map[RW]¶ The complete gid map. Is only fully initialized for existing fonts when a mapping is first accessed via gid_to_code. language[RW]¶ The language code. platform_id[RW]¶ The platform identifier. Public Class Methods new(platform_id, encoding_id)¶ Creates a new subtable. Public Instance Methods [](code)¶ Returns the glyph index for the given character code or nil if the character code is not mapped. gid_to_code(gid)¶ Returns a character code for the given glyph index or nil if the given glyph index does not exist or is not mapped to a character code. Note that some fonts map multiple character codes to the same glyph (e.g. hyphen and minus), i.e. the code-to-glyph mapping is surjective but not injective! In such a case one of the available character codes is returned. parse!(io, offset) → true or false ¶ Parses the cmap subtable from the IO at the given offset. If the subtable format is supported, the information is used to populate this object and true is returned. Otherwise nothing is done and false is returned. unicode?()¶ Returns true if this subtable contains a Unicode cmap. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/Format0.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable::Format0","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::CmapSubtable::Format0 Cmap format 0 Public Class Methods parse(io, length) → code_map ¶ Parses the format 0 cmap subtable from the given IO at the current position and returns the contained code map. It is assumed that the first six bytes of the subtable have already been consumed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/Format10.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable::Format10","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::CmapSubtable::Format10 Cmap format 10 Public Class Methods parse(io, length) → code_map ¶ Parses the format 10 cmap subtable from the given IO at the current position and returns the contained code map. It is assumed that the first twelve bytes of the subtable have already been consumed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/Format12.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable::Format12","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::CmapSubtable::Format12 Cmap format 12 Public Class Methods parse(io, length) → code_map ¶ Parses the format 12 cmap subtable from the given IO at the current position and returns the contained code map. It is assumed that the first twelve bytes of the subtable have already been consumed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/Format2.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable::Format2","tags":"","text":" ConstantsSubHeaderClass Methodsparse module HexaPDF::Font::TrueType::Table::CmapSubtable::Format2 Cmap format 2 Constants SubHeader¶ Public Class Methods parse(io, length) → code_map ¶ Parses the format 2 cmap subtable from the given IO at the current position and returns the contained code map. It is assumed that the first six bytes of the subtable have already been consumed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/Format4.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable::Format4","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::CmapSubtable::Format4 Cmap format 4 Public Class Methods parse(io, length) → code_map ¶ Parses the format 4 cmap subtable from the given IO at the current position and returns the contained code map. It is assumed that the first six bytes of the subtable have already been consumed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/CmapSubtable/Format6.html","title":"HexaPDF::Font::TrueType::Table::CmapSubtable::Format6","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::CmapSubtable::Format6 Cmap format 6 Public Class Methods parse(io, length) → code_map ¶ Parses the format 6 cmap subtable from the given IO at the current position and returns the contained code map. It is assumed that the first six bytes of the subtable have already been consumed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Directory.html","title":"HexaPDF::Font::TrueType::Table::Directory","tags":"","text":" ConstantsEntrySELF_ENTRYAttributestagInstance Methodsentry class HexaPDF::Font::TrueType::Table::Directory Parent HexaPDF::Font::TrueType::Table The main table of an sfnt-housed font file, providing the table directory which contains information for loading all other tables. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6.html Constants Entry¶ A single entry in the table directory. Accessors: tag The 4 byte name of the table as binary string. checksum Checksum of the table. offset Offset from the beginning of the file where the table can be found. length The length of the table in bytes (without the padding). SELF_ENTRY¶ The fixed entry that represents the table directory itself. Attributes tag[R]¶ The type of file housed by the snft wrapper as a binary string. Two possible values are ‘true’ or 0x00010000 for a TrueType font and ‘OTTO’ for an OpenType font. Public Instance Methods entry(tag)¶ Returns the directory entry for the given tag or nil if no such table exists. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Glyf/index.html","title":"HexaPDF::Font::TrueType::Table::Glyf","tags":"","text":" AttributesglyphsInstance Methods[] class HexaPDF::Font::TrueType::Table::Glyf Parent HexaPDF::Font::TrueType::Table The ‘glyf’ table contains the instructions for rendering glyphs and some additional glyph information. This is probably always the largest table in a TrueType font, so care is taken to perform operations lazily. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6glyf.html Attributes glyphs[RW]¶ The mapping from glyph ID to Glyph object or nil (if the glyph has no outline). Public Instance Methods [](glyph_id)¶ Returns the Glyph object for the given glyph ID.
If the glyph has no outline (e.g. the space character), an empty Glyph object is returned. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Glyf/Glyph.html","title":"HexaPDF::Font::TrueType::Table::Glyf::Glyph","tags":"","text":" Attributescomponent_offsetscomponentsnumber_of_contoursraw_datax_maxx_miny_maxy_minClass MethodsnewInstance Methodscompound? class HexaPDF::Font::TrueType::Table::Glyf::Glyph Parent Object Represents the definition of a glyph. Since the purpose of this implementation is not editing or rendering glyphs, the raw glyph data is only decoded so far as to get general information about the glyph. Attributes component_offsets[R]¶ The array with the component glyph offsets, or nil if this is not a compound glyph. components[R]¶ The array with the component glyph IDs, or nil if this is not a compound glyph. number_of_contours[R]¶ The number of contours in the glyph. A zero or positive number implies a simple glyph, a negative number a glyph made up from multiple components raw_data[R]¶ Contains the raw byte data of the glyph. x_max[R]¶ The maximum x value for coordinate data. x_min[R]¶ The minimum x value for coordinate data. y_max[R]¶ The maximum y value for coordinate data. y_min[R]¶ The minimum y value for coordinate data. Public Class Methods new(raw_data)¶ Creates a new glyph from the given raw data. Public Instance Methods compound?()¶ Returns true if this a compound glyph. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Head.html","title":"HexaPDF::Font::TrueType::Table::Head","tags":"","text":" Attributesbboxchecksum_adjustmentcreatedflagsfont_direction_hintfont_revisionindex_to_loc_formatmac_stylemodifiedsmallest_readable_sizeunits_per_emversionInstance Methodschecksum_valid? class HexaPDF::Font::TrueType::Table::Head Parent HexaPDF::Font::TrueType::Table Extended With HexaPDF::Utils::BitField The ‘head’ table contains global information about the font. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6head.html Attributes bbox[RW]¶ The bounding box for all glyphs of the font in the form [xmin, ymin, xmax, ymax]. checksum_adjustment[RW]¶ The adjustment value for the checksum. created[RW]¶ The creation time of the font. flags[RW]¶ Various font flags. See Flags. font_direction_hint[RW]¶ Represents an indication of the direction of the glyphs of the font. 0 Mixed directional font 1 Font with only left-to-right glyphs -1 Font with only right-to-left glyphs 2 Font with left-to-right and neutral (e.g. punctuation) glyphs -2 Font with right-to-left and neutral (e.g. punctuation) glyphs font_revision[RW]¶ The revision of the font as set by the manufacturer (a Rational). index_to_loc_format[RW]¶ Indicates the type of offset format used in the ‘loca’ table, 0 for short offsets, 1 for long offsets. See: Loca mac_style[RW]¶ Apple Mac style information. modified[RW]¶ The modification time of the font. smallest_readable_size[RW]¶ The smallest readable size in pixels per em for this font. units_per_em[RW]¶ The number of units per em for the font. Should be a power of 2 in the range from 64 through 16384. version[RW]¶ The version of the font (a Rational). Public Instance Methods checksum_valid?()¶ The checksum for the head table is calculated differently because the checksum_adjustment value is not used during the calculation. See: Table#checksum_valid? "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Hhea.html","title":"HexaPDF::Font::TrueType::Table::Hhea","tags":"","text":" Attributesadvance_width_maxascentcaret_offsetcaret_slope_risecaret_slope_rundescentline_gapmin_left_side_bearingmin_right_side_bearingnum_of_long_hor_metricsversionx_max_extent class HexaPDF::Font::TrueType::Table::Hhea Parent HexaPDF::Font::TrueType::Table The ‘hhea’ (horizontal header) table contains information for layouting fonts whose characters are written horizontally. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6hhea.html Attributes advance_width_max[RW]¶ The maxium advance width (computed value). ascent[RW]¶ The distance from the baseline of the highest ascender (as intended by the font designer). caret_offset[RW]¶ The amount by which a slanted highlight on a glyph needs (0 for non-slanted fonts). caret_slope_rise[RW]¶ Defines together with caret_slope_run the mathematical slope of the angle for the caret. The slope is actually the ratio caret_slope_rise/caret_slope_run caret_slope_run[RW]¶ See caret_slope_rise. descent[RW]¶ The distance from the baseline of the lowest descender (as intended by the font designer). line_gap[RW]¶ The typographic line gap (as intended by the font designer). min_left_side_bearing[RW]¶ The minimum left side bearing (computed value). min_right_side_bearing[RW]¶ The minimum right side bearing (computed value). num_of_long_hor_metrics[RW]¶ The number of horizontal metrics defined in the ‘hmtx’ table. version[RW]¶ The version of the table (a Rational). x_max_extent[RW]¶ The maximum horizontal glyph extent. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Hmtx.html","title":"HexaPDF::Font::TrueType::Table::Hmtx","tags":"","text":" ConstantsMetricAttributeshorizontal_metricsInstance Methods[] class HexaPDF::Font::TrueType::Table::Hmtx Parent HexaPDF::Font::TrueType::Table The ‘hmtx’ (horizontal metrics) table contains information for the horizontal layout of each glyph in the font. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6hmtx.html Constants Metric¶ Contains the horizontal layout information for one glyph, namely the :advance_width and the :left_side_bearing. Attributes horizontal_metrics[RW]¶ A hash of glyph ID to Metric objects mapping. Public Instance Methods [](glyph_id)¶ Returns the Metric object for the give glyph ID. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Kern/index.html","title":"HexaPDF::Font::TrueType::Table::Kern","tags":"","text":" AttributessubtablesversionInstance Methodshorizontal_kerning_subtable class HexaPDF::Font::TrueType::Table::Kern Parent HexaPDF::Font::TrueType::Table The ‘kern’ table contains kerning values, i.e. values to control inter-character spacing. Restrictions: Only subtable format 0 is supported, all other subtables are ignored. See: www.microsoft.com/typography/otspec/kern.htm Attributes subtables[R]¶ The available subtables, all instances of Subtable. version[RW]¶ The version of the table. Public Instance Methods horizontal_kerning_subtable()¶ Returns the first subtable that supports horizontal non-cross-stream kerning, or nil if no such subtable exists. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Kern/Format0.html","title":"HexaPDF::Font::TrueType::Table::Kern::Format0","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::Kern::Format0 ‘kern’ subtable format 0 Public Class Methods parse(io, length) → pairs ¶ Parses the format 0 subtable and returns a hash of the form {left_char: {right_char: kern_value}} "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Kern/Subtable.html","title":"HexaPDF::Font::TrueType::Table::Kern::Subtable","tags":"","text":" Class MethodsnewInstance Methodscross_stream?horizontal?kernminimum_values? class HexaPDF::Font::TrueType::Table::Kern::Subtable Parent Object A kerning subtable containing the actual information to do kerning. Public Class Methods new(pairs:, horizontal:, minimum_values:, cross_stream:)¶ Creates a new subtable. Public Instance Methods cross_stream?()¶ Returns true if this subtable contains cross-stream values, i.e. values that are applied perpendicular to the writing direction. horizontal?()¶ Returns true if this subtable is used for horizontal kerning. kern(left, right)¶ Returns the kerning value between the two glyphs, or nil if there is no kerning value. minimum_values?()¶ Returns true if this subtable contains minimum values and not kerning values. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Loca.html","title":"HexaPDF::Font::TrueType::Table::Loca","tags":"","text":" AttributesoffsetsInstance Methodslengthoffset class HexaPDF::Font::TrueType::Table::Loca Parent HexaPDF::Font::TrueType::Table The ‘loca’ (location) table contains the offsets of the glyphs relative to the start of the ‘glyf’ table. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6loca.html Attributes offsets[RW]¶ The array containing the byte offsets for each glyph relative to the start of the ‘glyf’ table. Public Instance Methods length(glyph_id)¶ Returns the length of the ‘glyf’ entry for the given glyph ID. offset(glyph_id)¶ Returns the byte offset for the given glyph ID relative to the start of the ‘glyf’ table. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Maxp.html","title":"HexaPDF::Font::TrueType::Table::Maxp","tags":"","text":" Attributesmax_component_contoursmax_component_depthmax_component_elementsmax_component_pointsmax_contoursmax_function_defsmax_instruction_defsmax_pointsmax_size_of_instructionsmax_stack_elementsmax_storagemax_twilight_pointsnum_glyphsversion class HexaPDF::Font::TrueType::Table::Maxp Parent HexaPDF::Font::TrueType::Table The ‘maxp’ (maximum profile) table contains the maxima for a number of parameters (e.g. to establish memory requirements). See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6maxp.html Attributes max_component_contours[RW]¶ The maximum number of contours in a compound glyph. max_component_depth[RW]¶ The levels of recursion (0 if the font has only simple glyphs). max_component_elements[RW]¶ The maximum number of glyphs referenced at the top level. max_component_points[RW]¶ The maximum number of points in a compound glyph. max_contours[RW]¶ The maximum number of contours in a non-computed glyph. max_function_defs[RW]¶ The maximum
number of FDEFs (function definitions). max_instruction_defs[RW]¶ The maximum number of IDEFs (instruction defintions). max_points[RW]¶ The maximum number of points in a non-compound glyph. max_size_of_instructions[RW]¶ The maximum number of bytes for glyph instructions. max_stack_elements[RW]¶ The maximum number of elements on the stack, i.e. the stack depth. max_storage[RW]¶ The maximum number of storage area locations. max_twilight_points[RW]¶ The maximum number of points used in Twilight Zone (Z0). num_glyphs[RW]¶ The number of glyphs in the font. version[RW]¶ The version of the table (a Rational). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Name/index.html","title":"HexaPDF::Font::TrueType::Table::Name","tags":"","text":" ConstantsNAME_MAPAttributesformatlanguage_tagsrecordsInstance Methods[] class HexaPDF::Font::TrueType::Table::Name Parent HexaPDF::Font::TrueType::Table The ‘name’ table contains the human-readable names for features, font names, style names, copyright notices and so on. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html Constants NAME_MAP¶ Table for mapping symbolic names to name_id codes. Attributes format[RW]¶ The format of the table. language_tags[RW]¶ The mapping of language IDs starting from 0x8000 to language tags conforming to IETF BCP 47. records[RW]¶ The name records. Public Instance Methods [](name_or_id)¶ Returns an array with all available entries for the given name identifier (either a symbol or an ID). See: NAME_MAP "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Name/Record.html","title":"HexaPDF::Font::TrueType::Table::Name::Record","tags":"","text":" ConstantsPLATFORM_MACINTOSHPLATFORM_MICROSOFTPLATFORM_UNICODEAttributesencoding_idlanguage_idplatform_idClass MethodsnewInstance Methodsplatform?preferred? class HexaPDF::Font::TrueType::Table::Name::Record Parent String Contains the information for a Name Record. The string value is converted to UTF-8 if possible, otherwise it stays in BINARY. Constants PLATFORM_MACINTOSH¶ QuickDraw Script Manager code for Macintosh. PLATFORM_MICROSOFT¶ Microsoft encoding. PLATFORM_UNICODE¶ Indicates Unicode version. Attributes encoding_id[R]¶ The platform specific encoding identified. language_id[R]¶ The language identified. platform_id[R]¶ The platform identifier code. Public Class Methods new(text, pid, eid, lid)¶ Create a new name record. Calls superclass method Public Instance Methods platform?(identifier)¶ Returns true if this record has the given platform identifier which can either be :unicode, :macintosh or :microsoft. preferred?()¶ Returns true if this record is a “preferred” one. The label “preferred” is set on a name if it represents the US English version of the name in a decodable encoding: platform_id :macintosh, encoding_id 0 (Roman) and language_id 0 (English); or platform_id :microsoft, encoding_id 1 (Unicode) and language_id 1033 (US English). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Name/Records.html","title":"HexaPDF::Font::TrueType::Table::Name::Records","tags":"","text":" Instance Methodspreferred_record class HexaPDF::Font::TrueType::Table::Name::Records Parent Array Holds records for the same name type (e.g. :font_name, :postscript_name, …). Public Instance Methods preferred_record()¶ Returns the preferred record in this collection. This is either the first record where Record#preferred? is true or else just the first record in the collection. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/OS2.html","title":"HexaPDF::Font::TrueType::Table::OS2","tags":"","text":" Attributesbreak_charcap_heightcode_page_rangedefault_charfamily_classfirst_char_indexlast_char_indexlower_point_sizemax_contextpanoseselectionstrikeout_positionstrikeout_sizesubscript_x_offsetsubscript_x_sizesubscript_y_offsetsubscript_y_sizesuperscript_x_offsetsuperscript_x_sizesuperscript_y_offsetsuperscript_y_sizetypetypo_ascendertypo_descendertypo_line_gapunicode_rangeupper_point_sizevendor_idversionweight_classwidth_classwin_ascentwin_descentx_avg_char_widthx_height class HexaPDF::Font::TrueType::Table::OS2 Parent HexaPDF::Font::TrueType::Table Extended With HexaPDF::Utils::BitField The ‘OS/2’ table contains information required by Windows. Some attributes may be nil when read from a file depending on the version of the table. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6OS2.html Attributes break_char[RW]¶ The break character used by Windows. cap_height[RW]¶ The distance between the baseline and the approximate height of uppercase letters. code_page_range[RW]¶ The code page character range. default_char[RW]¶ The default character displayed by Windows to represent an unsupported character. family_class[RW]¶ Classification of the font-family design. first_char_index[RW]¶ The minimum Unicode index in this font. last_char_index[RW]¶ The maximum Unicode index in this font. lower_point_size[RW]¶ The lowest size at which the font starts to be used. max_context[RW]¶ The maximum length of an OpenType context for any feature in this font. panose[RW]¶ Describes the visual characteristics of the given typeface. selection[RW]¶ Information concerning the nature of the font patterns. strikeout_position[RW]¶ Position of the strikeout stroke relative to the baseline. strikeout_size[RW]¶ Width of the strikeout stroke. subscript_x_offset[RW]¶ Recommended horizontal offset for subscripts. subscript_x_size[RW]¶ Recommended horizontal size in pixels for subscripts subscript_y_offset[RW]¶ Recommended vertical offset from the baseline for subscripts. subscript_y_size[RW]¶ Recommended vertical size in pixels for subscripts superscript_x_offset[RW]¶ Recommended horizontal offset for superscripts. superscript_x_size[RW]¶ Recommended horizontal size in pixels for superscripts superscript_y_offset[RW]¶ Recommended vertical offset from the baseline for superscripts. superscript_y_size[RW]¶ Recommended vertical size in pixels for superscripts type[RW]¶ Characteristics and properties of this font. typo_ascender[RW]¶ The typographic ascender. May not be the same as the ascender in the ‘hhea’ table. typo_descender[RW]¶ The typographic descender. May not be the same as the ascender in the ‘hhea’ table. typo_line_gap[RW]¶ The typographic line gap. May not be the same as the ascender in the ‘hhea’ table. unicode_range[RW]¶ Describes the Unicode ranges covered by the font. upper_point_size[RW]¶ The highest size at which the font starts to be used. vendor_id[RW]¶ The four character identifier of the font vendor. version[RW]¶ The version of the table. weight_class[RW]¶ Visual weight of stroke in glyphs. width_class[RW]¶ Relative change from the normal aspect ratio (width/height). win_ascent[RW]¶ The ascender metric for Windows. win_descent[RW]¶ The descender metric for Windows. x_avg_char_width[RW]¶ AVerage weighted advance width of lower case letters and space. x_height[RW]¶ The distance between the baseline and the approximate height of non-ascending lowercase letters. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Post/index.html","title":"HexaPDF::Font::TrueType::Table::Post","tags":"","text":" Attributesformatis_fixed_pitchitalic_anglemax_mem_type1max_mem_type42min_mem_type1min_mem_type42underline_positionunderline_thicknessInstance Methods[]is_fixed_pitch? class HexaPDF::Font::TrueType::Table::Post Parent HexaPDF::Font::TrueType::Table The ‘post’ table contains information for using a font on a PostScript printer. post format 2.5 is currently not implemented because use of the format is deprecated since 2000 in the specification and no font with a format 2.5 post subtable was available for testing. See: developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6post.html Attributes format[RW]¶ The format of the table (a Rational). is_fixed_pitch[RW]¶ Specifies whether the font is proportional (value is 0) or monospaced (value is not 0). italic_angle[RW]¶ The italic angle (a Rational). max_mem_type1[RW]¶ Maximum memory usage when a Type1 font is downloaded. max_mem_type42[RW]¶ Maximum memory usage when a font is downloaded. min_mem_type1[RW]¶ Minimum memory usage when a Type1 font is downloaded. min_mem_type42[RW]¶ Minimum memory usage when a font is downloaded. underline_position[RW]¶ The suggested distance of the top of the underline from the baseline (negative values indicate underlines below the baseline). underline_thickness[RW]¶ The suggested thickness for underlines. Public Instance Methods [](glyph_id)¶ Returns the name for the given glpyh id or “.notdef” if the given glyph id has no name. is_fixed_pitch?()¶ Returns true if the font is monospaced. See: is_fixed_pitch "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Post/Format1.html","title":"HexaPDF::Font::TrueType::Table::Post::Format1","tags":"","text":" ConstantsGLYPH_NAMESClass Methodsparse module HexaPDF::Font::TrueType::Table::Post::Format1 ‘post’ table format 1 Constants GLYPH_NAMES¶ The 258 predefined glyph names in the standard Macintosh ordering. Public Class Methods parse(io, length) → glyph_names ¶ Returns the array containing the 258 predefined glpyh names. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Post/Format2.html","title":"HexaPDF::Font::TrueType::Table::Post::Format2","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::Post::Format2 ‘post’ table format 2 Public Class Methods parse(io, length) → glyph_names ¶ Parses the format 2 post subtable from the given IO at the current position and returns the contained glyph name map. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Post/Format3.html","title":"HexaPDF::Font::TrueType::Table::Post::Format3","tags":"","text":" Class Methodsparse module
HexaPDF::Font::TrueType::Table::Post::Format3 ‘post’ table format 3 Public Class Methods parse(io, length) → glyph_names ¶ Since the post table format 3 does not contain any valid glyph names, an empty array is returned. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueType/Table/Post/Format4.html","title":"HexaPDF::Font::TrueType::Table::Post::Format4","tags":"","text":" Class Methodsparse module HexaPDF::Font::TrueType::Table::Post::Format4 ‘post’ table format 4 Public Class Methods parse(io, length) → glyph_names ¶ Parses the format 4 post subtable from the given IO at the current position and returns a lambda mapping the glyph id to a character code. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueTypeWrapper/index.html","title":"HexaPDF::Font::TrueTypeWrapper","tags":"","text":" Attributespdf_objectwrapped_fontClass MethodsnewInstance Methodsbold?custom_glyphdecode_codepointdecode_utf8encodefont_typeglyphitalic?scaling_factorsubset? class HexaPDF::Font::TrueTypeWrapper Parent Object This class wraps a generic TrueType font object and provides the methods needed for working with the font in a PDF context. TrueType fonts can be represented in two ways in PDF: As a simple font with Subtype TrueType or as a composite font using a Type2 CIDFont. The wrapper only supports the composite font case because: By using a composite font more than 256 characters can be encoded with one font object. Fonts for vertical writing can potentially be used. The PDF specification recommends using a composite font (see PDF2.0 s9.9.1 at the end). Additionally, TrueType fonts are always embedded. Attributes pdf_object[R]¶ Returns the PDF object associated with the wrapper. wrapped_font[R]¶ Returns the wrapped TrueType font object. Public Class Methods new(document, font, pdf_object: nil, subset: true)¶ Creates a new object wrapping the TrueType font for the PDF document. The optional argument pdf_object can be used to set the PDF font object that this wrapper should be associated with. If no object is set, a suitable one is automatically created. If subset is true, the font is subset. Public Instance Methods bold?()¶ Returns true if the font contains bold glyphs. custom_glyph(id, string)¶ Returns a custom Glyph object which represents the given string via the given glyph id. This functionality can be used to associate a single glyph id with multiple, different strings for replacement glyph purposes. When used in such a way, the used glyph id is often 0 which represents the missing glyph. decode_codepoint(codepoint)¶ Returns a glyph object for the given Unicode codepoint. The configuration option ‘font.on_missing_glyph’ is invoked if no glyph for a given codepoint is available. decode_utf8(str)¶ Returns an array of glyph objects representing the characters in the UTF-8 encoded string. See decode_codepoint for details. encode(glyph)¶ Encodes the glyph and returns the code string. font_type()¶ Returns the type of the font, i.e. :TrueType. glyph(id, str = nil)¶ Returns a Glyph object for the given glyph ID. The optional argument str should be the string representation of the glyph. Only use it if it is known, Note: Although this method is public, it should normally not be used by application code! italic?()¶ Returns true if the font contains glyphs with an incline (italic or slant). scaling_factor()¶ Returns the scaling factor for converting font units into PDF units. subset?()¶ Returns true if the wrapped TrueType font will be subset. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/TrueTypeWrapper/Glyph.html","title":"HexaPDF::Font::TrueTypeWrapper::Glyph","tags":"","text":" Attributesfont_wrapperidstrClass MethodsnewInstance Methodsapply_word_spacing?valid?widthx_maxx_miny_maxy_min class HexaPDF::Font::TrueTypeWrapper::Glyph Parent Object Represents a single glyph of the wrapped font. Attributes font_wrapper[R]¶ The associated TrueTypeWrapper object. id[R]¶ The glyph ID. str[R]¶ The string representation of the glyph. Public Class Methods new(font_wrapper, id, str)¶ Creates a new Glyph object. Public Instance Methods apply_word_spacing?()¶ Returns false since the word spacing parameter is never applied for multibyte font encodings where each glyph is encoded using two bytes. valid?()¶ Returns true since this is a valid glyph. width()¶ Returns the width of the glyph. x_max()¶ Returns the glyph’s maximum x coordinate. x_min()¶ Returns the glyph’s minimum x coordinate. y_max()¶ Returns the glyph’s maximum y coordinate. y_min()¶ Returns the glyph’s minimum y coordinate. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1/index.html","title":"HexaPDF::Font::Type1","tags":"","text":" module HexaPDF::Font::Type1 This module provides classes for handling Type1 fonts. Note that not all parts of the various file formats are supported, only those needed for using the fonts with PDF. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1/AFMParser.html","title":"HexaPDF::Font::Type1::AFMParser","tags":"","text":" Class MethodsnewparseInstance Methodsparse class HexaPDF::Font::Type1::AFMParser Parent Object Parses files in the AFM file format. Note that this implementation isn’t a full AFM parser, only what is needed for parsing the AFM files for the 14 PDF core fonts is implemented. However, if need be it should be adaptable to other AFM files. For information on the AFM file format have a look at Adobe technical note #5004 - Adobe Font Metrics File Format Specification Version 4.1, available at the Adobe website. How Parsing Works¶ ↑ AFM is a line oriented format. Each line consists of one or more values of supported types (string, name, number, integer, array, boolean) which are separated by whitespace characters (space, newline, tab) except for the string type which just uses everything until the end of the line. This parser reads in line by line and the type parsing functions parse a value from the front of the line and then remove the parsed part from the line, including trailing whitespace characters. Public Class Methods new(io)¶ Creates a new parse for the given IO stream. parse(filename) → font_metrics ¶ parse(io) → font_metrics ¶ Parses the IO or file and returns a FontMetrics object. Public Instance Methods parse()¶ Parses the AFM file and returns a FontMetrics object. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1/CharacterMetrics.html","title":"HexaPDF::Font::Type1::CharacterMetrics","tags":"","text":" Attributesbboxcodenamewidth class HexaPDF::Font::Type1::CharacterMetrics Parent Object Represents the character metrics for an individual character. Attributes bbox[RW]¶ Character bounding box as array of four numbers, specifying the x- and y-coordinates of the bottom left corner and the x- and y-coordinates of the top right corner. code[RW]¶ Decimal value of the default character code (-1 if not encoded). name[RW]¶ PostScript language character name. width[RW]¶ Character width in x-direction (y-direction is implicitly 0). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1/Font.html","title":"HexaPDF::Font::Type1::Font","tags":"","text":" AttributesmetricsClass Methodsfrom_afmnewInstance Methodsencodingfeaturesmissing_glyph_idstrikeout_positionstrikeout_thicknessunderline_positionwidth class HexaPDF::Font::Type1::Font Parent Object Extended With Forwardable Represents a Type1 font. This class abstracts from the specifics of the Type1 font and allows working with it in a standardized way. The following method calls are forwarded to the contained FontMetrics object: font_name full_name family_name weight weight_class font_bbox italic_angle ascender descender cap_height x_height horizontal_dominant_width vertical_dominant_width Attributes metrics[R]¶ The associated FontMetrics object. Public Class Methods from_afm(source)¶ Creates a Type1 font object from an AFM source. new(metrics)¶ Creates a new Type1 font object with the given font metrics. Public Instance Methods encoding()¶ Returns the built-in encoding of the font. features()¶ Returns a set of features this font supports. For Type1 fonts, the features that may be available :kern and :liga. missing_glyph_id()¶ Returns the name/id of the missing glyph, i.e. .notdef. strikeout_position()¶ Returns the distance from the baseline to the top of the strikeout line. strikeout_thickness()¶ Returns the thickness of the strikeout line. underline_position()¶ Returns the distance from the baseline to the top of the underline. width(glyph_name) → width or nil ¶ width(glyph_code) → width or nil ¶ Returns the width of the glyph which can either be specified by glyph name or by an integer that is interpreted according to the built-in encoding. If there is no glyph found for the name or code, nil is returned. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1/FontMetrics.html","title":"HexaPDF::Font::Type1::FontMetrics","tags":"","text":" Attributesascenderbounding_boxcap_heightcharacter_metricscharacter_setdescenderdominant_horizontal_stem_widthdominant_vertical_stem_widthencoding_schemefamily_namefont_namefull_nameis_fixed_pitchitalic_anglekerning_pairsligature_pairsunderline_positionunderline_thicknessweightx_heightInstance Methodsweight_class class HexaPDF::Font::Type1::FontMetrics Parent Object Represents the information stored in an AFM font metrics file for a Type1 font that is needed for working with that font in context of the PDF format. Attributes ascender[RW]¶ Ascender of the font. bounding_box[RW]¶ The font bounding box as array of four numbers, specifying the x- and y-coordinates of the bottom left corner and the x- and y-coordinates of the top right corner. cap_height[RW]¶ The y-value of the top of the capital H (or 0 or nil if the font doesn’t contain a capital H). character_metrics[RW]¶ Mapping of character codes and names to CharacterMetrics objects. character_set[RW]¶ A string
describing the character set of the font. descender[RW]¶ Descender of the font. dominant_horizontal_stem_width[RW]¶ Dominant width of horizontal stems. dominant_vertical_stem_width[RW]¶ Dominant width of vertical stems. encoding_scheme[RW]¶ A string indicating the default encoding used for the font. family_name[RW]¶ Name of the typeface family to which the font belongs. font_name[RW]¶ PostScript name of the font. full_name[RW]¶ Full text name of the font. is_fixed_pitch[RW]¶ Boolean specifying if the font is a fixed pitch (monospaced) font. italic_angle[RW]¶ Angle (in degrees counter-clockwise from the vertical) of the dominant vertical strokes of the font. kerning_pairs[RW]¶ Nested mapping of kerning pairs, ie. each key is a character name and each value is a mapping from the second character name to the kerning amount. ligature_pairs[RW]¶ Nested mapping of ligature pairs, ie. each key is a character name and each value is a mapping from the second character name to the ligature name. underline_position[RW]¶ Distance from the baseline for centering underlining strokes. underline_thickness[RW]¶ Stroke width for underlining. weight[RW]¶ A string describing the weight of the font. x_height[RW]¶ The y-value of the top of the lowercase x (or 0 or nil if the font doesnt’ contain a lowercase x) Public Instance Methods weight_class()¶ Returns the weight of the font as a number. The return value 0 is used if the weight class cannot be determined. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1/PFBParser.html","title":"HexaPDF::Font::Type1::PFBParser","tags":"","text":" Class Methodsencoding class HexaPDF::Font::Type1::PFBParser Parent Object Parses files in the PFB file format. Note that this implementation isn’t a full PFB parser. It is currently just used for extracting the font encoding. Public Class Methods encoding(data) → encoding ¶ Parses the PFB data given as string and returns the found Encoding. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1Wrapper/index.html","title":"HexaPDF::Font::Type1Wrapper","tags":"","text":" ConstantsVALID_ENCODING_NAMESAttributespdf_objectwrapped_fontClass MethodsnewInstance Methodsbold?custom_glyphdecode_codepointdecode_utf8encodefont_typeglyphitalic?scaling_factor class HexaPDF::Font::Type1Wrapper Parent Object This class wraps a generic Type1 font object and provides the methods needed for working with the font in a PDF context. Constants VALID_ENCODING_NAMES¶ Array of valid encoding names in PDF Attributes pdf_object[R]¶ Returns the PDF object associated with the wrapper. wrapped_font[R]¶ Returns the wrapped Type1 font object. Public Class Methods new(document, font, pdf_object: nil, custom_encoding: false)¶ Creates a new Type1Wrapper object wrapping the Type1 font. The optional argument pdf_object can be used to set the PDF font object that this wrapper should be associated with. If no object is set, a suitable one is automatically created. If pdf_object is provided, the PDF object’s encoding is used. Otherwise, the WinAnsiEncoding or, for ‘Special’ fonts, the font’s internal encoding is used. The optional argument custom_encoding can be set to true so that a custom encoding is used (only respected if pdf_object is not provided). Public Instance Methods bold?()¶ Returns true if the font contains bold glyphs. custom_glyph(name, string)¶ Returns a custom Glyph object which represents the given string via the given glyph name. This functionality can be used to associate a single glyph name with multiple, different strings for replacement glyph purposes. When used in such a way, the used glyph name is often :question. decode_codepoint(codepoint)¶ Returns a glyph object for the given Unicode codepoint. If a Unicode codepoint is not available as glyph object, it is tried to map the codepoint using the font’s internal encoding. This is useful, for example, for the ZapfDingbats font to use ASCII characters for accessing the glyphs. The configuration option ‘font.on_missing_glyph’ is invoked if no glyph for a given codepoint is available. decode_utf8(str)¶ Returns an array of glyph objects representing the characters in the UTF-8 encoded string. See decode_codepoint for details. encode(glyph)¶ Encodes the glyph and returns the code string. font_type()¶ Returns the type of the font, i.e. :Type1. glyph(name)¶ Returns a Glyph object for the given glyph name. italic?()¶ Returns true if the font contains glyphs with an incline (italic or slant). scaling_factor()¶ Returns 1 since all Type1 fonts use 1000 units for the em-square. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Font/Type1Wrapper/Glyph.html","title":"HexaPDF::Font::Type1Wrapper::Glyph","tags":"","text":" Attributesfont_wrapperidnamestrClass MethodsnewInstance Methodsapply_word_spacing?valid?widthx_maxx_miny_maxy_min class HexaPDF::Font::Type1Wrapper::Glyph Parent Object Represents a single glyph of the wrapped font. Attributes font_wrapper[R]¶ The associated Type1Wrapper object. id[R]¶ The name of the glyph. name[R]¶ The name of the glyph. str[R]¶ The string representation of the glyph. Public Class Methods new(font_wrapper, name, str)¶ Creates a new Glyph object. Public Instance Methods apply_word_spacing?()¶ Returns true if the word spacing parameter needs to be applied for the glyph. valid?()¶ Returns true since this is a valid glyph. width()¶ Returns the width of the glyph. x_max()¶ Returns the glyph’s maximum x coordinate. x_min()¶ Returns the glyph’s minimum x coordinate. y_max()¶ Returns the glyph’s maximum y coordinate. y_min()¶ Returns the glyph’s minimum y coordinate. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FontLoader/index.html","title":"HexaPDF::FontLoader","tags":"","text":" module HexaPDF::FontLoader Overview¶ ↑ A *font loader* is a callable object that loads a font based on the given name and options. If the font loader doesn’t have the requested font, it has to return nil. The returned object has to be a PDF font wrapper and not the generic font object because it needs to be usable by the PDF canvas. See below for details. Implementation of a Font Loader¶ ↑ Each font loader is a (stateless) object (normally a module) that has to be callable, i.e. it has to provide the following method: call(document, name, **options) Should return the font wrapper customized for the given document if the font is known or else nil. The options argument is font loader dependent. However, all font loaders should handle the following common options: variant The font variant that should be used (e.g. :none, :bold, :italic, :bold_italic). Optionally, a font loader can provide a method +available_fonts(document)+ that returns a hash where the keys are the font names and the values are the variants of all the provided fonts. Font Wrappers¶ ↑ A font wrapper needs to provide the following generic interface so that it can be used correctly by HexaPDF: dict This method needs to return the PDF font dictionary that represents the wrapped font. decode_utf8(str) This method needs to convert the given string into an array of glyph objects. The glyph objects themselves have to respond to #width which should return their horizontal width. encode(glyph) This method takes a single glyph object, that needs to be compatible with the font wrapper, and returns an encoded string that can be decoded with the font dictionary returned by #dict. HexaPDF contains a font wrapper implementation for the Standard 14 PDF fonts (see HexaPDF::Font::Type1Wrapper) and one for TrueType fonts (see HexaPDF::Font::TrueTypeWrapper). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FontLoader/FromConfiguration.html","title":"HexaPDF::FontLoader::FromConfiguration","tags":"","text":" Class Methodsavailable_fontscall module HexaPDF::FontLoader::FromConfiguration This module uses the configuration option ‘font.map’ for loading a font. Public Class Methods available_fonts(document)¶ Returns a hash of the form ‘font_name => [variants, …]’ of the configured fonts. call(document, name, variant: :none, subset: true)¶ Returns a TrueType font wrapper for the given font by looking up the needed file in the ‘font.map’ configuration option. The file object representing the font file is not closed and if needed must be closed by the caller once the font is not needed anymore. document The PDF document to associate the font wrapper with. name The name of the font. variant The font variant. Normally one of :none, :bold, :italic, :bold_italic. subset Specifies whether the font should be subset if possible. This method uses the FromFile font loader behind the scenes. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FontLoader/FromFile.html","title":"HexaPDF::FontLoader::FromFile","tags":"","text":" Class Methodscall module HexaPDF::FontLoader::FromFile This module interprets the font name either as file name and tries to load it, or as TrueType font object to be wrapped directly. Public Class Methods call(document, file_name, subset: true, **) → wrapped_font ¶ call(document, font_object, subset: true, **) → wrapped_font ¶ Returns an appropriate font wrapper for the given file name or TrueType font object. If a file name is given, the file object representing the font file is not closed and if needed must be closed by the caller once the font is not needed anymore. The first form using a file name is easier to use in one-off cases. However, if multiple documents always refer to the same font, the second form is better to avoid re-parsing the font file. document The PDF document to associate the font wrapper with. file_name/font_object The file name or a HexaPDF::Font::TrueType::Font object. subset Specifies whether the font should be subset if possible. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/FontLoader/Standard14.html","title":"HexaPDF::FontLoader::Standard14","tags":"","text":" ConstantsMAPPINGClass Methodsavailable_fontscall
module HexaPDF::FontLoader::Standard14 This module is used for providing the standard 14 PDF fonts. Constants MAPPING¶ Mapping of font family name and variant to font name. Public Class Methods available_fonts(_document)¶ Returns a hash of the form ‘font_name => [variants, …]’ of the standard 14 PDF fonts. call(document, name, variant: :none, custom_encoding: false, **)¶ Returns a font wrapper for the named Standard PDF font. document The PDF document to associate the font wrapper with. name The name of the built-in font. One of Times, Helvetica, Courier, Symbol or ZapfDingbats. variant The font variant. Can be :none, :bold, :italic, :bold_italic for Times, Helvetica and Courier; and must be :none for Symbol and ZapfDingbats. custom_encoding For Times, Helvetica and Courier the standard encoding WinAnsiEncoding is used. If this is not wanted because access to other glyphs is needed, set this to true "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/ImageLoader/index.html","title":"HexaPDF::ImageLoader","tags":"","text":" module HexaPDF::ImageLoader Overview¶ ↑ An *image loader* is used for loading an image and creating a suitable PDF object. Since some image information needs to be present in the PDF object itself (like height and width) the loader needs to parse the image to get the needed data. Implementation of an Image Loader¶ ↑ Each image loader is a (stateless) object (normally a module) that responds to two methods: handles?(file_or_io) Should return true if the given file or IO stream can be handled by the loader, i.e. if the content contains a suitable image. load(document, file_or_io) Should add a new image XObject to the document that uses the file or IO stream as source and return this newly created object. This method is only invoked if handles? has returned true for the same file_or_io object. The image XObject may use any implemented filter. For example, an image loader for JPEG files would typically use the DCTDecode filter instead of decoding the image itself. See: PDF2.0 s8.9 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/ImageLoader/JPEG.html","title":"HexaPDF::ImageLoader::JPEG","tags":"","text":" ConstantsAPP14_MARKERAPP14_TRANSFORM_CMYKEOI_MARKERMAGIC_FILE_MARKERSOF_MARKERSSOS_MARKERClass Methodshandles?load module HexaPDF::ImageLoader::JPEG This module is used for loading images in the JPEG format from files or IO streams. See: PDF2.0 s7.4.8, ITU T.81 Annex B, ITU T.872 Constants APP14_MARKER¶ Adobe uses the marker 0xEE (APPE or APP14) for its purposes. We need to use it for determinig whether we have a CMYK or YCCK image. APP14_TRANSFORM_CMYK¶ Value of the 12th byte in an APP14 marker specifying that the image uses CMYK color encoding, with all four colors complemented. EOI_MARKER¶ End-of-image marker MAGIC_FILE_MARKER¶ The magic marker that tells us if the file/IO contains an image in JPEG format. SOF_MARKERS¶ The various start-of-frame markers that tell us which kind of JPEG it is. The marker segment itself contains all the needed information needed for creating the PDF image object. See: ITU T.81 B1.1.3 SOS_MARKER¶ Start-of-scan marker Public Class Methods handles?(filename) → true or false ¶ handles?(io) → true or false ¶ Returns true if the given file or IO stream can be handled, ie. if it contains an image in JPEG format. load(document, filename) → image_obj ¶ load(document, io) → image_obj ¶ Creates a PDF image object from the JPEG file or IO stream. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/ImageLoader/PDF.html","title":"HexaPDF::ImageLoader::PDF","tags":"","text":" ConstantsMAGIC_FILE_MARKERClass Methodshandles?load module HexaPDF::ImageLoader::PDF This module is used for loading the first page of a PDF file. Loaded PDF graphics are represented by form XObjects instead of image XObjects. However, the image/xobject drawing methods of HexaPDF::Content::Canvas know how to handle them correctly so that this doesn’t matter from a user’s point of view. See: PDF2.0 s8.10 Constants MAGIC_FILE_MARKER¶ The magic marker that tells us if the file/IO contains an PDF file. Public Class Methods handles?(filename) → true or false ¶ handles?(io) → true or false ¶ Returns true if the given file or IO stream can be handled, ie. if it contains an image in JPEG format. load(document, filename) → form_obj ¶ load(document, io) → form_obj ¶ Creates a PDF form XObject from the PDF file or IO stream. See: DefaultConfiguration for the meaning of ‘image_loader.pdf.use_stringio’. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/ImageLoader/PNG.html","title":"HexaPDF::ImageLoader::PNG","tags":"","text":" ConstantsGREYSCALEGREYSCALE_ALPHAINDEXEDMAGIC_FILE_MARKERRENDERING_INTENT_MAPSRGB_CHRMTRUECOLORTRUECOLOR_ALPHAClass Methodshandles?load class HexaPDF::ImageLoader::PNG Parent Object This class is used for loading images in the PNG format from files or IO streams. It can handle all five types of PNG images: greyscale w/wo alpha, truecolor w/wo alpha and indexed-color. Furthermore, it recognizes the gAMA, cHRM, sRGB and tRNS chunks and handles them appropriately. However, Adam7 interlaced images are not supported! Note that greyscale, truecolor and indexed-color images with alpha need to be decoded to get the alpha channel which takes time. All PNG specification section references are in reference to www.w3.org/TR/PNG/. See: PDF2.0 s7.4.4., s8.9 Constants GREYSCALE¶ The color type for PNG greyscale images without alpha, see PNG s11.2.2 GREYSCALE_ALPHA¶ The color type for PNG greyscale images with alpha, see PNG s11.2.2 INDEXED¶ The color type for PNG indexed images with/without alpha, see PNG s11.2.2 MAGIC_FILE_MARKER¶ The magic marker that tells us if the file/IO contains an image in PNG format. See: PNG s5.2 RENDERING_INTENT_MAP¶ Mapping from sRGB chunk rendering intent byte to PDF rendering intent name. SRGB_CHRM¶ The primary chromaticities and white point used by the sRGB specification. TRUECOLOR¶ The color type for PNG truecolor images without alpha, see PNG s11.2.2 TRUECOLOR_ALPHA¶ The color type for PNG truecolor images with alpha, see PNG s11.2.2 Public Class Methods handles?(filename) → true or false ¶ handles?(io) → true or false ¶ Returns true if the given file or IO stream can be handled, ie. if it contains an image in PNG format. load(document, filename) → image_obj ¶ load(document, io) → image_obj ¶ Creates a PDF image object from the PNG file or IO stream. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Importer.html","title":"HexaPDF::Importer","tags":"","text":" Class MethodscopyfornewInstance Methodsimport class HexaPDF::Importer Parent Object The Importer class manages the process of copying objects from one Document to another. It may seem unnecessary using an importer containing state for the task. However, by retaining some information about the already copied objects we can make sure that already imported objects don’t get imported again. Two types of indirect objects are never imported from one document to another: the catalog and page tree nodes. If the catalog was imported, the whole source document would be imported. And if one page tree node would imported, the whole page tree would be imported. See: Document#import Public Class Methods copy(destination, object, source: nil)¶ Imports the given object (belonging to the source document) by completely copying it and all referenced objects into the destination object. Specifying source is optionial if it can be determined through object. After the operation is finished, all state is discarded. This means that another call to this method for the same object will yield a new - and different - object. This is in contrast to using ::for together with import which remembers and returns already imported objects (which is generally what one wants). for(destination)¶ Returns the Importer object for copying objects to the destination document. new(destination)¶ Initializes a new importer that can import objects to the destination document. Public Instance Methods import(object, source: nil)¶ Imports the given object to the destination object and returns the imported object. Note: Indirect objects are automatically added to the destination document but direct or simple objects are not. The source argument should be nil or set to the source document of the imported object. If it is nil, the source document is dynamically identified. If this identification is not possible and the source document would be needed, an error is raised. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/InvalidPDFObjectError.html","title":"HexaPDF::InvalidPDFObjectError","tags":"","text":" class HexaPDF::InvalidPDFObjectError Parent HexaPDF::Error Raised when a PDF object contains invalid data. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/index.html","title":"HexaPDF::Layout","tags":"","text":" module HexaPDF::Layout Overview¶ ↑ The Layout module contains advanced text and layouting facilities that are built on top of the standard PDF functionality provided by the Content module. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Box.html","title":"HexaPDF::Layout::Box","tags":"","text":" AttributesheightpropertiesstylewidthClass MethodscreatenewInstance Methodscontent_heightcontent_widthdrawempty?fitsplitsplit_box?supports_position_flow? class HexaPDF::Layout::Box Parent Object Included Modules HexaPDF::Utils The base class for all layout boxes. Box Model¶ ↑ HexaPDF uses the following box model: Each box can specify a width and height. Padding and border are inside, the margin outside of this rectangle. The content_width and content_height accessors can be used to get the width and height of the content box without padding and the border. If width or height is set to zero, they are determined automatically during layouting. Subclasses¶ ↑ Each subclass should only take keyword arguments on initialization so
that the boxes can be instantiated from the common convenience method HexaPDF::Document::Layout#box. To use this facility subclasses need to be registered with the configuration option ‘layout.boxes.map’. The methods supports_position_flow?, empty?, fit or fit_content, split or split_content, and draw or draw_content need to be customized according to the subclass’s use case (also see the documentation of the methods besides the informatione below): supports_position_flow? If the subclass supports the value :flow of the ‘position’ style property, this method needs to be overridden to return true. empty? This method should return true if the subclass won’t draw anything when draw is called. fit This method should return true if fitting was successful. Additionally, the @fit_successful instance variable needs to be set to the fit result as it is used in split. The default implementation provides code common to most use-cases and delegates the specifics to the fit_content method which needs to return true if fitting was successful. split This method splits the content so that the current region is used as good as possible. The default implementation should be fine for most use-cases, so only split_content needs to be implemented. The method create_split_box should be used for getting a basic cloned box. draw This method draws the content and the default implementation already handles things like drawing the border and background. So it should not be overridden. The box specific drawing commands should be implemented in the draw_content method. This base class provides various private helper methods for use in the above methods: reserved_width, reserved_height Returns the width respectively the height of the reserved space inside the box that is used for the border and padding. reserved_width_left, reserved_width_right, reserved_height_top, reserved_height_bottom Returns the reserved space inside the box at the specified edge (left, right, top, bottom). update_content_width, update_content_height Takes a block that should return the content width respectively height and sets the box’s width respectively height accordingly. create_split_box Creates a new box based on this one and resets the internal data back to their original values. The keyword argument split_box_value (defaults to true) is used to set the +@split_box+ variable to make the new box aware that it is a split box. This can be set to any other truthy value to convey more meaning. Attributes height[R]¶ The height of the box, including padding and/or borders. properties[R]¶ Hash with custom properties. The keys should be strings and can be arbitrary. This can be used to store arbitrary information on boxes for later use. For example, a generic style layer could use one or more custom properties for its work. The Box class itself uses the following properties: optional_content If this property is set, it needs to be an optional content group dictionary, a String defining an (optionally existing) optional content group dictionary, or an optional content membership dictionary. The whole content of the box, i.e. including padding, border, background…, is wrapped with the appropriate commands so that the optional content group or membership dictionary specifies whether the content is shown or not. See: HexaPDF::Type::OptionalContentProperties style[R]¶ The style to be applied. Only the following properties are used: Style#background_color Style#background_alpha Style#padding Style#border Style#overlays Style#underlays width[R]¶ The width of the box, including padding and/or borders. Public Class Methods create(width: 0, height: 0, content_box: false, style: nil, **style_properties, &block)¶ Creates a new Box object, using the provided block as drawing block (see ::new). If content_box is true, the width and height are taken to mean the content width and height and the style’s padding and border are added to them appropriately. The style argument defines the Style object (see Style::create for details) for the box. Any additional keyword arguments have to be style properties and are applied to the style object. new(width: 0, height: 0, style: nil, properties: nil) {|canv, box| block} → box ¶ Creates a new Box object with the given width and height that uses the provided block when it is asked to draw itself on a canvas (see draw). Since the final location of the box is not known beforehand, the drawing operations inside the block should draw inside the rectangle (0, 0, content_width, content_height) - note that the width and height of the box may not be known beforehand. Public Instance Methods content_height()¶ The height of the content box, i.e. without padding and/or borders. content_width()¶ The width of the content box, i.e. without padding and/or borders. draw(canvas, x, y)¶ Draws the content of the box onto the canvas at the position (x, y). The coordinate system is translated so that the origin is at the bottom left corner of the **content box** during the drawing operations when +@draw_block+ is used. The block specified when creating the box is invoked with the canvas and the box as arguments. Subclasses can specify an on-demand drawing method by setting the +@draw_block+ instance variable to nil or a valid block. This is useful to avoid unnecessary set-up operations when the block does nothing. Alternatively, if a draw_content method is defined, this method is called. empty?()¶ Returns true if no drawing operations are performed. fit(available_width, available_height, frame)¶ Fits the box into the frame and returns true if fitting was successful. The arguments available_width and available_height are the width and height of the current region of the frame, adjusted for this box. The frame itself is provided as third argument. The default implementation uses the given available width and height for the box width and height if they were initially set to 0. Otherwise the intially specified dimensions are used. Then the fit_content method is called which allows sub-classes to fit their content. The following variables are set that may later be used during splitting or drawing: (@fit_x, @fit_y): The lower-left corner of the content box where fitting was done. Can be used to adjust the drawing position in draw/#draw_content if necessary. @fit_successful: true if fitting was successful. split(available_width, available_height, frame)¶ Tries to split the box into two, the first of which needs to fit into the current region of the frame, and returns the parts as array. If the first item in the result array is not nil, it needs to be this box and it means that even when fit fails, a part of the box may still fit. Note that fit should not be called before draw on the first box since it is already fitted. If not even a part of this box fits into the current region, nil should be returned as the first array element. Possible return values: [self] The box fully fits into the current region. [nil, self] The box can’t be split or no part of the box fits into the current region. [self, new_box] A part of the box fits and a new box is returned for the rest. This default implementation provides the basic functionality based on the fit result that should be sufficient for most subclasses; only split_content needs to be implemented if necessary. split_box?()¶ Returns the set truthy value if this is a split box, i.e. the rest of another box after it was split. supports_position_flow?()¶ Returns false since a basic box doesn’t support the ‘position’ style property value :flow. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/BoxFitter.html","title":"HexaPDF::Layout::BoxFitter","tags":"","text":" Attributesfit_resultsframesremaining_boxesClass MethodsnewInstance Methods<<content_heightsfitfit_successful? class HexaPDF::Layout::BoxFitter Parent Object A BoxFitter instance contains an array of Frame objects and allows placing boxes one after the other in them. Such functionality is useful, for example, for boxes that provide multiple frames for content. Usage¶ ↑ First one needs to add the frame objects via << or provide them on initialization. Then use the fit method to fit boxes one after the other. No drawing is done. Once all boxes have been fitted, the fit_results, remaining_boxes and fit_successful? methods can be used to get the result: If there are no remaining boxes, all boxes were successfully fitted into the frames. If there are remaining boxes but no fit results, the first box could not be fitted. If there are remaining boxes and fit results, some boxes were able to fit. Attributes fit_results[R]¶ The Frame::FitResult objects for the successfully fitted objects in the order the boxes were fitted. frames[R]¶ The array of frames inside of which the boxes should be laid out. Use << to add additional frames. remaining_boxes[R]¶ The boxes that could not be fitted into the frames. Public Class Methods new(frames = [])¶ Creates a new BoxFitter object for the given frames. Public Instance Methods <<(frame)¶ Add the given frame to the list of frames. content_heights()¶ Returns an array with the heights of the content of each frame. fit(box)¶ Fits the given box at the current location. fit_successful?()¶ Returns true if all boxes were successfully fitted. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/ColumnBox.html","title":"HexaPDF::Layout::ColumnBox","tags":"","text":" Attributeschildrencolumnsequal_heightgapsClass MethodsnewInstance Methodsempty?fitsupports_position_flow? class HexaPDF::Layout::ColumnBox Parent HexaPDF::Layout::Box A ColumnBox arranges boxes in one or more columns. The number and width of the columns as well as the size of the gap between the columns can be modified. Additionally, the contents can either fill the columns one after the other or the columns can be made equally high. If the column box has padding and/or borders specified, they are handled like with any other box. This means they are
around all columns and their contents and are not used separately for each column. The following style properties are used (additionally to those used by the parent class): Style#position If this is set to :flow, the frames created for the columns will take the shape of the frame into account. This also means that the available_width and available_height arguments are ignored. Attributes children[R]¶ The child boxes of this ColumnBox. They need to be finalized before fit is called. columns[R]¶ The columns definition. If the value is an array, it needs to contain the widths of the columns. The size of the array determines the number of columns. Otherwise, if the value is an integer, the value defines the number of equally sized columns, i.e. a value of N is equal to [-1]*N. If a negative integer is used for the width, the column is auto-sized. Such columns split the remaining width (after substracting the widths of the fixed columns) proportionally among them. For example, if the definition is [-1, -2, -2], the first column is a fifth of the width and the other columns are each two fifth of the width. Examples: composer.box(:column, columns: 2, gaps: 10, children: [composer.document.layout.lorem_ipsum_box]) composer.box(:column, columns: [50, -2, -1], gaps: [10, 5], children: [composer.document.layout.lorem_ipsum_box]) equal_height[R]¶ Determines whether the columns should all be equally high or not. Examples: composer.box(:column, children: [composer.document.layout.lorem_ipsum_box]) composer.box(:column, equal_height: false, children: [composer.document.layout.lorem_ipsum_box]) gaps[R]¶ The size of the gaps between the columns. This is an array containing the width of the gaps. If there are more gaps than numbers in the array, the array is cycled. Examples: see columns Public Class Methods new(children: [], columns: 2, gaps: 36, equal_height: true, **kwargs)¶ Creates a new ColumnBox object for the given child boxes in children. columns Can either simply integer specify the number of columns or be a full column definition (see columns for details). gaps Can either be a simply integer specifying the width between two columns or a full gap definition (see gap for details). equal_height If true, the fit method tries to balance the columns in terms of their height. Otherwise the columns are filled from the left. Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods empty?()¶ Returns true if no box was fitted into the columns. Calls superclass method HexaPDF::Layout::Box#empty? fit(available_width, available_height, frame)¶ Fits the column box into the current region of the frame. If the style property ‘position’ is set to :flow, the columns might not be rectangles but arbitrary (sets of) polygons since the +frame+s shape is taken into account. supports_position_flow?()¶ Returns true as the ‘position’ style property value :flow is supported. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/ContainerBox.html","title":"HexaPDF::Layout::ContainerBox","tags":"","text":" AttributeschildrenClass MethodsnewInstance Methodsempty? class HexaPDF::Layout::ContainerBox Parent HexaPDF::Layout::Box This is a simple container box for laying out a number of boxes together. It is registered under the :container name. The box does not support the value :flow for the style property position, so the child boxes are laid out in the current region only. Since the boxes should be laid out together, if any box doesn’t fit, the whole container doesn’t fit. Splitting the container is also not possible for the same reason. By default the child boxes are laid out from top to bottom by default. By appropriately setting the style properties ‘mask_mode’, ‘align’ and ‘valign’, it is possible to lay out the children bottom to top, left to right, or right to left: The standard top to bottom layout: composer.container do |container| container.box(:base, height: 20, style: {background_color: \"hp-blue-dark\"}) container.box(:base, height: 20, style: {background_color: \"hp-blue\"}) container.box(:base, height: 20, style: {background_color: \"hp-blue-light\"}) end The bottom to top layout (using valign = :bottom to fill up from the bottom and mask_mode = :fill_horizontal to only remove the area to the left and right of the box): composer.container do |container| container.box(:base, height: 20, style: {background_color: \"hp-blue-dark\", mask_mode: :fill_horizontal, valign: :bottom}) container.box(:base, height: 20, style: {background_color: \"hp-blue\", mask_mode: :fill_horizontal, valign: :bottom}) container.box(:base, height: 20, style: {background_color: \"hp-blue-light\", mask_mode: :fill_horizontal, valign: :bottom}) end The left to right layout (using mask_mode = :fill_vertical to fill the area to the top and bottom of the box): composer.container do |container| container.box(:base, width: 20, style: {background_color: \"hp-blue-dark\", mask_mode: :fill_vertical}) container.box(:base, width: 20, style: {background_color: \"hp-blue\", mask_mode: :fill_vertical}) container.box(:base, width: 20, style: {background_color: \"hp-blue-light\", mask_mode: :fill_vertical}) end The right to left layout (using align = :right to fill up from the right and mask_mode = :fill_vertical to fill the area to the top and bottom of the box): composer.container do |container| container.box(:base, width: 20, style: {background_color: \"hp-blue-dark\", mask_mode: :fill_vertical, align: :right}) container.box(:base, width: 20, style: {background_color: \"hp-blue\", mask_mode: :fill_vertical, align: :right}) container.box(:base, width: 20, style: {background_color: \"hp-blue-light\", mask_mode: :fill_vertical, align: :right}) end Attributes children[R]¶ The child boxes of this ContainerBox. They need to be finalized before fit is called. Public Class Methods new(children: [], **kwargs)¶ Creates a new container box, optionally accepting an array of child boxes. Example: composer.text(\"A paragraph here\") composer.container(height: 40, style: {border: {width: 1}, padding: 5, align: :center}) do |container| container.text(\"Some\", mask_mode: :fill_vertical) container.text(\"text\", mask_mode: :fill_vertical, valign: :center) container.text(\"here\", mask_mode: :fill_vertical, valign: :bottom) end composer.text(\"Another paragraph\") Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods empty?()¶ Returns true if no box was fitted into the container. Calls superclass method HexaPDF::Layout::Box#empty? "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Frame/index.html","title":"HexaPDF::Layout::Frame","tags":"","text":" Attributesavailable_heightavailable_widthbottomcontextheightleftshapewidthxyClass MethodsnewInstance Methodsdocumentdrawfind_next_regionfitfull?remove_areasplitwidth_specification class HexaPDF::Layout::Frame Parent Object Included Modules HexaPDF::Utils A Frame describes the available space for placing boxes and provides additional methods for calculating the needed information for the actual placement. Usage¶ ↑ After a Frame object is initialized, it is ready for drawing boxes on it. The explicit way of drawing a box follows these steps: Call fit with the box to see if the box can fit into the currently selected region of available space. If fitting is successful, the box can be drawn using draw. The method fit is also called for absolutely positioned boxes but since these boxes are not subject to the normal constraints, the provided available width and height are the width and height inside the frame to the right and top of the bottom-left corner of the box. If the box didn’t fit, call find_next_region to determine the next region for placing the box. If a new region was found, start over with fit. Otherwise the frame has no more space for placing boxes. Alternatively to calling find_next_region it is also possible to call split. This method tries to split the box into two so that the first part fits into the current region. If splitting is successful, the first box can be drawn (Make sure that the second box is handled correctly). Otherwise, start over with find_next_region. For applications where splitting is not necessary, an easier way is to just use draw and find_next_region together, as draw calls fit if the box was not fit into the current region. Used Box Properties¶ ↑ The style properties ‘position’, ‘align’, ‘valign’, ‘margin’ and ‘mask_mode’ are taken into account when fitting, splitting or drawing a box. Note that the margin is ignored if a box’s side coincides with the frame’s original boundary. Frame Shape¶ ↑ A frame’s shape is used to determine the available space for laying out boxes. Initially, a frame has a rectangular shape. However, once boxes are added and the frame’s available area gets reduced, a frame may have a polygon set consisting of arbitrary rectilinear polygons as shape. It is also possible to provide a different initial shape on initialization. Attributes available_height[R]¶ The available height of the current region for placing a box. Also see the note in the x documentation for further information. available_width[R]¶ The available width of the current region for placing a box. Also see the note in the x documentation for further information. bottom[R]¶ The y-coordinate of the bottom-left corner. context[R]¶ The context object (a HexaPDF::Type::Page or HexaPDF::Type::Form) for which this frame should be used. height[R]¶ The height of the frame. left[R]¶ The x-coordinate of the bottom-left corner. shape[R]¶ The shape of the frame, either a Geom2D::Rectangle in the simple case or a Geom2D::PolygonSet consisting of rectilinear polygons in the more complex case. width[R]¶ The width of the frame. x[R]¶ The x-coordinate where the next box will be placed. Note: Since the algorithm for drawing takes the margin of a box into account, the actual x-coordinate (and y-coordinate, available width and available height) might be different. y[R]¶ The
y-coordinate where the next box will be placed. Also see the note in the x documentation for further information. Public Class Methods new(left, bottom, width, height, shape: nil, context: nil)¶ Creates a new Frame object for the given rectangular area. Public Instance Methods document()¶ Returns the HexaPDF::Document instance (through context) that is associated with this Frame object or nil if no context object has been set. draw(canvas, fit_result)¶ Draws the box of the given FitResult onto the canvas at the fitted position. After a box is successfully drawn, the frame’s shape is adjusted to remove the occupied area. find_next_region()¶ Finds the next region for placing boxes. Returns false if no useful region was found. This method should be called after fitting or drawing a box was not successful. It finds a different region on each invocation. So if a box doesn’t fit into the first region, this method should be called again to find another region and to try again. The first tried region starts at the top-most, left-most vertex of the polygon and uses the maximum width. The next tried region uses the maximum height. If both don’t work, part of the frame’s shape is removed to try again. fit(box)¶ Fits the given box into the current region of available space and returns a FitResult object. Fitting a box takes the style properties ‘position’, ‘align’, ‘valign’, ‘margin’, and ‘mask_mode’ into account. Use the FitResult#success? method to determine whether fitting was successful. full?()¶ Returns true if the frame has no more space left. remove_area(polygon)¶ Removes the given rectilinear polygon from the frame’s shape. split(fit_result)¶ Tries to split the box of the given FitResult into two parts and returns both parts. See Box#split for further details. width_specification(offset = 0)¶ Returns a width specification for the frame’s shape that can be used, for example, with TextLayouter. Since not all text may start at the top of the frame, the offset argument can be used to specify a vertical offset from the top of the frame where layouting should start. To be compatible with TextLayouter, the top left corner of the bounding box of the frame’s shape is the origin of the coordinate system for the width specification, with positive x-values to the right and positive y-values downwards. Depending on the complexity of the frame, the result may be any of the allowed width specifications of TextLayouter#fit. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Frame/FitResult.html","title":"HexaPDF::Layout::Frame::FitResult","tags":"","text":" Attributesavailable_heightavailable_widthboxmaskxyClass MethodsnewInstance Methodsdrawsuccess!success? class HexaPDF::Layout::Frame::FitResult Parent Object Stores the result of fitting a box in a Frame. Attributes available_height[RW]¶ The available height in the frame for this particular box. available_width[RW]¶ The available width in the frame for this particular box. box[RW]¶ The box that was fitted into the frame. mask[RW]¶ The rectangle (a Geom2D::Rectangle object) that will be removed from the frame when drawing the box. x[RW]¶ The horizontal position where the box will be drawn. y[RW]¶ The vertical position where the box will be drawn. Public Class Methods new(box)¶ Initialize the result object for the given box. Public Instance Methods draw(canvas, dx: 0, dy: 0)¶ Draws the box onto the canvas at (x + dx, y + dy). The relative offset (dx, dy) is useful when rendering results that were accumulated and then need to be moved because the container holding them changes its position. The configuration option “debug” can be used to add visual debug output with respect to box placement. success!()¶ Marks the fitting status as success. success?()¶ Returns true if fitting was successful. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/ImageBox.html","title":"HexaPDF::Layout::ImageBox","tags":"","text":" AttributesimageClass MethodsnewInstance Methodsempty?fit class HexaPDF::Layout::ImageBox Parent HexaPDF::Layout::Box An Image box object is used for displaying an image. It can either be used directly or through the HexaPDF::Composer#image method. How an image is displayed inside an image box, depends on whether the width and/or height of the box has been set: If one of them has been set, the other is adjusted to retain the image ratio. composer.image(machu_picchu, width: 40) composer.image(machu_picchu, height: 40) If both have been set, both are used as is. composer.image(machu_picchu, width: 100, height: 30) If neither has been set, the image is scaled to fit the current region. composer.image(machu_picchu) Also see: HexaPDF::Content::Canvas#image Attributes image[R]¶ The image that is shown in the box. Public Class Methods new(image:, **kwargs)¶ Creates a new Image box object for the given image argument which needs to be an image object (e.g. returned by HexaPDF::Document::Images#add). Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods empty?()¶ Returns false since the image is always drawn if it fits. fit(available_width, available_height, _frame)¶ Fits the image into the current region of the frame, taking the initially set width and height into account (see the class description for details). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/InlineBox.html","title":"HexaPDF::Layout::InlineBox","tags":"","text":" AttributesboxvalignClass MethodscreatenewInstance Methodsdrawempty?fit_wrapped_boxheightstylewidthx_maxx_miny_maxy_min class HexaPDF::Layout::InlineBox Parent Object An InlineBox wraps a regular Box so that it can be used as an item for a Line. This enables inline graphics. Complete box auto-sizing is not possible since the available space cannot be determined beforehand! This means the box must have at least its width set. The height may either also be set or determined during fitting. Fitting of the wrapped box via fit_wrapped_box needs to be done before accessing any other method that uses the wrapped box. For fitting, a frame is used that has the width of the wrapped box and its height, or if not set, a practically infinite height. In the latter case the height must be set during fitting. Attributes box[R]¶ The wrapped Box object. valign[R]¶ The vertical alignment of the box. Can be any supported value except :text - see Line for all possible values. Public Class Methods create(valign: :baseline, **args, &block)¶ Creates an InlineBox that wraps a basic Box. All arguments (except valign) and the block are passed to Box::create. See ::new for the valign argument. new(box, valign: :baseline)¶ Creates a new InlineBox object wrapping box. The valign argument can be used to specify the vertical alignment of the box relative to other items in the Line. Public Instance Methods draw(canvas, x, y)¶ Draws the wrapped box. If the box has margins specified, the x and y offsets are correctly adjusted. empty?()¶ Returns true if this inline box is just a placeholder without drawing operations. fit_wrapped_box(context)¶ Fits the wrapped box, using the given context (see Frame#context). height()¶ Returns the height of the wrapped box plus its top and bottom margins. style()¶ Returns the style of the wrapped box. width()¶ Returns the width of the wrapped box plus its left and right margins. x_max()¶ The maximum x-coordinate which is equivalent to the width of the inline box. x_min()¶ The minimum x-coordinate which is always 0. y_max()¶ The maximum y-coordinate which is equivalent to the height of the inline box. y_min()¶ The minimum y-coordinate which is always 0. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Line/index.html","title":"HexaPDF::Layout::Line","tags":"","text":" Attributesitemsx_offsety_offsetClass MethodsnewInstance Methods<<addclear_cacheeachheightignore_justification!ignore_justification?text_y_maxtext_y_minwidthx_maxx_miny_maxy_min class HexaPDF::Layout::Line Parent Object A Line describes a line of text and can contain TextFragment objects or InlineBox objects. The items of a line fragment are aligned along the x-axis which coincides with the text baseline. The vertical alignment is determined by the value of the valign method: :text_top Align the top of the box with the top of the text of the Line. :text_bottom Align the bottom of the box with the bottom of the text of the Line. :baseline Align the bottom of the box with the baseline of the Line. :top Align the top of the box with the top of the Line. :bottom Align the bottom of the box with the bottom of the Line. :text This is a special alignment value for text fragment objects. The text fragment is aligned on the baseline and its minimum and maximum y-coordinates are used when calculating the line’s text_y_min and text_y_max. This value may be used by other objects if they should be handled similar to text fragments, e.g. graphical representation of characters (think: emoji fonts). Item Requirements¶ ↑ Each item of a line fragment has to respond to the following methods: x_min The minimum x-coordinate of the item. x_max The maximum x-coordinate of the item. width The width of the item. valign The vertical alignment of the item (see above). draw(canvas, x, y) Should draw the item onto the canvas at the position (x, y). If an item has a vertical alignment of :text, it additionally has to respond to the following methods: y_min The minimum y-coordinate of the item. y_max The maximum y-coordinate of the item. Otherwise (i.e. a vertical alignment different from :text), the following method must be implemented: height The height of the item. Attributes items[RW]¶ The items: TextFragment and InlineBox objects x_offset[RW]¶ An optional horizontal offset that should be taken into account when positioning the line. y_offset[RW]¶ An optional vertical offset that should be taken into account when positioning the line. For the first line in a paragraph this describes the offset from the top of the
box to the baseline of the line. For all other lines it describes the offset from the previous baseline to the baseline of this line. Public Class Methods new(items = [])¶ Creates a new Line object, adding all given items to it. Public Instance Methods <<(item)¶ Alias for: add add(item)¶ Adds the given item at the end of the item list. If both the item and the last item in the item list are TextFragment objects with the same attributes, they are combined. Note: The cache is not cleared! Also aliased as: << clear_cache → line ¶ Clears all cached values. This method needs to be called if the line’s items are changed! each {|item, x, y| block } ¶ Yields each item together with its horizontal offset from 0 and vertical offset from the baseline. height()¶ The height of the line fragment. ignore_justification!()¶ Specifies that this line should not be justified if line justification is used. ignore_justification?()¶ Returns true if justification should be ignored for this line. text_y_max()¶ The maximum y-coordinate of any TextFragment item of the line. text_y_min()¶ The minimum y-coordinate of any TextFragment item of the line. width()¶ The width of the line fragment. x_max()¶ The maximum x-coordinate of the whole line. x_min()¶ The minimum x-coordinate of the whole line. y_max()¶ The maximum y-coordinate of any item of the line. It is always greater than or equal to zero. y_min()¶ The minimum y-coordinate of any item of the line. It is always lower than or equal to zero. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Line/HeightCalculator.html","title":"HexaPDF::Layout::Line::HeightCalculator","tags":"","text":" Class MethodsnewInstance Methods<<addresetresultsimulate_height class HexaPDF::Layout::Line::HeightCalculator Parent Object Helper class for calculating the needed vertical dimensions of a line. Public Class Methods new(items = [])¶ Creates a new calculator with the given initial items. Public Instance Methods <<(item)¶ Alias for: add add(item)¶ Adds a new item to be considered when calculating the various dimensions. Also aliased as: << reset()¶ Resets the calculation. result()¶ Returns the result of the calculations, the array [y_min, y_max, text_y_min, text_y_max]. See Line for their meaning. simulate_height(item)¶ Returns the height of the line as if item was part of it but doesn’t change the internal state. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/ListBox.html","title":"HexaPDF::Layout::ListBox","tags":"","text":" ConstantsItemResultAttributeschildrencontent_indentationitem_spacingmarker_typestart_numberClass MethodsnewInstance Methodsempty?fitsupports_position_flow? class HexaPDF::Layout::ListBox Parent HexaPDF::Layout::Box A ListBox arranges its children as unordered or ordered list items. The indentation of the contents from the left (content_indentation) as well as the marker type of the items (marker_type) can be specified. Additionally, it is possible to define the start number for ordered lists (start_number) and the amount of spacing between items (item_spacing). If the list box has padding and/or borders specified, they are handled like with any other box. This means they are around all items and their contents and are not used separately for each item. The following style properties are used (additionally to those used by the parent class): Style#position If this is set to :flow, the frames created for the list items will take the shape of the frame into account. This also means that the available_width and available_height arguments are ignored. Constants ItemResult¶ Stores the information when fitting an item of the list box. Attributes children[R]¶ The child boxes of this ListBox. They need to be finalized before fit is called. content_indentation[R]¶ The indentation of the list content in PDF points. The item marker will be inside this indentation. The default value is two times the font size. Example: composer.box(:list) {|list| list.lorem_ipsum_box(sentences: 1) } composer.box(:list, content_indentation: 50) do |list| list.lorem_ipsum_box(sentences: 1) end item_spacing[R]¶ The spacing between two consecutive list items. The default value is zero. Example: composer.box(:list, item_spacing: 10) do |list| 3.times { list.lorem_ipsum_box(sentences: 1) } end marker_type[R]¶ The type of list item marker to be rendered before the list item contents. The following values are supported (and :disc is the default): :disc Draws a filled disc for the items of the unordered list. composer.box(:list, marker_type: :disc) do |list| list.lorem_ipsum_box(sentences: 1) end :circle Draws an unfilled circle for the items of the unordered list. composer.box(:list, marker_type: :circle) do |list| list.lorem_ipsum_box(sentences: 1) end :square Draws a filled square for the items of the unordered list. composer.box(:list, marker_type: :square) do |list| list.lorem_ipsum_box(sentences: 1) end :decimal Draws the numbers in decimal form, starting from start_number) for the items of the ordered list. composer.box(:list, marker_type: :decimal) do |list| 5.times { list.lorem_ipsum_box(sentences: 1) } end custom marker Additionally, it is possible to specify an object as value that responds to call(document, box, index) where document is the HexaPDF::Document, box is the list box, and index is the current item index, starting at 0. The return value needs to be a Box object which is then fit into the content indentation area and drawn. image = lambda do |document, box, index| document.layout.image_box(machu_picchu, height: box.style.font_size) end composer.box(:list, marker_type: image) do |list| 2.times { list.lorem_ipsum_box(sentences: 1) } end start_number[R]¶ The start number when using a marker_type that represents an ordered list. The default value for this is 1. Example: composer.box(:list, marker_type: :decimal, start_number: 3) do |list| 2.times { list.lorem_ipsum_box(sentences: 1) } end Public Class Methods new(children: [], marker_type: :disc, content_indentation: nil, start_number: 1, item_spacing: 0, **kwargs)¶ Creates a new ListBox object for the given child boxes in children. Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods empty?()¶ Returns true if no box was fitted into the list box. Calls superclass method HexaPDF::Layout::Box#empty? fit(available_width, available_height, frame)¶ Fits the list box into the current region of the frame. supports_position_flow?()¶ Returns true as the ‘position’ style property value :flow is supported. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/NumericRefinements.html","title":"HexaPDF::Layout::NumericRefinements","tags":"","text":" Instance Methodsx_miny_maxy_min module HexaPDF::Layout::NumericRefinements Provides a refinement of the Numeric class so that kerning numbers can more seamlessly be used together with actual glyphs. Public Instance Methods x_min()¶ y_max()¶ y_min()¶ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/PageStyle.html","title":"HexaPDF::Layout::PageStyle","tags":"","text":" Attributesframenext_styleorientationpage_sizetemplateClass MethodsnewInstance Methodscreate_framecreate_page class HexaPDF::Layout::PageStyle Parent Object A PageStyle defines the initial look of a page and the placement of one or more frames. Attributes frame[RW]¶ The HexaPDF::Layout::Frame object that defines the area on the page where content should be placed. This can either be set beforehand or during execution of the template. If no frame has been set, a frame covering the page except for a default margin on all sides is set during create_page. next_style[RW]¶ Defines the name of the page style that should be used for the next page. If this attribute is nil (the default), it means that this style should be used again. orientation[RW]¶ The page orientation, either :portrait or :landscape. Only used if page_size is one of the predefined page sizes and not an array. page_size[RW]¶ The page size. Can be any valid predefined page size (see HexaPDF::Type::Page::PAPER_SIZE) or an array llx, lly, urx, ury specifying a custom page size. Example: style.page_size = :A4 style.page_size = [0, 0, 200, 200] template[RW]¶ A callable object that defines the initial content of a page created with create_page. The callable object is given a canvas and the page style as arguments. It needs to draw the initial content of the page. Note that the graphics state of the canvas is not saved before executing the template code and restored afterwards. If this is needed, the object needs to do it itself. Furthermore it should set the frame and next_style attributes appropriately, if not done beforehand. The create_frame method can be used for easily creating a rectangular frame. Example: page_style.template = lambda do |canvas, style box = canvas.context.box canvas.fill_color(\"fd0\") do canvas.rectangle(0, 0, box.width, box.height).fill end style.frame = style.create_frame(canvas.context, 72) end Public Class Methods new(page_size: :A4, orientation: :portrait, next_style: nil, &block)¶ Creates a new page style instance for the given page size, orientation and next style values. If a block is given, it is used as template for defining the initial content. Example: PageStyle.new(page_size: :Letter) do |canvas, style| style.frame = style.create_frame(canvas.context, 72) style.next_style = :other canvas.fill_color(\"fd0\") { canvas.circle(100, 100, 50).fill } end Public Instance Methods create_frame(page, margin = 36)¶ Creates a frame based on the given page’s box and margin. The margin can be any value allowed by HexaPDF::Layout::Style::Quad#set. Note: This is a helper method for use inside the template callable. create_page(document)¶ Creates a new page in the given document with this page style and returns it. If frame has not been set beforehand or during execution of the template, a default frame covering the whole page except a margin of 36 is created.
"},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Style/index.html","title":"HexaPDF::Layout::Style","tags":"","text":" Class MethodscreatenewInstance Methodsalignbackground_alphabackground_colorbordercalculated_font_sizecalculated_strikeout_positioncalculated_strikeout_thicknesscalculated_text_risecalculated_underline_positioncalculated_underline_thicknesscharacter_spacingclear_cachefill_alphafill_colorfill_horizontalfontfont_featuresfont_sizehorizontal_scalinginitialize_copylast_line_gapline_heightline_spacingmarginmask_modeoverlayspaddingpositionscaled_character_spacingscaled_font_ascenderscaled_font_descenderscaled_font_sizescaled_horizontal_scalingscaled_item_widthscaled_word_spacingscaled_y_maxscaled_y_minstrikeoutstroke_alphastroke_cap_stylestroke_colorstroke_dash_patternstroke_join_stylestroke_miter_limitstroke_widthsubscriptsuperscripttext_aligntext_indenttext_line_wrapping_algorithmtext_rendering_modetext_risetext_segmentation_algorithmtext_valignunderlaysunderlineupdatevalignword_spacing class HexaPDF::Layout::Style Parent Object A Style is a container for properties that describe the appearance of text or graphics. Each property except font has a default value, so only the desired properties need to be changed. Each property has three associated methods: property_name Getter method. property_name(*args) and property_name= Setter method. property_name? Tester method to see if a value has been set or if the default value has already been used. Public Class Methods create(style) → style ¶ create(properties_hash) → style ¶ Creates a Style object based on the style argument and returns it: If style is already a Style object, it is just returned. If style is a hash, a new Style object with the style properties specified by the hash is created. If style is nil, a new Style object with only default values is created. new(**properties)¶ Creates a new Style object. The properties hash may be used to set the initial values of properties by using keys equivalent to the property names. Example: Style.new(font_size: 15, text_align: :center, text_valign: center) Public Instance Methods align(value = nil) ¶ Specifies the horizontal alignment of a box inside the current region. Defaults to :left. Possible values: :left Align the box to the left side of the current region. :center Horizontally center the box in the current region. :right Align the box to the right side of the current region. Examples: composer.text(\"Left\", border: {width: 1}) draw_current_frame_shape(\"hp-blue\") composer.text(\"Center\", align: :center, border: {width: 1}) draw_current_frame_shape(\"hp-orange\") composer.text(\"Right\", align: :right, border: {width: 1}) draw_current_frame_shape(\"hp-teal\") background_alpha(alpha = nil) ¶ The alpha value applied to the background when it is colored, defaults to 1 (i.e. 100% opaque). See: HexaPDF::Content::Canvas#opacity Examples: composer.text(\"Some text here\", background_color: \"red\", background_alpha: 0.5) background_color(color = nil) ¶ The color used for backgrounds, defaults to nil (i.e. no background). Examples: composer.text(\"Some text here\", background_color: \"lightgrey\") border(value = nil) ¶ The border around the contents, defaults to no border for all four sides. The value has to be a hash containing any of the keys :width, :color and :style. The width, color and style of the border can be set independently for each side (see Style::Quad#set). See Border for more details. Examples: composer.text(\"Some text here\", border: { width: [6, 3], color: [\"green\", \"blue\", \"orange\"], style: [:solid, :dashed] }) calculated_font_size()¶ The calculated font size, taking superscript and subscript into account. calculated_strikeout_position()¶ Returns the correct offset from the baseline for the strikeout line. calculated_strikeout_thickness()¶ Returns the correct thickness for the strikeout line. calculated_text_rise()¶ The calculated text rise, taking superscript and subscript into account. calculated_underline_position()¶ Returns the correct offset from the baseline for the underline. calculated_underline_thickness()¶ Returns the correct thickness for the underline. character_spacing(amount = nil) ¶ The character spacing, defaults to 0 (i.e. no additional character spacing). See: HexaPDF::Content::Canvas#character_spacing Examples: composer.text(\"More spacing between characters\", character_spacing: 1) clear_cache()¶ Clears all cached values. This method needs to be called if the following style properties are changed and values were already cached: font, font_size, character_spacing, word_spacing, horizontal_scaling, ascender, descender. fill_alpha(alpha = nil) ¶ The alpha value applied to filling operations (e.g. text), defaults to 1 (i.e. 100% opaque). See: HexaPDF::Content::Canvas#opacity Examples: composer.text(\"This is some semi-transparent text\", fill_alpha: 0.5) fill_color(color = nil) ¶ The color used for filling (e.g. text), defaults to black. See: HexaPDF::Content::Canvas#fill_color Examples: composer.text(\"This is some red text\", fill_color: \"red\") fill_horizontal(factor = nil) ¶ If set to a positive number, it specifies that the content of the text item should be repeated and appropriate spacing applied so that the remaining space of the line is completely filled. If there are multiple text items with this property set for a single line, the remaining space is split between those items using the set factors. For example, if item A has a factor of 1 and item B a factor of 2, the remaining space will be split so that item B will receive twice the space of A. Notes: This property _must not_ be applied to inline boxes, it only works for text items. If the filling should be done with spaces, the non-breaking space character u{00a0} has to be used. Examples: composer.formatted_text([\"Left\", {text: \"\\u{00a0}\", fill_horizontal: 1}, \"Right\"]) composer.formatted_text([\"Typical table of contents entry\", {text: \".\", fill_horizontal: 1}, \"34\"]) composer.formatted_text([\"Factor 1\", {text: \"\\u{00a0}\", fill_horizontal: 1}, \"Factor 3\", {text: \"\\u{00a0}\", fill_horizontal: 3}, \"End\"]) overlays = [proc {|c, b| c.line(0, b.height / 2.0, b.width, b.height / 2.0).stroke}] composer.formatted_text([{text: \"\\u{00a0}\", fill_horizontal: 1, overlays: overlays}, 'Centered', {text: \"\\u{00a0}\", fill_horizontal: 1, overlays: overlays}]) font(name = nil) ¶ The font to be used, must be set to a valid font wrapper object before it can be used. HexaPDF::Composer handles this property specially in that it resolves a set string or array to a font wrapper object before doing else with the style object. This is the only style property without a default value! See: HexaPDF::Content::Canvas#font Examples: composer.text(\"Helvetica\", font: composer.document.fonts.add(\"Helvetica\")) composer.text(\"Courier\", font: \"Courier\") # works only with composer helvetica_bold = composer.document.fonts.add(\"Helvetica\", variant: :bold) composer.text(\"Helvetica Bold\", font: helvetica_bold) composer.text(\"Courier Bold\", font: [\"Courier\", variant: :bold]) # only composer font_features(features = nil) ¶ The font features (e.g. kerning, ligatures, …) that should be applied by the shaping engine, defaults to {} (i.e. no font features are applied). Each feature to be applied is indicated by a key with a truthy value. See: HexaPDF::Layout::TextShaper#shape_text for available features. Examples: composer.style(:base, font: [\"Times\", custom_encoding: true], font_size: 30) composer.text(\"Test flight\") composer.text(\"Test flight\", font_features: {kern: true, liga: true}) font_size(size = nil) ¶ The font size, defaults to 10. See: HexaPDF::Content::Canvas#font_size Examples: composer.text(\"Default size\") composer.text(\"Larger size\", font_size: 20) horizontal_scaling(percent = nil) ¶ The horizontal scaling, defaults to 100 (in percent, i.e. normal scaling). See: HexaPDF::Content::Canvas#horizontal_scaling Examples: composer.text(\"Horizontal scaling\", horizontal_scaling: 150) initialize_copy(other)¶ Duplicates the complex properties that can be modified, as well as the cache. Calls superclass method last_line_gap(enable = false) ¶ Add an appropriately sized gap after the last line of text if enabled, defaults to false. Examples: composer.text(\"This is some longer text that wraps around in two lines.\", line_spacing: 1.5, last_line_gap: true) composer.text(\"There is spacing above this line due to last_line_gap.\") line_height(size = nil) ¶ The font size used for line height calculations, default is nil meaing it defaults to font_size. This value should never be smaller than the font size since this would lead to overlapping text. Examples: composer.text(\"Line 1\") composer.text(\"Larger line height\", line_height: 30) composer.text(\"Line 3\") line_spacing(type = nil, value = nil) ¶ line_spacing(type:, value: 1) ¶ The type of line spacing to be used for text lines, defaults to type :single. This method can set the line spacing in two ways: Using two positional arguments type and value. Or a hash with the keys type and value. Note that the last line has no additional spacing after it by default. Set last_line_gap for adding such a spacing. See LineSpacing for supported types of line spacing. Examples: composer.text(\"This is some longer text that wraps around in two lines.\", line_spacing: 1.5) composer.text(\"This is some longer text that wraps around in two lines.\", line_spacing: :double) composer.text(\"This is some longer text that wraps around in two lines.\", line_spacing: {type: :proportional, value: 1.2}) margin(value = nil) ¶ The margin around a box, defaults to 0 for all four sides. See Style::Quad#set for information on how to set the values. Examples: composer.text(\"Some text here\", margin: [5, 10], position: :float, border: {width: 1}) composer.text(\"Text starts after floating box and continues below it, \" \\ \"respecting the
margin.\", position: :flow) mask_mode(value = nil) ¶ Specifies how the mask defining the to-be-removed region should be constructed. Defaults to :default. Possible values: :default The actually used value depends on the value of position: For :default the used value is :fill_frame_horizontal. For :float the used value is :box. For :flow the used value is :fill_frame_horizontal. For :absolute the used value is :box. :none The mask covers nothing (useful for layering boxes over each other). Examples: composer.text('Text on bottom', mask_mode: :none) composer.text('Text on top', fill_color: 'hp-blue') :box The mask covers the box including the margin around the box. Examples: composer.text('Box only mask', mask_mode: :box) draw_current_frame_shape('hp-blue') composer.text('Text to the right') :fill_horizontal The mask covers the box including the margin around the box and the space to the left and right in the current region. Examples: composer.text('Standard, whole horizontal space') draw_current_frame_shape('hp-blue') composer.text('Text underneath') :fill_frame_horizontal The mask covers the box including the margin around the box and the space to the left and right in the frame. Examples: composer.frame.remove_area(Geom2D::Rectangle(100, 50, 10, 50)) composer.text('Mask covers frame horizontally', mask_mode: :fill_frame_horizontal) draw_current_frame_shape('hp-blue') composer.text('Text underneath') :fill_vertical The mask covers the box including the margin around the box and the space to the top and bottom in the current region. Examples: composer.text('Mask covers vertical space', mask_mode: :fill_vertical) draw_current_frame_shape('hp-blue') composer.text('Text to the right') :fill The mask covers the current region completely. Examples: composer.text('Mask covers everything', mask_mode: :fill) composer.text('On the next page') overlays(layers = nil) ¶ A Style::Layers object containing all the layers that should be drawn over the box; defaults to no layers being drawn. The layers argument needs to be an array of layer objects. To define a layer either use a callable object taking the canvas and the box as arguments; or use a pre-defined layer using an array of the form [:layer_name, **options]. See Style::Layers for details. Examples: composer.text(\"Some text here\", overlays: [lambda do |canvas, box| canvas.stroke_color(\"red\").opacity(stroke_alpha: 0.5). line_width(5).line(0, 0, box.width, box.height).stroke end, [:link, uri: \"https://hexapdf.gettalong.org\"]]) padding(value = nil) ¶ The padding between the border and the contents, defaults to 0 for all four sides. See Style::Quad#set for information on how to set the values. Examples: composer.text(\"Some text here\", padding: 10, border: {width: 1}) position(value = nil) ¶ Specifies how a box should be positioned in a frame. Defaults to :default. The properties align and valign provide alignment information while mask_mode defines how the to-be-removed region should be constructed. Possible values: :default Position the box at the current position. The exact horizontal and vertical position inside the current region is given via the align and valign style properties. Examples: composer.box(:base, width: 40, height: 20, style: {align: :right, border: {width: 1}}) composer.box(:base, width: 40, height: 20, style: {align: :center, valign: :center, border: {width: 1}}) :float This is the same as :default except that the used value for mask_mode when it is set to :default is :box instead of :fill_frame_horizontal. Examples: composer.box(:base, width: 40, height: 20, style: {position: :float, border: {width: 1}}) composer.box(:base, width: 40, height: 20, style: {position: :float, border: {color: \"hp-blue\", width: 1}}) :flow Flows the content of the box inside the frame around objects. A box needs to indicate whether it supports this value by implementing the supports_position_flow? method and returning true if it does or false if it doesn’t. If a box doesn’t support this value, it is positioned as if the value :default was set. Note that the properties align and valign are not used with this value! Examples: composer.box(:base, width: 40, height: 20, style: {position: :float, border: {width: 1}}) composer.lorem_ipsum(position: :flow) [x, y] Position the box with the bottom left corner at the given absolute position relative to the bottom left corner of the frame. Examples: composer.text('Absolute', position: [50, 50], border: {width: 1}) draw_current_frame_shape(\"red\") scaled_character_spacing()¶ The character spacing scaled appropriately. scaled_font_ascender()¶ The ascender of the font scaled appropriately. scaled_font_descender()¶ The descender of the font scaled appropriately. scaled_font_size()¶ The font size scaled appropriately. scaled_horizontal_scaling()¶ The horizontal scaling scaled appropriately. scaled_item_width(item)¶ Returns the width of the item scaled appropriately (by taking font size, characters spacing, word spacing and horizontal scaling into account). The item may be a (singleton) glyph object or an integer/float, i.e. items that can appear inside a TextFragment. scaled_word_spacing()¶ The word spacing scaled appropriately. scaled_y_max()¶ The maximum y-coordinate, calculated using the scaled ascender of the font and the line height or font size. scaled_y_min()¶ The minimum y-coordinate, calculated using the scaled descender of the font and the line height or font size. strikeout(enable = false) ¶ Renders a line through the text; defaults to false. Examples: composer.text(\"Strikeout text\", strikeout: true) stroke_alpha(alpha = nil) ¶ The alpha value applied to stroking operations (e.g. text outlines), defaults to 1 (i.e. 100% opaque). See: HexaPDF::Content::Canvas#opacity Examples: composer.text(\"Stroked text\", font_size: 40, stroke_alpha: 0.5, text_rendering_mode: :stroke) stroke_cap_style(style = nil) ¶ The line cap style used for stroking operations (e.g. text outlines), defaults to :butt. The returned values is always a normalized line cap style value. See: HexaPDF::Content::Canvas#line_cap_style Examples: composer.text(\"Stroked text\", font_size: 40, stroke_cap_style: :round, text_rendering_mode: :stroke) stroke_color(color = nil) ¶ The color used for stroking (e.g. text outlines), defaults to black. See: HexaPDF::Content::Canvas#stroke_color Examples: composer.text(\"Stroked text\", font_size: 40, stroke_color: \"red\", text_rendering_mode: :stroke) stroke_dash_pattern(pattern = nil) ¶ The line dash pattern used for stroking operations (e.g. text outlines), defaults to a solid line. See: HexaPDF::Content::Canvas#line_dash_pattern Examples: composer.text(\"Stroked text\", font_size: 40, stroke_dash_pattern: [4, 2], text_rendering_mode: :stroke) stroke_join_style(style = nil) ¶ The line join style used for stroking operations (e.g. text outlines), defaults to :miter. The returned values is always a normalized line joine style value. See: HexaPDF::Content::Canvas#line_join_style Examples: composer.text(\"Stroked text\", font_size: 40, stroke_join_style: :bevel, text_rendering_mode: :stroke) stroke_miter_limit(limit = nil) ¶ The miter limit used for stroking operations (e.g. text outlines) when stroke_join_style is :miter, defaults to 10.0. See: HexaPDF::Content::Canvas#miter_limit Examples: composer.text(\"Stroked text\", font_size: 40, stroke_join_style: :bevel, stroke_miter_limit: 1, text_rendering_mode: :stroke) stroke_width(width = nil) ¶ The line width used for stroking operations (e.g. text outlines), defaults to 1. See: HexaPDF::Content::Canvas#line_width Examples: composer.text(\"Stroked text\", font_size: 40, stroke_width: 2, text_rendering_mode: :stroke) subscript(enable = false) ¶ Render the text as subscript, i.e. lower and in a smaller font size; defaults to false. If superscript is set, it will be deactivated. Examples: composer.formatted_text([\"Some \", {text: \"subscript text\", subscript: true}]) superscript(enable = false) ¶ Render the text as superscript, i.e. higher and in a smaller font size; defaults to false. If subscript is set, it will be deactivated. Examples: composer.formatted_text([\"Some \", {text: \"superscript text\", superscript: true}]) text_align(direction = nil) ¶ The horizontal alignment of text, defaults to :left. Possible values: :left Left-align the text, i.e. the right side is rugged. :center Center the text horizontally. :right Right-align the text, i.e. the left side is rugged. :justify Justify the text, except for those lines that end in a hard line break. Examples: text = \"Lorem ipsum dolor sit amet. \" * 2 composer.style(:base, border: {width: 1}) composer.text(text, text_align: :left) composer.text(text, text_align: :center) composer.text(text, text_align: :right) composer.text(text, text_align: :justify) text_indent(amount = nil) ¶ The indentation to be used for the first line of a sequence of text lines, defaults to 0. Examples: composer.text(\"This is some longer text that wraps around in two lines.\", text_indent: 10) text_line_wrapping_algorithm(algorithm = nil) {|items, width_block| block } ¶ The line wrapping algorithm that should be used, defaults to TextLayouter::SimpleLineWrapping. When setting the algorithm, either an object that responds to call or a block can be used. See TextLayouter::SimpleLineWrapping#call for the needed method signature. text_rendering_mode(mode = nil) ¶ The text rendering mode, i.e. whether text should be filled, stroked, clipped, invisible or a combination thereof, defaults to :fill. The returned value is always a normalized text rendering mode value. See: HexaPDF::Content::Canvas#text_rendering_mode Examples: composer.text(\"Test flight\", font_size: 40, text_rendering_mode: :stroke) text_rise(amount = nil) ¶ The text rise, i.e. the vertical offset from the baseline, defaults to 0. See: HexaPDF::Content::Canvas#text_rise Examples: composer.formatted_text([\"Normal\", {text: \"Up in the air\", text_rise: 5}])
text_segmentation_algorithm(algorithm = nil) {|items| block } ¶ The algorithm to use for text segmentation purposes, defaults to TextLayouter::SimpleTextSegmentation. When setting the algorithm, either an object that responds to call(items) or a block can be used. text_valign(direction = nil) ¶ The vertical alignment of items (normally text) inside a text box, defaults to :top. For :center and :bottom alignment the box will fill the whole available height. If this is not wanted, an explicit height will need to be set for the box. This property is ignored when using position :flow for a text box. Possible values: :top Vertically align the items to the top of the box. :center Vertically align the items in the center of the box. :bottom Vertically align the items to the bottom of the box. Examples: composer.style(:base, border: {width: 1}) composer.text(\"Top aligned\", height: 20, text_valign: :top) composer.text(\"Center aligned\", height: 20, text_valign: :center) composer.text(\"Bottom aligned\", text_valign: :bottom) underlays(layers = nil) ¶ A Style::Layers object containing all the layers that should be drawn under the box; defaults to no layers being drawn. The layers argument needs to be an array of layer objects. To define a layer either use a callable object taking the canvas and the box as arguments; or use a pre-defined layer using an array of the form [:layer_name, **options]. See Style::Layers for details. Examples: composer.text(\"Some text here\", underlays: [lambda do |canvas, box| canvas.stroke_color(\"red\").opacity(stroke_alpha: 0.5). line_width(5).line(0, 0, box.width, box.height).stroke end, [:link, uri: \"https://hexapdf.gettalong.org\"]]) underline(enable = false) ¶ Renders a line underneath the text; defaults to false. Examples: composer.text(\"Underlined text\", underline: true) update(**properties) → style ¶ Updates the style’s properties using the key-value pairs specified by the properties hash. valign(value = nil) ¶ Specifies the vertical alignment of a box inside the current region. Defaults to :top. Possible values: :top Align the box to the top side of the current region. :center Vertically center the box in the current region. :bottom Align the box to the bottom side of the current region. Examples: composer.text(\"Top\", mask_mode: :fill_vertical, border: {width: 1}) composer.text(\"Center\", valign: :center, mask_mode: :fill_vertical, border: {width: 1}) composer.text(\"Bottom\", valign: :bottom, border: {width: 1}) word_spacing(amount = nil) ¶ The word spacing, defaults to 0 (i.e. no additional word spacing). See: HexaPDF::Content::Canvas#word_spacing Examples: composer.text(\"More word spacing\", word_spacing: 20) "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Style/Border.html","title":"HexaPDF::Layout::Style::Border","tags":"","text":" Attributescolordraw_on_boundsstylewidthClass MethodsnewInstance Methodsdrawinitialize_copynone? class HexaPDF::Layout::Style::Border Parent Object Represents the border of a rectangular area. Attributes color[R]¶ The colors of each edge. See Quad. draw_on_bounds[RW]¶ Specifies whether the border should be drawn inside the provided rectangle (false, default) or on it (true). style[R]¶ The styles of each edge. See Quad. width[R]¶ The widths of each edge. See Quad. Public Class Methods new(width: 0, color: 0, style: :solid, draw_on_bounds: false)¶ Creates a new border style. All arguments can be set to any value that a Quad can process. Public Instance Methods draw(canvas, x, y, w, h)¶ Draws the border onto the canvas. Depending on draw_on_bounds the border is drawn inside the rectangle (x, y, w, h) or on it. initialize_copy(other)¶ Duplicates a Border object’s properties. Calls superclass method none?()¶ Returns true if there is no border. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Style/Layers.html","title":"HexaPDF::Layout::Style::Layers","tags":"","text":" Class MethodsnewInstance Methodsadddraweachinitialize_copynone? class HexaPDF::Layout::Style::Layers Parent Object Represents layers that can be drawn under or over a box. There are two ways to specify layers via add: Directly by providing a callable object. By reference to a callable object or class in the ‘style.layers_map’ configuration option. The reference name is looked up in the configuration option using HexaPDF::Configuration#constantize. If the resulting object is a callable object, it is used; otherwise it is assumed that it is a class and an object is instantiated, passing in any options given on add. The object resolved in this way needs to respond to call(canvas, box) where canvas is the HexaPDF::Content::Canvas object on which it should be drawn and box is a box-like object (e.g. Box or TextFragment). The coordinate system is translated so that the origin is at the bottom left corner of the box during the drawing operations. Public Class Methods new(layers = nil)¶ Creates a new Layers object popuplated with the given layers. Public Instance Methods add {|canvas, box| block} ¶ add(name, **options) ¶ Adds a new layer object. The layer object can either be specified as a block or by reference to a configured layer object in ‘style.layers_map’. In this case name is used as the reference and the options are passed to layer object if it needs initialization. draw(canvas, x, y, box)¶ Draws all layer objects onto the canvas at the position [x, y] for the given box. each(config) { |layer| ... }¶ Yields all layer objects. Objects that have been specified via a reference are first resolved using the provided configuration object. initialize_copy(other)¶ Duplicates the array holding the layers. Calls superclass method none?()¶ Returns true if there are no layers defined. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Style/LineSpacing.html","title":"HexaPDF::Layout::Style::LineSpacing","tags":"","text":" AttributestypevalueClass MethodsnewInstance Methodsbaseline_distancegap class HexaPDF::Layout::Style::LineSpacing Parent Object Defines how the distance between the baselines of two adjacent text lines is determined: :single :proportional with value 1. :double :proportional with value 2. :proportional The y_min of the first line and the y_max of the second line are multiplied with the specified value, and the sum is used as baseline distance. :fixed The distance between the baselines is set to the specified value. :leading The distance between the baselines is set to the sum of the y_min of the first line, the y_max of the second line and the specified value. Attributes type[R]¶ The type of line spacing - see LineSpacing value[R]¶ The value (needed for some types) - see LineSpacing Public Class Methods new(type:, value: 1)¶ Creates a new LineSpacing object for the given type which can be any valid line spacing type or a LineSpacing object. Public Instance Methods baseline_distance(line1, line2)¶ Returns the distance between the baselines of the two given Line objects. gap(line1, line2)¶ Returns the gap between the two given Line objects, i.e. the distance between the y_min of the first line and the y_max of the second line. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Style/LinkLayer.html","title":"HexaPDF::Layout::Style::LinkLayer","tags":"","text":" Class MethodsnewInstance Methodscall class HexaPDF::Layout::Style::LinkLayer Parent Object The LinkLayer class provides support for linking to in-document or remote destinations for Style objects using link annotations. Typical use cases would be linking to a (named) destination on a different page or executing a URI action. See: PDF2.0 s12.5.6.5, Layers, HexaPDF::Type::Annotations::Link Public Class Methods new(dest: nil, uri: nil, file: nil, action: nil, border: false, border_color: nil)¶ Creates a new LinkLayer object. The following arguments are allowed (note that only one of dest, uri, file or action may be specified): dest The destination array or a name of a named destination for in-document links. If neither dest, uri, file nor action is specified, it is assumed that the box has a custom property named ‘link’ which is used for the destination. uri The URI to link to. file The file that should be opened or, if it refers to an application, the application that should be launched. Can either be a string or a Filespec object. Also see: HexaPDF::Type::FileSpecification. action The PDF action that should be executed. border If set to true, a standard border is used. Also accepts an array that adheres to the rules for annotation borders. border_color Defines the border color. Can be an array with 0 (transparent), 1 (grayscale), 3 (RGB) or 4 (CMYK) values. Examples: LinkLayer.new(dest: [page, :XYZ, nil, nil, nil], border: true) LinkLayer.new(uri: \"https://my.example.com/path\", border: [5 5 2]) LinkLayer.new # use 'link' custom box property for dest Public Instance Methods call(canvas, box)¶ Creates the needed link annotation if possible, i.e. if the context of the canvas is a page. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/Style/Quad.html","title":"HexaPDF::Layout::Style::Quad","tags":"","text":" AttributesbottomleftrighttopClass MethodsnewInstance Methodssetsimple? class HexaPDF::Layout::Style::Quad Parent Object A Quad holds four values and allows them to be accessed by the names top, right, bottom and left. Quads are normally used for holding values pertaining to boxes, like margins, paddings or borders. Attributes bottom[RW]¶ The value for bottom. left[RW]¶ The value for left. right[RW]¶ The value for right. top[RW]¶ The value for top. Public Class Methods new(obj)¶ Creates a new Quad object. See set for more information. Public Instance Methods set(value) ¶ set(array) ¶ set(quad) ¶ Sets all values of the quad. If a single value is provided that is neither a Quad nor an array, it is handled as if an array with one value was given. If a Quad is provided, its values are used. If an array is
provided, it depends on the number of elemens in it: One value: All attributes are set to the same value. Two values: Top and bottom are set to the first value, left and right to the second value. Three values: Top is set to the first, left and right to the second, and bottom to the third value. Four or more values: Top is set to the first, right to the second, bottom to the third and left to the fourth value. simple?()¶ Returns true if the quad effectively contains only one value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TableBox/index.html","title":"HexaPDF::Layout::TableBox","tags":"","text":" Attributescellscolumn_widthsfooter_cellsheader_cellslast_fitted_row_indexstart_row_indexClass MethodsnewInstance Methodsempty?fit class HexaPDF::Layout::TableBox Parent HexaPDF::Layout::Box A TableBox allows placing boxes in a table. A table box instance can be fit into a rectangular area. The widths of the columns is determined by the column_widths definition. This means that there is no auto-sizing supported. If some rows don’t fit into the provided area, the table is split. The style of the original table is also applied to the split box. Table Cell¶ ↑ Each table cell is a Box instance and can have an associated style, e.g. for creating borders around the cell contents. It is also possible to create cells that span more than one row or column. By default a cell has a solid, black, 1pt border and a padding of 5pt on all sides. It is important to note that the drawing of cell borders (just the drawing, size calculations are done as usual) are handled differently from standard box borders. While standard box borders are drawn inside the box, cell borders are drawn on the bounds of the box. This means that, visually, the borders of adjoining cells overlap, with the borders of cells to the right and bottom being on top. To make sure that the cell borders are not outside of the table’s bounds, the left and top border widths of the top-left cell and the right and bottom border widths of the bottom-right cell are taken into account when calculating the available space. Examples¶ ↑ Let’s start with a basic table: cells = [[layout.text('A'), layout.text('B')], [layout.text('C'), layout.text('D')]] composer.table(cells) The HexaPDF::Document::Layout#table_box method accepts the cells as positional argument instead of as keyword argument but all other arguments of ::new work the same. While the table box itself only allows box instances as cell contents, the layout helper method also allows text which it transforms to text boxes. So this is the same as the above: composer.table([['A', 'B'], ['C', 'D']]) The style of the cells can be customized, e.g. to avoid drawing borders: cells = [[layout.text('A'), layout.text('B')], [layout.text('C'), layout.text('D')]] composer.table(cells, cell_style: {border: {width: 0}}) If the table doesn’t fit completely, it is automatically split (in this case, the last row gets moved to the second column): cells = [[layout.text('A'), layout.text('B')], [layout.text('C'), layout.text('D')], [layout.text('E'), layout.text('F')]] composer.column(height: 50) {|col| col.table(cells) } It is also possible to use row and column spans: cells = [[{content: layout.text('A'), col_span: 2}, {content: layout.text('B'), row_span: 2}], [{content: layout.text('C'), col_span: 2, row_span: 2}], [layout.text('D')]] composer.table(cells) Each table can have header rows and footer rows which are shown for all split parts: header = lambda {|tb| [[{content: layout.text('Header', text_align: :center), col_span: 2}]] } footer = lambda {|tb| [[layout.text('left'), layout.text('right', text_align: :right)]] } cells = [[layout.text('A'), layout.text('B')], [layout.text('C'), layout.text('D')], [layout.text('E'), layout.text('F')]] composer.column(height: 90) {|col| col.table(cells, header: header, footer: footer) } The cells can be styled using a callable object for more complex styling: cells = [[layout.text('A'), layout.text('B')], [layout.text('C'), layout.text('D')]] block = lambda do |cell| cell.style.background_color = (cell.row == 0 && cell.column == 0 ? 'ffffaa' : 'ffffee') end composer.table(cells, cell_style: block) Attributes cells[R]¶ The Cells instance containing the data of the table. If this is an instance that was split from another one, the cells contain all the rows, not just the ones for this split instance. Also see start_row_index. column_widths[R]¶ The column widths definition. See ::new for details. footer_cells[R]¶ The Cells instance containing the footer cells of the table. If this is a TableBox instance that was split from another one, the footer cells are created again through the use of footer block supplied to ::new. header_cells[R]¶ The Cells instance containing the header cells of the table. If this is a TableBox instance that was split from another one, the header cells are created again through the use of header block supplied to ::new. last_fitted_row_index[R]¶ This value is -1 if fit was not yet called. Otherwise it contains the row index of the last row that could be fitted. start_row_index[R]¶ The row index into the cells from which this instance starts fitting the rows. This value is 0 if this instance was not split from another one. Otherwise, it contains the correct start index. Public Class Methods new(cells:, column_widths: nil, header: nil, footer: nil, cell_style: nil, **kwargs)¶ Creates a new TableBox instance. cells This needs to be an array of arrays containing the data of the table. See Cells for more information on the allowed contents. Alternatively, a Cells instance can be used. Note that in this case the cell_style argument is not used. column_widths An array defining the width of the columns of the table. If not set, defaults to an empty array. Each entry in the array may either be a positive or negative number. A positive number sets a fixed width for the respective column. A negative number specifies that the respective column is auto-sized. Such columns split the remaining width (after substracting the widths of the fixed columns) proportionally among them. For example, if the column width definition is [-1, -2, -2], the first column is a fifth of the width and the other two columns are each two fifth of the width. If the cells definition has more columns than specified by column_widths, the missing entries are assumed to be -1. header A callable object that needs to accept this TableBox instance as argument and that returns an array of arrays containing the header rows. The header rows are shown for the table instance and all split boxes. footer A callable object that needs to accept this TableBox instance as argument and that returns an array of arrays containing the footer rows. The footer rows are shown for the table instance and all split boxes. cell_style Contains styling information that should be applied to all header, body and footer cells. This can either be a hash containing style properties or a callable object accepting a cell as argument. Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods empty?()¶ Returns true if not a single row could be fit. Calls superclass method HexaPDF::Layout::Box#empty? fit(available_width, available_height, frame)¶ Fits the table into the current region of the frame. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TableBox/Cell.html","title":"HexaPDF::Layout::TableBox::Cell","tags":"","text":" Attributeschildrencol_spancolumnleftpreferred_heightpreferred_widthrowrow_spantopClass MethodsnewInstance Methodsempty?fitupdate_height class HexaPDF::Layout::TableBox::Cell Parent HexaPDF::Layout::Box Represents a single cell of the table. A cell is a container box that fits and draws its children with a BoxFitter. Its dimensions (width and height) are not determined by its children but by the table layout algorithm. Furthermore, its style can be used for drawing e.g. a cell border. Cell borders work similar to the separated borders model of CSS, i.e. each cell has its own borders that do not overlap. Attributes children[RW]¶ The boxes to layout inside this cell. This may either be nil (if the cell has no content), a single Box instance or an array of Box instances. col_span[R]¶ The number of columns this cell spans. column[R]¶ The 0-based column number of the cell. left[RW]¶ The x-coordinate of the cell’s top-left corner. The coordinate is relative to the table’s content rectangle, with positive x-axis going to the right and positive y-axis going to the bottom. This value is set by the parent Cells object during fitting and may therefore only be relied on afterwards. preferred_height[R]¶ The preferred height of the cell, determined during fit. preferred_width[R]¶ The preferred width of the cell, determined during fit. row[R]¶ The 0-based row number of the cell. row_span[R]¶ The number of rows this cell spans. top[RW]¶ The y-coordinate of the cell’s top-left corner. The coordinate is relative to the table’s content rectangle, with positive x-axis going to the right and positive y-axis going to the bottom. This value is set by the parent Cells object during fitting and may therefore only be relied on afterwards. Public Class Methods new(row:, column:, children: nil, row_span: nil, col_span: nil, **kwargs)¶ Creates a new Cell instance. Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods empty?()¶ Returns true if the cell has no content. Calls superclass method HexaPDF::Layout::Box#empty? fit(available_width, available_height, frame)¶ Fits the children of the table cell into the given rectangular area. update_height(height)¶ Updates the height of the box to the given value. The height has to be greater than or equal to the fitted height. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TableBox/Cells.html","title":"HexaPDF::Layout::TableBox::Cells","tags":"","text":" Class MethodsnewInstance
Methods[]draw_rowseach_rowfit_rowsnumber_of_columnsnumber_of_rowsstyle class HexaPDF::Layout::TableBox::Cells Parent Object Represents the cells of a TableBox. This class is a wrapper around an array of arrays and provides some utility methods for managing and styling the cells. Table data transformation into correct form¶ ↑ One of the main purposes of this class is to transform the cell data provided on initialization into the representation a TableBox instance can work with. The data argument for ::new is an array of arrays representing the rows of the table. Each row array may contain one of the following items: A single Box instance defining the content of the cell. An array of Box instances defining the content of the cell. A hash which defines the content of the cell as well as, optionally, additional information through the following keys: :content The content for the cell. This may be a single Box or an array of Box instances. :row_span An integer specifying the number of rows this cell should span. :col_span An integer specifying the number of columsn this cell should span. :properties A hash of properties (see Box#properties) to be set on the cell itself. All other key-value pairs are taken to be cell styling information (like :background_color) and assigned to the cell style. Additionally, the first item in the data argument is treated specially if it is not an array: If it is a hash, it is assumed to be style properties to be set on all created cell instances. If it is a callable object, it needs to accept a cell as argument and is called for all created cell instances. Any properties or styling information retrieved from the respective item in data takes precedence over the above globally specified information. Here is an example input data array: data = [[box1, {col_span: 2, content: box2}, box3], [box4, box5, {col_span: 2, row_span: 2, content: [box6.1, box6.2]}], [box7, box8]] And this is what the table will look like: | box1 | box2 | box 3 | | box4 | box5 | box6.1 box6.2 | | box7 | box8 | | Public Class Methods new(data, cell_style: nil)¶ Creates a new Cells instance with the given data which cannot be changed afterwards. The optional cell_style argument can either be a hash of style properties to be assigned to every cell or a block accepting a cell for more control over e.g. style assignment. If the data has such a cell style as its first item, the cell_style argument is not used. See the class documentation for details on the data argument. Public Instance Methods [](row, column)¶ Returns the cell (a Cell instance) in the given row and column. Note that the same cell instance may be returned for different (row, column) arguments if the cell spans more than one row and/or column. draw_rows(start_row, end_row, canvas, x, y)¶ Draws the rows from start_row to end_row on the given canvas, with the top-left corner of the resulting table being at (x, y). each_row(&block)¶ Iterates over each row. fit_rows(start_row, available_height, column_info, frame)¶ Fits all rows starting from start_row into an area with the given available_height, using the column information in column_info. Returns the used height as well as the row index of the last row that fit (which may be -1 if no row fits). The column_info argument needs to be an array of arrays of the form [x_pos, width] containing the horizontal positions and widths of each column. The frame argument is further handed down to the Cell instances for fitting. The fitting of a cell is done through the Cell#fit method which stores the result in the cell itself. Furthermore, Cell#left and Cell#top are also assigned correctly. number_of_columns()¶ Returns the number of columns. number_of_rows()¶ Returns the number of rows. style(**properties, &block)¶ Applies the given style properties to all cells and optionally yields all cells for more complex customization. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextBox.html","title":"HexaPDF::Layout::TextBox","tags":"","text":" Class MethodsnewInstance Methodsfitsplitsupports_position_flow?text class HexaPDF::Layout::TextBox Parent HexaPDF::Layout::Box A TextBox is used for drawing text, either inside a rectangular box or by flowing it around objects of a Frame. This class uses TextLayouter behind the scenes to do the hard work. Public Class Methods new(items:, **kwargs)¶ Creates a new TextBox object with the given inline items (e.g. TextFragment and InlineBox objects). Calls superclass method HexaPDF::Layout::Box::new Public Instance Methods fit(available_width, available_height, frame)¶ Fits the text box into the Frame. Depending on the ‘position’ style property, the text is either fit into the current region of the frame using available_width and available_height, or fit to the shape of the frame starting from the top (when ‘position’ is set to :flow). The spacing after the last line can be controlled via the style property last_line_gap. Also see TextLayouter#style for other style properties taken into account. split(available_width, available_height, frame)¶ Splits the text box into two boxes if necessary and possible. supports_position_flow?()¶ Returns true as the ‘position’ style property value :flow is supported. text()¶ Returns the text that will be drawn. This will ignore any inline boxes or kerning values. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextFragment.html","title":"HexaPDF::Layout::TextFragment","tags":"","text":" AttributesitemsstyleClass Methodscreatecreate_with_fallback_glyphsnewInstance Methodsattributes_hashclear_cachedrawdup_attributesexact_y_maxexact_y_minfill_horizontal!heightpropertiestextvalignwidthx_maxx_miny_maxy_min class HexaPDF::Layout::TextFragment Parent Object A TextFragment describes an optionally kerned piece of text that shares the same font, font size and other properties. Its items are either glyph objects of the font or numeric values describing kerning information. All returned measurement values are in text space units. If the items or the style are changed, the clear_cache has to be called. Otherwise the measurements may not be correct! The items of a text fragment may be frozen to indicate that the fragment is potentially used multiple times. The rectangle with the bottom left corner (x_min, y_min) and the top right corner (x_max, y_max) describes the minimum bounding box of the whole text fragment and is usually not equal to the box (0, 0)-(width, height). Attributes items[RW]¶ The items (glyphs and kerning values) of the text fragment. style[R]¶ The style to be applied. Only the following properties are used: Style#font Style#font_size Style#horizontal_scaling Style#character_spacing Style#word_spacing Style#text_rise Style#text_rendering_mode Style#subscript Style#superscript Style#underline Style#strikeout Style#fill_color Style#fill_alpha Style#stroke_color Style#stroke_alpha Style#stroke_width Style#stroke_cap_style Style#stroke_join_style Style#stroke_miter_limit Style#stroke_dash_pattern Style#underlays Style#overlays Public Class Methods create(text, style)¶ Creates a new TextFragment object for the given text, shapes it and returns it. The needed style of the text fragment is specified by the style argument (see Style::create for details). Note that the resulting style object needs at least the font set. create_with_fallback_glyphs(text, style) → [frag] ¶ create_with_fallback_glyphs(text, style) {|codepoint| block } → [frag1, frag2, ...] ¶ Creates one or more TextFragment objects for the given text - possibly using glyphs from fallback fonts -, shapes them and returns them. If no block is given, the method works like create but returns the text fragment inside an array. If a block is given, the text is split on codepoints for which there is no glyph in the style’s font. For the parts with valid glyphs TextFragment objects are created like with create. Each codepoint without a valid glyph is yielded to the given block together with the associated HexaPDF::Font::InvalidGlyph object as arguments. The block needs to return an array of either HexaPDF::Font::Type1Wrapper::Glyph or HexaPDF::Font::TrueTypeWrapper::Glyph objects. This array is then used for creating a TextFragment object. The needed style of the text fragments is specified by the style argument (see Style::create for details). Note that the resulting style object needs at least the font set. new(items, style, properties: nil)¶ Creates a new TextFragment object with the given items and style. The argument style can either be a Style object or a hash of style properties, see Style::create for details. Public Instance Methods attributes_hash()¶ Returns the value that should be used as hash key when only the fragment’s attributes - without the items - should play a role. clear_cache()¶ Clears all cached values. This method needs to be called if the fragment’s items or attributes are changed! draw(canvas, x, y, ignore_text_properties: false)¶ Draws the text onto the canvas at the given position. This method is the main styled text drawing facility and therefore some optimizations are done: The text is drawn using HexaPDF::Content;:Canvas#show_glyphs_only which means that the text matrix is not updated. Therefore the caller must not rely on it! All text style properties mentioned in the description of style are set except if ignore_text_properties is set to true. Note that this only applies to style properties that directly affect text drawing, so, for example, underlays/overlays and underlining/strikeout is always done. The caller should set ignore_text_properties to true if the graphics state hasn’t been changed. This is the case, for example, if the last thing drawn was a text fragment with the same style. It is assumed that the text matrix is not rotated, skewed, etc. so that setting the text position can be done using the optimal method. dup_attributes(items)¶ Creates a new TextFragment with the same style and custom properties as this
one but with the given items. exact_y_max()¶ The maximum y-coordinate of any item. exact_y_min()¶ The minimum y-coordinate of any item. fill_horizontal!(width)¶ Creates a new text fragment that repeats this fragment’s items and applies the necessary spacing so that the returned text fragment fills the given width completely. If the given width is less than the fragment’s width, self is returned. height()¶ The height of the text fragment. It is calculated as the difference of the maximum of the y_max values and the minimum of the y_min values of the items. However, the text rise value is also taken into account so that the baseline is always inside the bounds. For example, if a large negative text rise value is used, the baseline will be equal to the top boundary; if a large positive value is used, it will be equal to the bottom boundary. properties()¶ Returns the custom properties hash for the text fragment. See Box#properties for usage details. text()¶ Returns the text of the fragment. valign()¶ Returns the vertical alignment inside a line which is always :text for text fragments. See Line for details. width()¶ The width of the text fragment. It is the sum of the widths of its items and is calculated by using the algorithm presented in PDF2.0 s9.4.4. By using kerning values as the first and/or last items, the text contained in the fragment may spill over the left and/or right boundary. x_max()¶ The maximum x-coordinate of the last glyph. x_min()¶ The minimum x-coordinate of the first glyph. y_max()¶ The maximum y-coordinate, calculated using the scaled ascender of the font. y_min()¶ The minimum y-coordinate, calculated using the scaled descender of the font. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/index.html","title":"HexaPDF::Layout::TextLayouter","tags":"","text":" ConstantsDummyLineAttributesstyleClass MethodsnewInstance Methodsfit class HexaPDF::Layout::TextLayouter Parent Object Arranges text and inline objects into lines according to a specified width and height as well as other options. Features¶ ↑ Existing line breaking characters inside of TextFragment objects are respected when fitting text. If this is not wanted, they have to be removed beforehand. The first line of each paragraph may be indented by setting Style#text_indent which may also be negative. Text can be fitted into arbitrarily shaped areas, even containing holes. Layouting Algorithm¶ ↑ Laying out text consists of three phases: The items are broken into pieces which are wrapped into Box, Glue or Penalty objects. Additional Penalty objects marking line breaking opportunities are inserted where needed. This step is done by the SimpleTextSegmentation module. The pieces are arranged into lines using a very simple algorithm that just puts the maximum number of consecutive pieces into each line. This step is done by the SimpleLineWrapping module. The lines of step two may actually not be whole lines but line fragments if the area has holes or other discontinuities. The fit method deals with those so that the line wrapping algorithm can be separate. Constants DummyLine¶ A dummy line class for use with variable width wrapping, and Style#line_spacing methods in case a line actually consists of multiple line fragments. Attributes style[R]¶ The style to be applied. Only the following properties are used: Style#text_indent, Style#text_align, Style#text_valign, Style#line_spacing, Style#fill_horizontal, Style#text_segmentation_algorithm, Style#text_line_wrapping_algorithm Public Class Methods new(style = Style.new)¶ Creates a new TextLayouter object with the given style. The style argument can either be a Style object or a hash of style options. See style for the properties that are used by the layouter. Public Instance Methods fit(items, width, height, apply_first_text_indent: true) → result ¶ Fits the items into the given area and returns a Result object with all the information. The height argument is just a number specifying the maximum height that can be used. The width argument can be one of the following: **a number** In this case the layed out lines have this number as maximum width. This is the standard case and means that the area in which the text is layed out is a rectangle. **an array with an even number of numbers** The array has to be of the form [offset, width, offset, width, …], so the even indices specify offsets (relative to the current position, not absolute offsets from the left), the odd indices widths. This allows laying out lines containing holes in them. A simple example: [15, 100, 30, 40]. This means that a space of 15 on the left is never used, then comes text with a maximum width of 100, starting at the absolute offset 15, followed by a hole with a width of 30 and then text again with a width of 40, starting at the absolute offset 145 (=15 + 100 + 30). **an object responding to call(height, line_height)** The provided argument height is the bottom of last line (or 0 in case of the first line) and line_height is the height of the line to be layed out. The return value has to be of one of the forms above (i.e. a single number or an array of numbers) and should describe the area given these height restrictions. This allows laying out text inside complex, arbitrarily formed shapes and can be used, for example, for flowing text around objects. The text segmentation algorithm specified via style is applied to the items in case they are not already in segmented form. This also means that Result#remaining_items always contains segmented items. Optional arguments: apply_first_text_indent Specifies whether style.text_indent should be applied to the first line. This should be set to false if the items start with a continuation of a paragraph instead of starting a new paragraph (e.g. after a page break). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/Box.html","title":"HexaPDF::Layout::TextLayouter::Box","tags":"","text":" AttributesitemClass MethodsnewInstance Methodsheighttypewidth class HexaPDF::Layout::TextLayouter::Box Parent Object Used for layouting. Describes an item with a fixed width, like an InlineBox or TextFragment. Attributes item[R]¶ The wrapped item. Public Class Methods new(item)¶ Creates a new Box for the item. Public Instance Methods height()¶ The height of the item. type()¶ Returns :box. width()¶ The width of the item. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/Glue.html","title":"HexaPDF::Layout::TextLayouter::Glue","tags":"","text":" AttributesitemshrinkabilitystretchabilityClass MethodsnewInstance Methodstypewidth class HexaPDF::Layout::TextLayouter::Glue Parent Object Used for layouting. Describes a glue item, i.e. an item describing white space that could potentially be shrunk or stretched. Attributes item[R]¶ The wrapped item. shrinkability[R]¶ The amount by which the glue could be shrunk. stretchability[R]¶ The amount by which the glue could be stretched. Public Class Methods new(item, stretchability = item.width / 2, shrinkability = item.width / 3)¶ Creates a new Glue for the item. Public Instance Methods type()¶ Returns :glue. width()¶ The width of the item. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/Penalty.html","title":"HexaPDF::Layout::TextLayouter::Penalty","tags":"","text":" ConstantsINFINITYLINE_BREAKPARAGRAPH_BREAKProhibitedBreakStandardAttributesitempenaltywidthClass MethodsnewInstance Methodstype class HexaPDF::Layout::TextLayouter::Penalty Parent Object Used for layouting. Describes a penalty item, i.e. a point where a break is allowed. If the penalty is greater than or equal to INFINITY, a break is forbidden. If it is smaller than or equal to -INFINITY, a break is mandatory. If a penalty contains an item and a break occurs at the penalty (taking the width of the penalty/item into account), then the penality item must be the last item of the line. Constants INFINITY¶ All numbers greater than this one are deemed infinite. LINE_BREAK¶ The penalty value for a mandatory line break. PARAGRAPH_BREAK¶ The penalty value for a mandatory paragraph break. ProhibitedBreak¶ Singleton object describing a Penalty for a prohibited break. Standard¶ Singleton object describing a standard Penalty, e.g. for hyphens. Attributes item[R]¶ The wrapped item. penalty[R]¶ The penalty for breaking at this point. width[R]¶ The width assigned to this item. Public Class Methods new(penalty, width = 0, item: nil)¶ Creates a new Penalty with the given penality. Public Instance Methods type()¶ Returns :penalty. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/Result.html","title":"HexaPDF::Layout::TextLayouter::Result","tags":"","text":" Attributesheightlinesremaining_itemsstatusClass MethodsnewInstance Methodsdraw class HexaPDF::Layout::TextLayouter::Result Parent Object Encapsulates the result of layouting items using a TextLayouter and provides a method for drawing the result (i.e. the layed out lines) on a canvas. Attributes height[R]¶ The actual height of all layed out lines (this includes a possible offset for the first line). lines[R]¶ Array of layed out lines. remaining_items[R]¶ The remaining items that couldn’t be layed out. status[R]¶ The status after layouting the items: :success There are no remaining items. :box_too_wide A single text or inline box was too wide to fit alone on a line. :height There was not enough height for all items to layout. Even if the result is not :success, the layouting may still be successful depending on the usage. For example, if we expect that there may be too many items to fit, :height is still a success. Public Class Methods new(status, lines, remaining_items)¶ Creates a new Result structure. Public Instance Methods draw(canvas, x, y)¶ Draws the layed out lines onto the canvas with the top-left corner being at [x, y].
"},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/SimpleLineWrapping.html","title":"HexaPDF::Layout::TextLayouter::SimpleLineWrapping","tags":"","text":" Class MethodscallnewInstance Methodsfixed_width_wrappingvariable_width_wrapping class HexaPDF::Layout::TextLayouter::SimpleLineWrapping Parent Object Implementation of a simple line wrapping algorithm. The algorithm arranges the given items so that the maximum number is put onto each line, taking the differences of Box, Glue and Penalty items into account. It is not as advanced as say Knuth’s line wrapping algorithm in that it doesn’t optimize paragraphs. Public Class Methods call(items, width_block) {|line, item| block } → rest ¶ Arranges the items into lines. The width_block argument has to be a callable object that returns the width of the line: If the line width doesn’t depend on the height or the vertical position of the line (i.e. fixed line width), the width_block should have an arity of zero. However, this doesn’t mean that the block is called only once; it is actually called before each new line (e.g. for varying line widths that don’t depend on the line height; one common case is the indentation of the first line). This is the general case. However, if lines should have varying widths (e.g. for flowing text around shapes), the width_block argument should be an object responding to call(line_like) where line_like is a Line-like object responding to y_min, y_max and height holding the values for the currently layed out line. The caller is responsible for tracking the height of the already layed out lines. This method involves more work and is therefore slower. Regardless of whether varying line widths are used or not, each time a line is finished, it is yielded to the caller. The second argument item is the item that caused the line break (e.g. a Box, Glue or Penalty). The return value should be truthy if line wrapping should continue, or falsy if it should stop. If the yielded line is empty and the yielded item is a box item, this single item didn’t fit into the available width; the caller has to handle this situation, e.g. by stopping. In case of varying widths, the width_block may also return nil in which case the algorithm should revert back to a stored item index and then start as if beginning a new line. Which index to use is told the algorithm through the special return value :store_start_of_line of the yielded-to block. When this return value is used, the current start of the line index should be stored for later use. After the algorithm is finished, it returns the unused items. new(items, width_block, frame)¶ Creates a new line wrapping object that arranges the items on lines with the given width. Public Instance Methods fixed_width_wrapping() { |create_line, item| ... }¶ Peforms line wrapping with a fixed width per line, with line height playing no role. variable_width_wrapping() { |create_line, item| ... }¶ Performs the line wrapping with variable widths. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextLayouter/SimpleTextSegmentation.html","title":"HexaPDF::Layout::TextLayouter::SimpleTextSegmentation","tags":"","text":" ConstantsBREAK_REClass Methodscall module HexaPDF::Layout::TextLayouter::SimpleTextSegmentation Implementation of a simple text segmentation algorithm. The algorithm breaks TextFragment objects into objects wrapped by Box, Glue or Penalty items, and inserts additional Penalty items when needed: Any valid Unicode newline separator inserts a Penalty object describing a mandatory break. See www.unicode.org/reports/tr18/#Line_Boundaries Spaces and tabulators are wrapped by Glue objects, allowing breaks. Non-breaking spaces are wrapped into Penalty objects that prohibit line breaking. Hyphens are attached to the preceeding text fragment (or are a standalone text fragment) and followed by a Penalty object to allow a break. If a soft-hyphens is encountered, a hyphen wrapped by a Penalty object is inserted to allow a break. If a zero-width-space is encountered, a Penalty object is inserted to allow a break. Constants BREAK_RE¶ Breaks are detected at: space, tab, zero-width-space, non-breaking space, hyphen, soft-hypen and any valid Unicode newline separator Public Class Methods call(items)¶ Breaks the items (an array of InlineBox and TextFragment objects) into atomic pieces wrapped by Box, Glue or Penalty items, and returns those as an array. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/TextShaper.html","title":"HexaPDF::Layout::TextShaper","tags":"","text":" Instance Methodsshape_text class HexaPDF::Layout::TextShaper Parent Object This class is used to perform text shaping, i.e. changing the position of glyphs (e.g. for kerning) or substituting one or more glyphs for other glyphs (e.g. for ligatures). Status of the implementation: All text shaping functionality possible for Type1 fonts is implemented, i.e. kerning and ligature substitution. For TrueType fonts only kerning via the ‘kern’ table is implemented. Public Instance Methods shape_text(text_fragment)¶ Shapes the given text fragment in-place. The following shaping options, retrieved from the text fragment’s Style#font_features, are supported: :kern Pair-wise kerning. :liga Ligature substitution. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Layout/WidthFromPolygon.html","title":"HexaPDF::Layout::WidthFromPolygon","tags":"","text":" Class MethodsnewInstance Methodscall class HexaPDF::Layout::WidthFromPolygon Parent Object Included Modules HexaPDF::Utils Utility class for generating width specifications for TextLayouter#fit from polygons. Public Class Methods new(polygon, offset = 0)¶ Creates a new object for the given polygon (or polygon set) and immediately prepares it so that call can be used. The offset argument specifies the vertical offset from the top at which calculations should start. Public Instance Methods call(height, line_height)¶ Returns the width specification for the given values with respect to the wrapped polygon. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/MalformedPDFError.html","title":"HexaPDF::MalformedPDFError","tags":"","text":" AttributesposClass Methodsnew class HexaPDF::MalformedPDFError Parent HexaPDF::Error Raised when the PDF is invalid and can’t be read correctly. Attributes pos[RW]¶ The byte position in the PDF file where the error occured. Public Class Methods new(message, pos: nil)¶ Creates a new malformed PDF error object for the given exception message. The byte position where the error occured can either be given via the pos argument or later via the pos accessor but must be set before the exception message is retrieved. Calls superclass method "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/MissingGlyphError.html","title":"HexaPDF::MissingGlyphError","tags":"","text":" AttributesglyphClass Methodsnew class HexaPDF::MissingGlyphError Parent HexaPDF::Error Raised when a font wrapper implementation should encode a missing glyph. Attributes glyph[R]¶ Returns the glyph object that contains the information about the missing glyph. Public Class Methods new(glyph)¶ Creates a new MissingGlyphError for the given glyph. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/NameTreeNode.html","title":"HexaPDF::NameTreeNode","tags":"","text":" class HexaPDF::NameTreeNode Parent HexaPDF::Dictionary Included Modules HexaPDF::Utils::SortedTreeNode Implementation of PDF name trees. Name trees are used in a similar fashion as dictionaries, however, the key in a name tree is always a string instead of a symbol. Another difference is that the keys in a name tree are always sorted to allow fast lookup of a specific key. A name tree consists of one or more NameTreeNodes. If there is only one node, it contains all stored associations in the /Names entry. Otherwise the root node needs to have a /Kids entry that points to one or more intermediate or leaf nodes. An intermediate node contains a /Kids entry whereas a leaf node contains a /Names entry. Since this is a complex structure that must follow several restrictions, it is not advised to build a name tree manually. Instead, use the provided convenience methods (see HexaPDF::Utils::SortedTreeNode) to add or retrieve entries. They ensure that the name tree stays valid. See: PDF2.0 s7.9.6 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueKidsHexaPDF::PDFArray or ArrayfalsenilNamesHexaPDF::PDFArray or ArrayfalsenilLimitsHexaPDF::PDFArray or Arrayfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/NumberTreeNode.html","title":"HexaPDF::NumberTreeNode","tags":"","text":" class HexaPDF::NumberTreeNode Parent HexaPDF::Dictionary Included Modules HexaPDF::Utils::SortedTreeNode Implementation of PDF number trees. Number trees are similar to name trees but use integers as keys instead of strings. See HexaPDF::NameTreeNode for a more detailed explanation. See: PDF2.0 s7.9.7, HexaPDF::NameTreeNode Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueKidsHexaPDF::PDFArray or ArrayfalsenilNumsHexaPDF::PDFArray or ArrayfalsenilLimitsHexaPDF::PDFArray or Arrayfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Object.html","title":"HexaPDF::Object","tags":"","text":" Attributesdatamust_be_indirectClass Methodsdeep_copyfieldmake_directnewInstance Methods<=>==cachecached?clear_cachedeep_copydocumentdocument?eql?gengen=hashindirect?must_be_indirect?null?oidoid=typevalidatevaluevalue= class HexaPDF::Object Parent Object Included Modules Comparable Objects of the PDF object system. Overview¶ ↑ A PDF object is like a normal object but with an additional *object identifier* consisting of an object number and a generation number. If the object number is zero, then the PDF object represents a direct object. Otherwise the object identifier uniquely identifies this object as an indirect object and can be used
for referencing it (from possibly multiple places). Furthermore a PDF object may have an associated stream. However, this stream is only accessible if the subclass Stream is used. A PDF object should be connected to a PDF document, otherwise some methods may not work. Most PDF objects in a PDF document are represented by subclasses of this class that provide additional functionality. The methods hash and eql? are implemented so that objects of this class can be used as hash keys. Furthermore the implementation is compatible to the one of Reference, i.e. the hash of a PDF Object is the same as the hash of its corresponding Reference object. Allowed PDF Object Values¶ ↑ The PDF specification knows of the following object types: Boolean (mapped to true and false), Integer (mapped to Integer object) Real (mapped to Float objects) String (mapped to String objects with UTF-8 or binary encoding) Names (mapped to Symbol objects) Array (mapped to Array objects) Dictionary (mapped to Hash objects) Stream (mapped to the Stream class which is a Dictionary with the associated stream data) Null (mapped to nil) Indirect Object (mapped to this class) So working with PDF objects in HexaPDF is rather straightforward since the common Ruby objects can be used for most things, i.e. wrapping an plain Ruby object into an object of this class is not necessary (except if it should become an indirect object). There are also some additional data structures built from these primitive ones. For example, Time objects are represented as specially formatted string objects and conversion from and to the string representation is handled automatically. Important: Users of HexaPDF may use other plain Ruby objects but then there is no guarantee that everything will work correctly, especially when using other collection types than arrays and hashes. See: HexaPDF::Dictionary, HexaPDF::Stream, HexaPDF::Reference, HexaPDF::Document See: PDF2.0 s7.3.10, s7.3.8 Attributes data[R]¶ The wrapped HexaPDF::PDFData value. This attribute is not part of the public API! document[W]¶ Sets the associated PDF document. must_be_indirect[W]¶ Sets whether the object has to be an indirect object once it is written. Public Class Methods HexaPDF::Object.deep_copy(object) → copy ¶ Creates a deep copy of the given object which retains the references to indirect objects. field(_name)¶ Returns nil to end the recursion for field searching in Dictionary.field. make_direct(object, document)¶ Makes sure that the object itself as well as all nested values are direct objects. The document argument needs to contain the Document instance to which object belongs so that references can be correctly resolved. If an indirect object is found, it is turned into a direct object and the indirect object is deleted from the document. new(value, document: nil, oid: nil, gen: nil, stream: nil)¶ Creates a new PDF object wrapping the value. The value can either be a PDFData object in which case it is used directly. If it is a PDF Object, then its data is used. Otherwise the value object is used as is. In all cases, the oid, gen and stream values may be overridden by the corresponding keyword arguments. Public Instance Methods <=>(other)¶ Compares this object to another object. If the other object does not respond to oid or gen, nil is returned. Otherwise objects are ordered first by object number and then by generation number. ==(other)¶ Returns true in the following cases: The other object is an Object and wraps the same data structure. The other object is a Reference with the same oid/gen. This object is not indirect and the other object is not an Object and equal to the value of this object. cache(key, value = Document::UNSET, update: false, &block)¶ Caches and returns the given value or the value of the block under the given cache key. If there is already a cached value for the key and update is false, it is just returned. Set update to true to force an update of the cached value. This uses Document#cache internally. cached?(key)¶ Returns true if there is a cached value for the given key. This uses Document#cached? internally. clear_cache()¶ Clears the cache for this object. deep_copy()¶ Makes a deep copy of the source PDF object and resets the object identifier. Note that indirect references are not copied! If that is also needed, use Importer::copy. document¶ Sets the associated PDF document. document?()¶ Returns true if a PDF document is associated. eql?(other)¶ Returns true if the other object references the same PDF object as this object. gen()¶ Returns the generation number of the PDF object. gen=(gen)¶ Sets the generation number of the PDF object. hash()¶ Computes the hash value based on the object and generation numbers. indirect?()¶ Returns true if the object is an indirect object (i.e. has an object number unequal to zero). must_be_indirect?()¶ Returns true if the object must be an indirect object once it is written. null?()¶ Returns true if the object represents the PDF null object. oid()¶ Returns the object number of the PDF object. oid=(oid)¶ Sets the object number of the PDF object. type()¶ Returns the type (symbol) of the object. Since the type system is implemented in such a way as to allow exchanging implementations of specific types, the class of an object can’t be reliably used for determining the actual type. However, the Type and Subtype fields can easily be used for this. Subclasses for PDF objects that don’t have such fields may use a unique name that has to begin with XX (see PDF2.0 sE.2) and therefore doesn’t clash with names defined by the PDF specification. For basic objects this always returns :Unknown. validate(auto_correct: true) → true or false ¶ validate(auto_correct: true) {|msg, correctable, obj| block } → true or false ¶ Validates the object, optionally corrects problems when the option auto_correct is set and returns true if the object is deemed valid and false otherwise. If a block is given, it is called on validation problems with a problem description and whether the problem is automatically correctable. The third argument to the block is usually this object but may be another object if during auto-correction a new object was created and validated. The validation routine itself has to be implemented in the perform_validation method - see its documentation for more information. Note: Even if the return value is true there may be problems since HexaPDF doesn’t currently implement the full PDF spec. However, if the return value is false, there is certainly a problem! value()¶ Returns the object value. value=(val)¶ Sets the object value. Unlike in initialize the value is used as is! "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/PDFArray.html","title":"HexaPDF::PDFArray","tags":"","text":" Instance Methods<<[][]=deletedelete_ateachempty?indexinsertlengthreject!sizeslice!to_aryvalues_at class HexaPDF::PDFArray Parent HexaPDF::Object Included Modules Enumerable Implementation of the PDF array type. This is mainly done to provide automatic resolution of indirect object references when using the [] method. Therefore not all Array methods are implemented - use the value directly if other methods are needed. See: PDF2.0 s7.3.6 Public Instance Methods <<(data)¶ Append a value to the array. array[index] → obj or nil ¶ array[start, length] → new_array or nil ¶ array[range] → new_array or nil ¶ Returns the value at the given index, or a subarray using the given start and length, or a subarray specified by range. This method should be used instead of direct access to a value because it provides some advantages: References are automatically resolved. Returns the native Ruby object for values with class HexaPDF::Object. However, all subclasses of HexaPDF::Object are returned as is (it makes no sense, for example, to return the hash that describes the Catalog instead of the Catalog object). Note: Hash or Array values will always be returned as-is, i.e. not wrapped with Dictionary or PDFArray. []=(index, data)¶ Stores the data under the given index in the array. If the current value for this index has the class HexaPDF::Object (and only this, no subclasses) and the given data has not (including subclasses), the data is stored inside the HexaPDF::Object. delete(object)¶ Deletes all values from the PDFArray that are equal to the given object. Returns the last deleted item, or nil if no matching item is found. delete_at(index)¶ Deletes the value at the given index. each {|value| block} → array ¶ each → Enumerator ¶ Calls the given block once for every value of the array. Note that the yielded value is already preprocessed like in []. empty?()¶ Returns true if the array has no elements. index(obj) → int or nil ¶ index {|item| block } → int or nil ¶ index → Enumerator ¶ Returns the index of the first object such that object is == to obj, or, if a block is given, the index of the first object for which the block returns true. insert(index, *objects)¶ Insert one or more values into the array at the given index. length()¶ Returns the number of elements in the array. Also aliased as: size reject! {|item| block } → array or nil ¶ reject! → Enumerator ¶ Deletes all elements from the array for which the block returns true. If no changes were done, returns nil. size()¶ Alias for: length slice!(index) → obj or nil ¶ slice!(start, length) → new_array or nil ¶ slice!(range) → new_array or nil ¶ Deletes the element(s) given by an index (and optionally a length) or by a range, and returns them or nil if the index is out of range. to_ary()¶ Returns an array containing the preprocessed values (like in []). values_at(*indices)¶ Returns the values at the given indices. See [] for details "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/PDFData.html","title":"HexaPDF::PDFData","tags":"","text":" class HexaPDF::PDFData Parent Object Internal value object for storing object number, generation number, object value and a possible stream together. Such objects
are not used directly but wrapped by Object or one of its subclasses. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Parser.html","title":"HexaPDF::Parser","tags":"","text":" AttributesioClass MethodsnewInstance Methodsfile_header_versionlinearized?load_compressed_objectload_objectload_revisionparse_indirect_objectparse_xref_section_and_trailerreconstructed?reconstructed_revisionstartxref_offsetxref_section? class HexaPDF::Parser Parent Object Parses an IO stream according to PDF2.0 to get at the contained objects. This class also contains higher-level methods for getting indirect objects and revisions. See: PDF2.0 s7 Attributes io[R]¶ The IO stream which is parsed. Public Class Methods new(io, document)¶ Creates a new parser for the given IO object. PDF references are resolved using the associated Document object. Public Instance Methods file_header_version()¶ Returns the PDF version number that is stored in the file header. See: PDF2.0 s7.5.2 linearized?()¶ Returns true if the PDF file is a linearized file. load_compressed_object(xref_entry)¶ Loads the compressed object identified by the cross-reference entry. load_object(xref_entry)¶ Loads the indirect (potentially compressed) object specified by the given cross-reference entry. For information about the xref_entry argument, have a look at HexaPDF::XRefSection and HexaPDF::XRefSection::Entry. load_revision(pos)¶ Loads a single revision whose cross-reference section/stream is located at the given position. Returns an HexaPDF::XRefSection object and the accompanying trailer dictionary. parse_indirect_object(offset = nil)¶ Parses the indirect object at the specified offset. This method is used by a PDF Document to load objects. It should not be used by any other object because invalid object positions lead to errors. Returns an array containing [object, oid, gen, stream]. See: PDF2.0 s7.3.10, s7.3.8 parse_xref_section_and_trailer(offset)¶ Parses the cross-reference section at the given position and the following trailer and returns them as an array consisting of an HexaPDF::XRefSection instance and a hash. This method can only parse cross-reference sections, not cross-reference streams! See: PDF2.0 s7.5.4, s7.5.5; ADB1.7 sH.3-3.4.3 reconstructed?()¶ Returns true if the PDF file was damaged and could be reconstructed. reconstructed_revision()¶ Returns the reconstructed revision. startxref_offset()¶ Returns the offset of the main cross-reference section/stream. Implementation note: Normally, the %%EOF marker has to be on the last line, however, Adobe viewers relax this restriction and so do we. If strict parsing is disabled, the whole file is searched for the offset. See: PDF2.0 s7.5.5, ADB1.7 sH.3-3.4.4 xref_section?(offset)¶ Looks at the given offset and returns true if there is a cross-reference section at that position. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Rectangle.html","title":"HexaPDF::Rectangle","tags":"","text":" Instance Methodsbottombottom=heightheight=leftleft=rightright=toptop=widthwidth= class HexaPDF::Rectangle Parent HexaPDF::PDFArray Implementation of the PDF rectangle data structure. Rectangles are used for describing page and bounding boxes. They are represented by arrays of four numbers specifying the (x,y) coordinates of any diagonally opposite corners. This class simplifies the usage of rectangles by automatically normalizing the coordinates so that they are in the order: [left, bottom, right, top] where left is the bottom left x-coordinate, bottom is the bottom left y-coordinate, right is the top right x-coordinate and top is the top right y-coordinate. See: PDF2.0 s7.9.5 Public Instance Methods bottom()¶ Returns the y-coordinate of the bottom-left corner. bottom=(y)¶ Sets the y-coordinate of the bottom-left corner to the given value. height()¶ Returns the height of the rectangle. height=(val)¶ Sets the height of the rectangle to the given value. left()¶ Returns the x-coordinate of the bottom-left corner. left=(x)¶ Sets the x-coordinate of the bottom-left corner to the given value. right()¶ Returns the x-coordinate of the top-right corner. right=(x)¶ Sets the x-coordinate of the top-right corner to the given value. top()¶ Returns the y-coordinate of the top-right corner. top=(y)¶ Sets the y-coordinate of the top-right corner to the given value. width()¶ Returns the width of the rectangle. width=(val)¶ Sets the width of the rectangle to the given value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Reference.html","title":"HexaPDF::Reference","tags":"","text":" AttributesgenoidClass MethodsnewInstance Methods<=>==eql?hashto_s class HexaPDF::Reference Parent Object Included Modules Comparable A reference to an indirect object. The PDF syntax allows for references to existing and non-existing indirect objects. Such references are represented with objects of this class. Note that after initialization changing the object or generation numbers is not possible anymore! The methods hash and eql? are implemented so that objects of this class can be used as hash keys. Furthermore the implementation is compatible to the one of Object, i.e. the hash of a Reference object is the same as the hash of an indirect Object. See: PDF2.0 s7.3.10, Object Attributes gen[R]¶ Returns the generation number of the referenced indirect object. oid[R]¶ Returns the object number of the referenced indirect object. Public Class Methods new(oid, gen = 0)¶ Creates a new Reference with the given object number and, optionally, generation number. Public Instance Methods <=>(other)¶ Compares this object to another object. If the other object does not respond to oid or gen, nil is returned. Otherwise objects are ordered first by object number and then by generation number. ==(other)¶ Alias for: eql? eql?(other)¶ Returns true if the other object references the same PDF object as this reference object. This is necessary so that Object and Reference objects can be used as interchangable hash keys and can be compared. Also aliased as: == hash()¶ Computes the hash value based on the object and generation numbers. to_s()¶ Returns the object identifier as “oid,gen”. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Revision.html","title":"HexaPDF::Revision","tags":"","text":" Attributesloadertrailerxref_sectionClass MethodsnewInstance Methodsadddeleteeacheach_modified_objectnext_free_oidobjectobject?updatexref class HexaPDF::Revision Parent Object Included Modules Enumerable Embodies one revision of a PDF file, either the initial version or an incremental update. The purpose of a Revision object is to manage the objects and the trailer of one revision. These objects can either be added manually or loaded from a cross-reference section or stream. Since a PDF file can be incrementally updated, it can have multiple revisions. If a revision doesn’t have an associated cross-reference section, it wasn’t created from a PDF file. See: PDF2.0 s7.5.6, Revisions Attributes loader[RW]¶ The callable object responsible for loading objects. trailer[R]¶ The trailer dictionary xref_section[R]¶ The associated XRefSection object. Public Class Methods new(trailer) → revision ¶ new(trailer, xref_section: section, loader: loader) → revision ¶ new(trailer, xref_section: section) {|entry| block } → revision ¶ Creates a new Revision object. Options: xref_section An XRefSection object that contains information on how to load objects. If this option is specified, then a loader or a block also needs to be specified! loader The loader object needs to respond to call taking a cross-reference entry and returning the loaded object. If no xref_section is supplied, this value is not used. If a block is given, it is used instead of the loader object. Public Instance Methods add(obj) → obj ¶ Adds the given object (needs to be a HexaPDF::Object) to this revision and returns it. delete(ref, mark_as_free: true) ¶ delete(oid, mark_as_free: true) ¶ Deletes the object specified either by reference or by object number from this revision by marking it as free. If the mark_as_free option is set to false, the object is really deleted. each(only_loaded: false) {|obj| block } → revision ¶ each(only_loaded: false) → Enumerator ¶ Calls the given block for every object of the revision, or, if only_loaded is true, for every already loaded object. Objects that are loadable via an associated cross-reference section but are currently not loaded, are loaded automatically if only_loaded is false. each_modified_object(delete: false, all: all) {|obj| block } → revision ¶ each_modified_object(delete: false, all: all) → Enumerator ¶ Calls the given block once for each object that has been modified since it was loaded. Added or eleted object and cross-reference streams as well as signature dictionaries are ignored. delete If the delete argument is set to true, each modified object is deleted from the active objects. all If the all argument is set to true, added object and cross-reference streams are also yielded. Note that this also means that for revisions without an associated cross-reference section all loaded objects will be yielded. next_free_oid()¶ Returns the next free object number for adding an object to this revision. object(ref) → obj or nil ¶ object(oid) → obj or nil ¶ Returns the object for the given reference or object number if such an object is available in this revision, or nil otherwise. If the revision has an entry but one that is pointing to a free entry in the cross-reference section, an object representing PDF null is returned. object?(ref) → true or false ¶ object?(oid) → true or false ¶ Returns true if the revision contains an object for the exact reference if the argument responds to :oid, or else for the given object number. update(obj) → obj or nil ¶ Updates the stored object to point to the given HexaPDF::Object wrapper, returning the object if successful or nil otherwise. If obj isn’t stored in this revision or the stored object
doesn’t contain the same HexaPDF::PDFData object as the given object, nothing is done. This method should only be used if the wrong wrapper class is stored (e.g. because auto-detection didn’t or couldn’t work correctly) and thus needs correction. xref(ref) → xref_entry or nil ¶ xref(oid) → xref_entry or nil ¶ Returns an XRefSection::Entry structure for the given reference or object number if it is available, or nil otherwise. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Revisions.html","title":"HexaPDF::Revisions","tags":"","text":" AttributesparserClass Methodsfrom_ionewInstance Methodsaddadd_objectallcurrentdelete_objecteacheach_objectmergenext_oidobjectobject? class HexaPDF::Revisions Parent Object Included Modules Enumerable Manages the revisions of a PDF document. A PDF document has one revision when it is created. Later, new revisions are added when changes are made. This allows for adding information/content to a PDF file without changing the original content. The order of the revisions is important. In HexaPDF the oldest revision always has index 0 and the newest revision the highest index. This is also the order in which the revisions get written. Important: It is possible to manipulate the individual revisions and their objects oneself but this should only be done if one is familiar with the inner workings of HexaPDF. Otherwise it is best to use the convenience methods of this class to create, access or delete indirect objects. See: PDF2.0 s7.5.6, HexaPDF::Revision Attributes parser[R]¶ The Parser instance used for reading the initial revisions. Public Class Methods from_io(document, io)¶ Loads all revisions for the document from the given IO and returns the created Revisions object. If the io object is nil, an empty Revisions object is returned. new(document, initial_revisions: nil, parser: nil)¶ Creates a new revisions object for the given PDF document. Options: initial_revisions An array of revisions that should initially be used. If this option is not specified, a single empty revision is added. parser The parser with which the initial revisions were read. If this option is not specified even though the document was read from an IO stream, some parts may not work, like incremental writing. Public Instance Methods add()¶ Adds a new empty revision to the document and returns it. Note: This method should only be used if one is familiar with the inner workings of HexaPDF *and the PDF specification. add_object(object) → object ¶ Adds the given HexaPDF::Object to the current revision and returns it. If object is a direct object, an object number is automatically assigned. all()¶ Returns a list of all revisions. Note: This method should only be used if one is familiar with the inner workings of HexaPDF *and the PDF specification. current()¶ Returns the current revision. Note: This method should only be used if one is familiar with the inner workings of HexaPDF *and the PDF specification. delete_object(ref) ¶ delete_object(oid) ¶ Deletes the indirect object specified by an exact reference or by an object number. each {|rev| block } → revisions ¶ each → Enumerator ¶ Iterates over all revisions from oldest to current one. Note: This method should only be used if one is familiar with the inner workings of HexaPDF *and the PDF specification. each_object(only_current: true, only_loaded: false) {|obj| block } → revisions ¶ each_object(only_current: true, only_loaded: false) {|obj, rev| block } → revisions ¶ each_object(only_current: true, only_loaded: false) → Enumerator ¶ Yields every object and optionally the revision it is in. If only_loaded is true, only the already loaded objects of the PDF document are yielded. This does only matter when the document instance was created from an existing PDF document. By default, only the current version of each object is returned which implies that each object number is yielded exactly once. If the only_current option is false, all stored objects from newest to oldest are returned, not only the current version of each object. The only_current option can make a difference because the document can contain multiple revisions: Multiple revisions may contain objects with the same object and generation numbers, e.g. two (different) objects with oid/gen [3,0]. Additionally, there may also be objects with the same object number but different generation numbers in different revisions, e.g. one object with oid/gen [3,0] and one with oid/gen [3,1]. Note that setting only_current to false is normally not necessary and should not be done. If it is still done, one has to take care to avoid an invalid document state. merge(range = 0..-1) → revisions ¶ Merges the revisions specified by the given range into one. Objects from newer revisions overwrite those from older ones. next_oid()¶ Returns the next object identifier that should be used when adding a new object. object(ref) → obj or nil ¶ object(oid) → obj or nil ¶ Returns the current version of the indirect object for the given exact reference or for the given object number. For references to unknown objects, nil is returned but free objects are represented by a PDF Null object, not by nil! See: PDF2.0 s7.3.9 object?(ref) → true or false ¶ object?(oid) → true or false ¶ Returns true if one of the revisions contains an indirect object for the given exact reference or for the given object number. Even though this method might return true for some references, object may return nil because this method takes all revisions into account. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Serializer.html","title":"HexaPDF::Serializer","tags":"","text":" AttributesencrypterClass MethodsnewInstance Methodsserializeserialize_arrayserialize_basicobjectserialize_dateserialize_datetimeserialize_falseclassserialize_floatserialize_hashserialize_integerserialize_nilclassserialize_numericserialize_stringserialize_symbolserialize_timeserialize_to_ioserialize_trueclass class HexaPDF::Serializer Parent Object Knows how to serialize Ruby objects for a PDF file. For normal serialization purposes, the serialize or serialize_to_io methods should be used. However, if the type of the object to be serialized is known, a specialized serialization method like serialize_float can be used. Additionally, an object for encrypting strings and streams while serializing can be set via the encrypter= method. The assigned object has to respond to encrypt_string(str, ind_obj) (where the string is part of the indirect object; returns the encrypted string) and encrypt_stream(stream) (returns a fiber that represents the encrypted stream). How This Class Works¶ ↑ The main public interface consists of the serialize and serialize_to_io methods which accept an object and return its serialized form. During serialization of this object it is accessible by individual serialization methods via the @object instance variable (useful if the object is a composed object). Internally, the __serialize method is used for invoking the correct serialization method based on the class of a given object. It is also used for serializing individual parts of a composed object. Therefore the serializer contains one serialization method for each class it needs to serialize. The naming scheme of these methods is based on the class name: The full class name is converted to lowercase, the namespace separator ‘::’ is replaced with a single underscore and the string “serialize_” is then prepended. Examples: NilClass => serialize_nilclass TrueClass => serialize_trueclass HexaPDF::Object => serialize_hexapdf_object If no serialization method for a specific class is found, the ancestors classes are tried. See: PDF2.0 s7.3 Attributes encrypter[RW]¶ The encrypter to use for encrypting strings and streams. If nil, strings and streams are not encrypted. Default: nil Public Class Methods new()¶ Creates a new Serializer object. Public Instance Methods serialize(obj)¶ Returns the serialized form of the given object. For developers: While the object is serialized, methods can use the instance variable @object to obtain information about or use the object in case it is a composed object. serialize_array(obj)¶ Serializes an Array object. See: PDF2.0 s7.3.6 serialize_basicobject(obj)¶ Raises an error to provide better failure messages. serialize_date(obj)¶ See: serialize_time serialize_datetime(obj)¶ See: serialize_time serialize_falseclass(_obj)¶ Serializes the false value. See: PDF2.0 s7.3.2 serialize_float(obj)¶ Serializes a Float object. See: PDF2.0 s7.3.3 serialize_hash(obj)¶ Serializes a Hash object (i.e. a PDF dictionary object). See: PDF2.0 s7.3.7 serialize_integer(obj)¶ Serializes an Integer object. See: PDF2.0 s7.3.3 serialize_nilclass(_obj)¶ Serializes the nil value. See: PDF2.0 s7.3.9 serialize_numeric(obj)¶ Serializes a Numeric object (either Integer or Float). This method should be used for cases where it is known that the object is either an Integer or a Float. See: PDF2.0 s7.3.3 serialize_string(obj)¶ Serializes a String object. See: PDF2.0 s7.3.4 serialize_symbol(obj)¶ Serializes a Symbol object (i.e. a PDF name object). See: PDF2.0 s7.3.5 serialize_time(obj)¶ The ISO PDF specification differs in respect to the supported date format. When converting to a date string, a format suitable for both is output. See: PDF2.0 s7.9.4, ADB1.7 3.8.3 serialize_to_io(obj, io)¶ Serializes the given object and writes it to the IO. Also see: serialize serialize_trueclass(_obj)¶ Serializes the true value. See: PDF2.0 s7.3.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Stream.html","title":"HexaPDF::Stream","tags":"","text":" Instance Methodsmust_be_indirect?raw_streamset_filterstreamstream=stream_decoderstream_encoderstream_source class HexaPDF::Stream Parent HexaPDF::Dictionary Forward declaration of Stream to circumvent circular require problem Implements Stream objects of the PDF object system. Stream Objects¶ ↑ A stream may also be associated with a PDF object
but only if the value is a PDF dictionary. This associated dictionary further describes the stream, like its length or how it is encoded. Such a stream object in PDF contains string data but of possibly unlimited length. Therefore it is used for large amounts of data like images, page descriptions or embedded files. The basic Object class cannot hold stream data, only this subclass contains the necessary methods to conveniently work with the stream data! Note that support for external streams (/F, /FFilter, /FDecodeParms) is not yet implemented! See: PDF2.0 s7.3.8, Dictionary Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenil Public Instance Methods must_be_indirect?()¶ Stream objects must always be indirect. raw_stream()¶ Returns the raw stream object. The returned value can be of many different types (see stream=). For working with the decoded stream contents use stream. set_filter(filter, decode_parms = nil)¶ Sets the filters that should be used for encoding the stream. The arguments filter as well as decode_parms can either be a single items or arrays. The filters have to be specified in the *decoding order*! For example, if the filters would be [:A85, :Fl], the stream would first be encoded with the Flate and then with the ASCII85 filter. stream()¶ Returns the (possibly decoded) stream data as string. Note that modifications done to the returned string are not reflected in the Stream object itself. The modified string must explicitly be assigned via stream= to take effect. stream=(stream)¶ Assigns a new stream data object. The stream argument can be a HexaPDF::StreamData object, a String object or nil. If stream is nil, an empty binary string is used instead. stream_decoder()¶ Returns the decoder Fiber for the stream data. See the Filter module for more information on how to work with the fiber. stream_encoder ¶ Returns the encoder Fiber for the stream data. See the Filter module for more information on how to work with the fiber. stream_source()¶ Returns the Fiber representing the unprocessed content of the stream. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/StreamData.html","title":"HexaPDF::StreamData","tags":"","text":" Attributesdecode_parmsfilterlengthoffsetsourceClass MethodsnewInstance Methods==fiber class HexaPDF::StreamData Parent Object Container for stream data that is more complex than a string. This helper class wraps all information necessary to read stream data by using a Fiber object (see HexaPDF::Filter). The underlying data either comes from an IO object, a file represented by its file name or a Fiber defined via a Proc object. Additionally, the filter and decode_parms can be set to indicate that the data returned from the Fiber needs to be post-processed. The filter and decode_parms are automatically normalized to arrays on assignment to ease further processing. Attributes decode_parms[R]¶ The decoding parameters associated with the filter(s). filter[R]¶ The filter(s) that need to be applied for getting the decoded stream data. length[R]¶ The optional number of bytes to use starting from offset. offset[R]¶ The optional offset into the bytes provided by source. source[R]¶ The source. Public Class Methods new(io) → stream_data ¶ new(str) → stream_data ¶ new(proc) → stream_data ¶ new { block } → stream_data ¶ Creates a new StreamData object for the given source and with the given options. The source can be: An IO stream which is read starting from a specific offset for a specific length A string which is interpreted as a file name and read starting from a specific offset and for a specific length A Proc object (that is converted to a Fiber when needed) in which case the offset and value is ignored. The Proc object can also be passed by using a block. Public Instance Methods ==(other)¶ Returns whether this stream data object is equal to the other stream data object. fiber(chunk_size = 0)¶ Returns a Fiber for getting at the data of the stream represented by this object. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Task/index.html","title":"HexaPDF::Task","tags":"","text":" module HexaPDF::Task Overview¶ ↑ The Task module contains task implementations which are used to perform operations that affect a whole PDF document instead of just a single object. Normally, such operations would be implemented by using methods on the HexaPDF::Document class. However, this would clutter up the document interface with various methods and also isn’t very extensible. A task name that can be used for HexaPDF::Document#task is mapped to a task object via the ‘task.map’ configuration option. Implementing a Task¶ ↑ A task is simply a callable object that takes the document as first mandatory argument and can optionally take keyword arguments and/or a block. This means that a block suffices. Here is a simple example: doc = HexaPDF::Document.new doc.config['task.map'][:validate] = lambda do |doc| doc.each {|obj| obj.validate || raise \"Invalid object #{obj}\"} end "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Task/Dereference.html","title":"HexaPDF::Task::Dereference","tags":"","text":" Class Methodscall class HexaPDF::Task::Dereference Parent Object Task for recursively dereferencing a single object or the reachable parts of the whole PDF document. Dereferencing means that the references are replaced with the actual objects. Running this task is most often done to prepare for other steps in a PDF transformation process. Public Class Methods call(doc, object: nil)¶ Recursively dereferences the reachable parts of the document and returns an array of objects that are never referenced. This includes indirect objects that are used as values for the /Length entry of a stream. If the optional argument object is provided, only the given object is dereferenced and nothing is returned. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Task/Optimize.html","title":"HexaPDF::Task::Optimize","tags":"","text":" Class Methodscallcompactcompress_pagesdelete_fields_with_defaultsprocess_object_streamsprocess_xref_streamsprune_page_resources module HexaPDF::Task::Optimize Task for optimizing the PDF document. For a list of optimization methods this task can perform have a look at the ::call method. Public Class Methods call(doc, compact: false, object_streams: :preserve, xref_streams: :preserve, compress_pages: false, prune_page_resources: false)¶ Optimizes the PDF document. The field entries that are optional and set to their default value are always deleted. Additional optimization methods are performed depending on the values of the following arguments: compact Compacts the object space by merging the revisions and then deleting null and unused values if set to true. object_streams Specifies if and how object streams should be used: For :preserve, existing object streams are preserved; for :generate objects are packed into object streams as much as possible; and for :delete existing object streams are deleted. xref_streams Specifies if cross-reference streams should be used. Can be :preserve (no modifications), :generate (use cross-reference streams) or :delete (remove cross-reference streams). If object_streams is set to :generate, this option is implicitly changed to :generate. compress_pages Compresses the content streams of all pages if set to true. Note that this can take a very long time because each content stream has to be unfiltered, parsed, serialized and then filtered again. prune_page_resources Removes all unused XObjects from the resources dictionaries of all pages. It is recommended to also set the compact argument because otherwise the unused XObjects won’t be deleted from the document. This is sometimes necessary after importing pages from other PDF files that use a single resources dictionary for all pages. compact(doc, object_streams, xref_streams)¶ Compacts the document by merging all revisions into one, deleting null and unused entries and renumbering the objects. For the meaning of the other arguments see ::call. compress_pages(doc)¶ Compresses the contents of all pages by parsing and then serializing again. The HexaPDF serializer is already optimized for small output size so nothing else needs to be done. Returns a hash of the form key=>true where the keys are the used XObjects (for use with prune_page_resources). delete_fields_with_defaults(obj)¶ Deletes field entries of the object that are optional and currently set to their default value. process_object_streams(doc, method, xref_streams)¶ Processes the object streams in each revision according to method: For :preserve, nothing is done, for :delete all object streams are deleted and for :generate objects are packed into object streams as much as possible. process_xref_streams(doc, method)¶ Processes the cross-reference streams in each revision according to method: For :preserve, nothing is done, for :delete all cross-reference streams are deleted and for :generate cross-reference streams are added. prune_page_resources(doc, used_refs)¶ Deletes all XObject entries from the resources dictionaries of all pages whose names do not match the keys in used_refs. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/TestUtils/index.html","title":"HexaPDF::TestUtils","tags":"","text":" Instance Methodsassert_method_invokedassert_operatorscollectorfeeder module HexaPDF::TestUtils Contains various helper methods for testing HexaPDF Public Instance Methods assert_method_invoked(object, name, *expected_values, check_block: false) { || ... }¶ Asserts that the method name of object gets invoked with the expected_values when
executing the block. expected_values should contain arrays of arguments, one array for each invocation of the method. assert_operators(content, operators, only_names: false, range: 0..-1)¶ Asserts that the content string contains the operators. collector(source)¶ Collects the result from the HexaPDF::Filter source into a binary string. feeder(string, len = string.length)¶ Creates a fiber that yields the given string in len length parts. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/TestUtils/OperatorRecorder.html","title":"HexaPDF::TestUtils::OperatorRecorder","tags":"","text":" Attributesrecorded_opsClass MethodsnewInstance Methodsmethod_missingrespond_to_missing? class HexaPDF::TestUtils::OperatorRecorder Parent HexaPDF::Content::Processor Can be used to to record operators parsed from content streams. Attributes recorded_ops[R]¶ Public Class Methods new()¶ Calls superclass method HexaPDF::Content::Processor::new Public Instance Methods method_missing(msg, *params)¶ respond_to_missing?(*)¶ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Tokenizer/index.html","title":"HexaPDF::Tokenizer","tags":"","text":" ConstantsDELIMITERLITERAL_STRING_ESCAPE_MAPNO_MORE_TOKENSREFERENCE_RETOKEN_ARRAY_ENDTOKEN_ARRAY_STARTTOKEN_CACHETOKEN_DICT_ENDTOKEN_DICT_STARTWHITESPACEWHITESPACE_MULTI_REWHITESPACE_OR_DELIMITER_REAttributesioClass MethodsnewInstance Methodsnext_bytenext_integer_or_keywordnext_objectnext_tokennext_xref_entrypeek_tokenpospos=scan_untilskip_whitespace class HexaPDF::Tokenizer Parent Object Tokenizes the content of an IO object following the PDF rules. See: PDF2.0 s7.2 Constants DELIMITER¶ Characters defined as delimiters. See: PDF2.0 s7.2.2 NO_MORE_TOKENS¶ This object is returned when there are no more tokens to read. WHITESPACE¶ Characters defined as whitespace. See: PDF2.0 s7.2.2 Attributes io[R]¶ The IO object from the tokens are read. Public Class Methods new(io, on_correctable_error: nil)¶ Creates a new tokenizer for the given IO stream. If on_correctable_error is set to an object responding to +call(msg, pos)+, errors for correctable situations are only raised if the return value of calling the object is true. Public Instance Methods next_byte()¶ Reads the byte (an integer) at the current position and advances the scan pointer. next_integer_or_keyword()¶ Returns a single integer or keyword token read from the current position and advances the scan pointer. If the current position doesn’t contain such a token, nil is returned without advancing the scan pointer. The value NO_MORE_TOKENS is returned if there are no more tokens available. Initial runs of whitespace characters are ignored. Note: This is a special method meant for use with reconstructing the cross-reference table! next_object(allow_end_array_token: false, allow_keyword: false)¶ Returns the PDF object at the current position. This is different from next_token because references, arrays and dictionaries consist of multiple tokens. If the allow_end_array_token argument is true, the ‘]’ token is permitted to facilitate the use of this method during array parsing. See: PDF2.0 s7.3 next_token()¶ Returns a single token read from the current position and advances the scan pointer. Comments and a run of whitespace characters are ignored. The value NO_MORE_TOKENS is returned if there are no more tokens available. next_xref_entry() { |recoverable| ... }¶ Reads the cross-reference subsection entry at the current position and advances the scan pointer. If a problem is detected, yields to caller where the argument recoverable is truthy if the problem is recoverable. See: PDF2.0 7.5.4 peek_token()¶ Returns the next token but does not advance the scan pointer. pos()¶ Returns the current position of the tokenizer inside in the IO object. Note that this position might be different from io.pos since the latter could have been changed somewhere else. pos=(pos)¶ Sets the position at which the next token should be read. Note that this does not set io.pos directly (at the moment of invocation)! scan_until(re)¶ Utility method for scanning until the given regular expression matches. If the end of the file is reached in the process, nil is returned. Otherwise the matched string is returned. skip_whitespace()¶ Skips all whitespace at the current position. See: PDF2.0 s7.2.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Tokenizer/Token.html","title":"HexaPDF::Tokenizer::Token","tags":"","text":" class HexaPDF::Tokenizer::Token Parent String Represents a keyword in a PDF file. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/index.html","title":"HexaPDF::Type","tags":"","text":" module HexaPDF::Type Overview¶ ↑ The Type module contains implementations of the types defined in the PDF specification. Each type class is derived from either the Dictionary class or the Stream class, depending on whether the type has an associated stream. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/index.html","title":"HexaPDF::Type::AcroForm","tags":"","text":" module HexaPDF::Type::AcroForm Namespace module for all AcroForm related dictionary types. See: PDF2.0 s12.7 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/AppearanceGenerator.html","title":"HexaPDF::Type::AcroForm::AppearanceGenerator","tags":"","text":" ConstantsAF_NUMBER_FORMAT_REClass MethodsnewInstance Methodscreate_appearancescreate_check_box_appearancescreate_combo_box_appearancescreate_list_box_appearancescreate_push_button_appearancescreate_radio_button_appearancescreate_text_appearances class HexaPDF::Type::AcroForm::AppearanceGenerator Parent Object The AppearanceGenerator class provides methods for generating and updating the appearance streams of form fields. The only method needed is create_appearances since this method determines to what field the widget belongs and therefore which appearance should be generated. The visual appearance of a field is constructed using information from the field itself as well as information from the widget. See the documentation for the individual methods which information is used in which way. By default, any existing appearances are overwritten and the :print flag is set on the widget so that the field appearance will appear on print-outs. The visual appearances are chosen to be similar to those used by Adobe Acrobat and others. By subclassing and overriding the necessary methods it is possible to define custom appearances. See: PDF2.0 s12.5.5, s12.7 Constants AF_NUMBER_FORMAT_RE¶ Regular expression for matching the AFNumber_Format Javascript method. Public Class Methods new(widget)¶ Creates a new instance for the given widget. Public Instance Methods create_appearances()¶ Creates the appropriate appearances for the widget. create_check_box_appearances()¶ Creates the appropriate appearances for check boxes and radio buttons. The unchecked box or unselected radio button is always represented by the appearance with the key /Off. If there is more than one other key besides the /Off key, the first one is used for the appearance of the checked box or selected radio button. For unchecked boxes an empty rectangle is drawn. Similarly, for unselected radio buttons an empty circle (if the marker is :circle) or rectangle is drawn. When checked or selected, a symbol from the ZapfDingbats font is placed inside. How this is exactly done depends on the following values: The widget’s rectangle /Rect must be defined. If the height and/or width of the rectangle are zero, they are based on the configuration option acro_form.default_font_size and widget’s border width. In such a case the rectangle is appropriately updated. The line width, style and color of the cirle/rectangle are taken from the widget’s border style. See HexaPDF::Type::Annotations::Widget#border_style. The background color is determined by the widget’s background color. See HexaPDF::Type::Annotations::Widget#background_color. The symbol (marker) as well as its size and color are determined by the marker style of the widget. See HexaPDF::Type::Annotations::Widget#marker_style for details. Examples: # check box: default appearance widget.border_style(color: 0) widget.background_color(1) widget.marker_style(style: :check, size: 0, color: 0) # check box: no visible rectangle, gray background, cross mark when checked widget.border_style(color: :transparent, width: 2) widget.background_color(0.7) widget.marker_style(style: :cross) # radio button: default appearance widget.border_style(color: 0) widget.background_color(1) widget.marker_style(style: :circle, size: 0, color: 0) Also aliased as: create_radio_button_appearances create_combo_box_appearances()¶ Alias for: create_text_appearances create_list_box_appearances()¶ Alias for: create_text_appearances create_push_button_appearances()¶ Creates the appropriate appearances for push buttons. This is currently a dummy implementation raising an error. create_radio_button_appearances()¶ Alias for: create_check_box_appearances create_text_appearances()¶ Creates the appropriate appearances for text fields, combo box fields and list box fields. The following describes how the appearance is built: The font, font size and font color are taken from the associated field’s default appearance string. See VariableTextField. If the font is not usable by HexaPDF (which may be due to a variety of reasons, e.g. no associated information in the form’s default resources), the font specified by the configuration option acro_form.fallback_font will be used. The widget’s rectangle /Rect must be defined. If the height is zero, it is auto-sized based on the font size. If additionally the font size is zero, a font size of acro_form.default_font_size is used. If the width is zero, the acro_form.text_field.default_width value is used. In such cases the rectangle is appropriately updated. The line width, style and color of the rectangle are taken from the widget’s border style.
See HexaPDF::Type::Annotations::Widget#border_style. The background color is determined by the widget’s background color. See HexaPDF::Type::Annotations::Widget#background_color. Note: Rich text fields are currently not supported! Also aliased as: create_combo_box_appearances, create_list_box_appearances "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/ButtonField.html","title":"HexaPDF::Type::AcroForm::ButtonField","tags":"","text":" ConstantsFLAGS_BIT_MAPPINGINHERITABLE_FIELDSInstance Methodsallowed_valuescheck_box?concrete_field_typecreate_appearancescreate_widgetdefault_field_valuedefault_field_value=field_valuefield_value=initialize_as_check_boxinitialize_as_push_buttoninitialize_as_radio_buttonpush_button?radio_button?update_widgets class HexaPDF::Type::AcroForm::ButtonField Parent Field AcroForm button fields represent interactive controls to be used with the mouse. They are divided into push buttons (things to click on), check boxes and radio buttons. All of these are represented with this class. To create a push button, check box or radio button field, use the appropriate convenience methods on the main Form instance (HexaPDF::Document#acro_form). By using those methods, everything needed is automatically set up. Radio buttons are widgets of a single radio button field. This is also called a radio button group. Of the radio button group only one radio button (= widget of the radio button field) may be selected at all times. Each widget must have a different value to be distinguishable; otherwise the widgets with the same value represent the same thing. Although there is the no_toggle_to_off field flag, no PDF viewer implements that; one needs to use check boxes for this feature. Check boxes can be toggled on and off. One check box field may have multiple widgets. If those widgets have the same value, they will all be toggled on or off simultaneously. Otherwise only one of those widgets will be toggled on while the others are off. In such a case the check box fields acts like a radio button group, with the additional feature that no check box may be selected. Type Specific Field Flags¶ ↑ :no_toggle_to_off Only used with radio buttons fields. If this flag is set, one button needs to be selected at all times. Otherwise, clicking on the selected button deselects it. Note: This deselectiong is not implemented in any tested PDF viewer. A work-around is to use multiple check box widgets with different on names. :radio If this flag is set, the field is a set of radio buttons. Otherwise it is a check box. Additionally, the :pushbutton flag needs to be clear. :push_button The field represents a pushbutton without a permanent value. :radios_in_unison A group of radio buttons with the same value for the on state will turn on or off in unison. See: PDF2.0 s12.7.4.2 Constants FLAGS_BIT_MAPPING¶ Updated list of field flags. INHERITABLE_FIELDS¶ All inheritable dictionary fields for button fields. Public Instance Methods allowed_values()¶ Returns the array of Symbol values (minus the /Off value) that can be used for the field value for check boxes or radio buttons. Note that this will only return useful values if there is at least one correctly set-up widget. check_box?()¶ Returns true if this button field represents a check box. concrete_field_type()¶ Returns the concrete button field type, either :push_button, :check_box or :radio_button. create_appearances(force: false)¶ Creates appropriate appearances for all widgets if they don’t already exist. The created appearance streams depend on the actual type of the button field. See AppearanceGenerator for the details. By setting force to true the creation of the appearances can be forced. create_widget(page, defaults: true, value: nil, **values)¶ Creates a widget for the button field. If defaults is true, then default values will be set on the widget so that it uses a default appearance. If the widget is created for a radio button field, the value argument needs to set to the value (a Symbol or an object responding to #to_sym) this widget represents. It can be used with field_value= to set this specific widget of the radio button set to on. The value is optional for check box fields; if not specified, the default of :Yes will be used. See: Field#create_widget, AppearanceGenerator button field methods Calls superclass method default_field_value()¶ Returns the default field value. See: field_value default_field_value=(value)¶ Sets the default field value. See: field_value= field_value()¶ Returns the field value which depends on the concrete type. Push buttons They don’t have a value, so nil is always returned. Check boxes For check boxes that are checked the value of the specific check box that is checked is returned. Otherwise nil is returned. Radio buttons If no radio button is selected, nil is returned. Otherwise the value (a Symbol) of the specific radio button that is selected is returned. field_value=(value)¶ Sets the field value which depends on the concrete type. Push buttons Since push buttons don’t store any value, the given value is ignored and nothing is stored for them (e.g a no-op). Check boxes Provide nil or false as value to toggle all check box widgets off. If there is only one possible value, true may be used for checking the box, i.e. toggling it to the on state. Otherwise provide the value (a Symbol or an object responding to #to_sym) of the check box widget that should be toggled on. Radio buttons To turn all radio buttons off, provide nil as value. Otherwise provide the value (a Symbol or an object responding to #to_sym) of a radio button that should be turned on. initialize_as_check_box()¶ Initializes the button field to be a check box. This method should only be called directly after creating a new button field because it doesn’t completely reset the object. initialize_as_push_button()¶ Initializes the button field to be a push button. This method should only be called directly after creating a new button field because it doesn’t completely reset the object. initialize_as_radio_button()¶ Initializes the button field to be a radio button. This method should only be called directly after creating a new button field because it doesn’t completely reset the object. push_button?()¶ Returns true if this button field represents a push button. radio_button?()¶ Returns true if this button field represents a radio button set. update_widgets()¶ Updates the widgets so that they reflect the current field value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/ChoiceField.html","title":"HexaPDF::Type::AcroForm::ChoiceField","tags":"","text":" ConstantsFLAGS_BIT_MAPPINGInstance Methodscombo_box?concrete_field_typecreate_appearancesdefault_field_valuedefault_field_value=export_valuesfield_valuefield_value=initialize_as_combo_boxinitialize_as_list_boxlist_box?list_box_top_indexlist_box_top_index=option_itemsoption_items=update_widgets class HexaPDF::Type::AcroForm::ChoiceField Parent VariableTextField AcroForm choice fields contain multiple text items of which one (or, if so flagged, more) may be selected. They are divided into scrollable list boxes and combo boxes. To create a list or combo box, use the appropriate convenience methods on the main Form instance (HexaPDF::Document#acro_form). By using those methods, everything needed is automatically set up. Type Specific Field Flags¶ ↑ :combo If set, the field represents a combo box. :edit If set, the combo box includes an editable text box for entering arbitrary values. Therefore the ‘combo’ flag also needs to be set. :sort The option items have to be sorted alphabetically. This flag is intended for PDF writers, not readers which should display the items in the order they appear. :multi_select If set, more than one item may be selected. :do_not_spell_check The text should not be spell-checked. :commit_on_sel_change If set, a new value should be commited as soon as a selection is made. See: PDF2.0 s12.7.5.4 Constants FLAGS_BIT_MAPPING¶ Updated list of field flags. Public Instance Methods combo_box?()¶ Returns true if this choice field represents a combo box. concrete_field_type()¶ Returns the concrete choice field type, either :list_box, :combo_box or :editable_combo_box. create_appearances(force: false)¶ Creates appropriate appearances for all widgets if they don’t already exist. For information on how this is done see AppearanceGenerator. Note that no new appearances are created if the dictionary fields involved in the creation of the appearance stream have not been changed between invocations. By setting force to true the creation of the appearances can be forced. default_field_value()¶ Returns the default field value. See: field_value default_field_value=(value)¶ Sets the default field value. See: field_value= export_values()¶ Returns the export values of the option items. If you need the display strings (as in most cases), use the option_items method. field_value()¶ Returns the field value which represents the currently selected item(s). If no item is selected, nil is returned. If multiple values are selected, the return value is an array of strings, otherwise it is just a string. field_value=(value)¶ Sets the field value to the given string or array of strings. The dictionary field /I is also modified to correctly represent the selected item(s). initialize_as_combo_box()¶ Initializes the button field to be a combo box. This method should only be called directly after creating a new choice field because it doesn’t completely reset the object. initialize_as_list_box()¶ Initializes the choice field to be a list box. This method should only be called directly after creating a new choice field because it doesn’t completely reset the object. list_box?()¶ Returns true if this choice field represents a list box. list_box_top_index()¶ Returns the index of the first visible option item of a list box. list_box_top_index=(index)¶ Makes the option item
referred to via the given index the first visible option item of a list box. option_items()¶ Returns the array with the available option items. Note that this only returns the option items themselves! For getting the export values, the export_values method has to be used. option_items=(value)¶ Sets the array with the available option items to the given value. Each entry in the array may either be a string representing the text to be displayed. Or an array of two strings where the first describes the export value (to be used when exporting form field data from the document) and the second is the display value. See: option_items, export_values update_widgets()¶ Updates the widgets so that they reflect the current field value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/Field/index.html","title":"HexaPDF::Type::AcroForm::Field","tags":"","text":" ConstantsINHERITABLE_FIELDSWIDGET_FIELDSClass Methodsinherited_valueInstance Methods[]alternate_field_namealternate_field_name=concrete_field_typecreate_widgetdelete_widgeteach_widgetembedded_widget?field_namefield_typeflagflagged?flagsfull_field_namemust_be_indirect?terminal_field? class HexaPDF::Type::AcroForm::Field Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField AcroForm field dictionaries are used to define the properties of form fields of AcroForm objects. Fields can be organized in a hierarchy using the /Kids and /Parent keys, for namespacing purposes and to set default values. Those fields that have other fields as children are called non-terminal fields, otherwise they are called terminal fields. While field objects can be created manually, it is best to use the various create_ methods of the main Form object to create them so that all necessary things are set up correctly. Field Types¶ ↑ Subclasses are used to implement the specific AcroForm field types: ButtonField implements the button fields (pushbuttons, check boxes and radio buttons) TextField implements single or multiline text fields. ChoiceField implements scrollable list boxes or (editable) combo boxes. SignatureField implements signature fields. Field Flags¶ ↑ Various characteristics of a field can be changed by setting a certain flag. Some flags are defined for all types of field, some are specific to a certain type. The following flags apply to all fields: :read_only The field is read only which means the user can’t change the value or interact with associated widget annotations. :required The field is required if the form is exported by a submit-form action. :no_export The field should not be exported by a submit-form action. Field Type Implementation Notes¶ ↑ If an AcroForm field type adds additional inheritable dictionary fields, it has to set the constant INHERITABLE_FIELDS to all inheritable dictionary fields, including those from the superclass. Similarily, if additional flags are provided, the constant FLAGS_BIT_MAPPING has to be set to combination of the superclass value of the constant and the mapping of flag names to bit indices. See: PDF2.0 s12.7.4.1 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFTSymbolOne of: :Btn, :Tx, :Ch, :SigfalsenilParentHexaPDF::Type::AcroForm::Field or HashfalsenilKidsHexaPDF::PDFArray or ArrayfalsenilTStringfalsenilTUStringfalsenilTMStringfalsenilFfIntegerfalse0VHexaPDF::Dictionary or Symbol or String or HexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilDVHexaPDF::Dictionary or Symbol or String or HexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilAAHexaPDF::Dictionary or Hashfalsenil Constants INHERITABLE_FIELDS¶ The inheritable dictionary fields common to all AcroForm field types. WIDGET_FIELDS¶ An array of all widget annotation field names. Public Class Methods inherited_value(field, name)¶ Treats name as an inheritable dictionary field and resolves its value for the AcroForm field field. Public Instance Methods [](name)¶ Returns the value for the entry name. If name is an inheritable field and the value has not been set on this field object, its value is retrieved from the parent fields. See: Dictionary#[] Calls superclass method HexaPDF::Dictionary#[] alternate_field_name()¶ Returns the alternate field name that should be used for display purposes (e.g. Acrobat shows this as tool tip). alternate_field_name=(value)¶ Sets the alternate field name. See alternate_field_name concrete_field_type()¶ Returns the concrete field type (:button_field, :text_field, :choice_field or :signature_field) or nil is no field type is set. In constrast to field_type this method also considers the field flags and not just the field type. This means that subclasses can return a more concrete name for the field type. Also see field_type create_widget(page, allow_embedded: true, **values)¶ Creates a new widget annotation for this form field (must be a terminal field!) on the given page, adding the values to the created widget annotation oject. If allow_embedded is false, embedding the first widget in the field itself is not allowed. The values argument should at least include :Rect for setting the visible area of the widget. If the field already has an embedded widget, i.e. field and widget are the same PDF object, its widget data is extracted to a new PDF object and stored in the /Kids field, together with the new widget annotation. Note that this means that a possible reference to the formerly embedded widget (=this field) is not valid anymore! See: HexaPDF::Type::Annotations::Widget delete_widget(widget)¶ Deletes the given widget annotation object from this field, the page it appears on and the document. If the given widget is not a widget of this field, nothing is done. each_widget(direct_only: true) {|widget| block} → field ¶ each_widget(direct_only: true) → Enumerator ¶ Yields each widget, i.e. visual representation, of this field. Widgets can be associated to the field in three ways: The widget can be embedded in the field itself. One or more widgets are defined as children of this field. Widgets of *another field instance with the same full field name*. With the default of direct_only being true, only the usual cases 1 and 2 are handled/ If case 3 also needs to be handled, set direct_only to false or run the validation on the main AcroForm object (HexaPDF::Document#acro_form) before using this method (this will reduce case 3 to case 2). Note: Setting direct_only to false will have a severe performance impact since all fields of the form have to be searched to check whether there is another field with the same full field name. See: HexaPDF::Type::Annotations::Widget embedded_widget?()¶ Returns true if the field contains an embedded widget. field_name()¶ Returns the name of the field or nil if no name is set. field_type()¶ Returns the type of the field, either :Btn (pushbuttons, check boxes, radio buttons), :Tx (text fields), :Ch (scrollable list boxes, combo boxes) or :Sig (signature fields). Also see concrete_field_type flag(*flags, clear_existing: false) ¶ Sets the given flags, given as flag names or bit indices. If clear_existing is true, all prior flags will be cleared. flagged?(flag) ¶ Returns true if the given flag is set. The argument can either be the flag name or the bit index. flags()¶ Returns an array of flag names representing the set bit flags. full_field_name()¶ Returns the full name of the field or nil if no name is set. The full name of a field is constructed using the full name of the parent field, a period and the field name of the field. must_be_indirect?()¶ Form fields must always be indirect objects. terminal_field?()¶ Returns true if this is a terminal field. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/Field/HashRefinement.html","title":"HexaPDF::Type::AcroForm::Field::HashRefinement","tags":"","text":" Instance Methodsvalue module HexaPDF::Type::AcroForm::Field::HashRefinement Provides a value method for hash that returns self so that a Hash can be used interchangably with a HexaPDF::Dictionary. Public Instance Methods value()¶ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/Form.html","title":"HexaPDF::Type::AcroForm::Form","tags":"","text":" Instance Methodscreate_appearancescreate_check_boxcreate_comb_text_fieldcreate_combo_boxcreate_file_select_fieldcreate_list_boxcreate_multiline_text_fieldcreate_password_fieldcreate_radio_buttoncreate_signature_fieldcreate_text_fielddefault_resourceseach_fieldfield_by_namefind_root_fieldsfind_root_fields!flattenneed_appearances!root_fieldsset_default_appearance_string class HexaPDF::Type::AcroForm::Form Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField Represents the PDF’s interactive form dictionary. It is linked from the catalog dictionary via the /AcroForm entry. Overview¶ ↑ An interactive form consists of fields which can be structured hierarchically and shown on pages by using Annotations::Widget annotations. This means one field can have zero, one or more visual representations on one or more pages. The fields at the bottom of the hierarchy which have no parent are called “root fields” and are stored in /Fields. Each field in a form has a certain type which determines how it should be displayed and what a user can do with it. The most common type is “text field” which allows the user to enter one or more lines of text. There are also check boxes, radio buttons, list boxes and combo boxes. Visual Appearance¶ ↑ The visual appearance of a field is normally provided by the application creating the PDF. This is done by generating the so called appearances for all widgets of a field. However, it is also possible to instruct the PDF reader application to generate the appearances on the fly using the /NeedAppearances key, see need_appearances!. HexaPDF uses the configuration option acro_form.create_appearance_streams to determine whether appearances should automatically be generated. See: PDF2.0 s12.7.3, Field,
HexaPDF::Type::Annotations::Widget Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFieldsHexaPDF::PDFArray or Arraytrue[]NeedAppearancesTrueClass or FalseClassfalsefalseSigFlagsIntegerfalsenilCOHexaPDF::PDFArray or ArrayfalsenilDRHexaPDF::Type::Resources or HashfalsenilDAStringfalsenilXFAHexaPDF::Stream or HexaPDF::PDFArray or Hash or Arrayfalsenil Public Instance Methods create_appearances(force: false)¶ Creates the appearances for all widgets of all terminal fields if they don’t exist. If force is true, new appearances are created even if there are existing ones. create_check_box(name)¶ Creates a new check box with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. create_comb_text_field(name, max_chars:, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a new comb text field with the given name and adds it to the form. The max_chars argument defines the maximum number of characters the comb text field can accommodate. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field, see create_text_field for details. create_combo_box(name, option_items: nil, editable: nil, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a combo box with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field: option_items Specifies the values of the list box. editable If set to true, the combo box allows entering an arbitrary value in addition to selecting one of the provided option items. font, font_options, font_size and align See create_text_field create_file_select_field(name, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a new file select field with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field, see create_text_field for details. create_list_box(name, option_items: nil, multi_select: nil, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a list box with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field: option_items Specifies the values of the list box. multi_select If set to true, the list box allows selecting multiple items instead of only one. font, font_options, font_size and align See create_text_field. create_multiline_text_field(name, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a new multiline text field with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field, see create_text_field for details. create_password_field(name, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a new password field with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field, see create_text_field for details. create_radio_button(name)¶ Creates a radio button with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. create_signature_field(name)¶ Creates a signature field with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. create_text_field(name, font: nil, font_options: nil, font_size: nil, font_color: nil, align: nil)¶ Creates a new text field with the given name and adds it to the form. The name may contain dots to signify a field hierarchy. If so, the referenced parent fields must already exist. If it doesn’t contain dots, a top-level field is created. The optional keyword arguments allow setting often used properties of the field: font The font that should be used for the text of the field. If font_size, font_options or font_color is specified but font isn’t, the font Helvetica is used. If no font is set on the text field, the default font properties of the AcroForm form are used. Note that field specific or form specific font properties have to be set. Otherwise there will be an error when trying to generate a visual representation of the field value. font_options A hash with font options like :variant that should be used. font_size The font size that should be used. If font, font_options or font_color is specified but font_size isn’t, font size defaults to 0 (= auto-sizing). font_color The font color that should be used. If font, font_options or font_size is specified but font_color isn’t, font color defaults to 0 (i.e. black). align The alignment of the text, either :left, :center or :right. default_resources()¶ Returns the dictionary containing the default resources for form field appearance streams. each_field(terminal_only: true) {|field| block} → acroform ¶ each_field(terminal_only: true) → Enumerator ¶ Yields all terminal fields or all fields, depending on the terminal_only argument. field_by_name(name)¶ Returns the field with the given name or nil if no such field exists. find_root_fields()¶ Returns an array with all root fields that were found in the PDF document. find_root_fields!()¶ Finds all root fields and sets /Fields appropriately. See: find_root_fields flatten(fields: nil, create_appearances: true)¶ Flattens the whole interactive form or only the given fields, and returns the fields that couldn’t be flattened. Flattening means making the appearance streams of the field widgets part of the respective page’s content stream and removing the fields themselves. If the whole interactive form is flattened, the form object itself is also removed if all fields were flattened. The create_appearances argument controls whether missing appearances should automatically be created. See: HexaPDF::Type::Page#flatten_annotations need_appearances!()¶ Sets the /NeedAppearances field to true. This will make PDF reader applications generate appropriate appearance streams based on the information stored in the fields and associated widgets. root_fields()¶ Returns the PDFArray containing the root fields. set_default_appearance_string(font: 'Helvetica', font_options: {}, font_size: 0, font_color: 0)¶ Sets the global default appearance string using the provided values or the default values which provide a sane default. See VariableTextField::create_appearance_string for information on the arguments. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/SignatureField/index.html","title":"HexaPDF::Type::AcroForm::SignatureField","tags":"","text":" Instance Methodsfield_valuefield_value= class HexaPDF::Type::AcroForm::SignatureField Parent HexaPDF::Type::AcroForm::Field AcroForm signature fields represent a digital signature. It serves two purposes: To visually display the signature and to hold the information of the digital signature itself. If the signature should not be visible, the associated widget annotation should have zero width and height; and/or the ‘hidden’ or ‘no_view’ flags of the annotation should be set. See: PDF2.0 s12.7.5.5 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFTSymbolOne of: :Btn, :Tx, :Ch, :SigfalsenilParentHexaPDF::Type::AcroForm::Field or HashfalsenilKidsHexaPDF::PDFArray or ArrayfalsenilTStringfalsenilTUStringfalsenilTMStringfalsenilFfIntegerfalse0VHexaPDF::Dictionary or Symbol or String or HexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilDVHexaPDF::Dictionary or Symbol or String or HexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilAAHexaPDF::Dictionary or HashfalsenilLockHexaPDF::Type::AcroForm::SignatureField::LockDictionary or HashfalsenilSVHexaPDF::Type::AcroForm::SignatureField::SeedValueDictionary or Hashfalsenil Public Instance Methods field_value()¶ Returns the associated signature dictionary or nil if the signature is not filled in. field_value=(sig_dict)¶ Sets the signature dictionary as value of this signature field. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/SignatureField/CertificateSeedValueDictionary.html","title":"HexaPDF::Type::AcroForm::SignatureField::CertificateSeedValueDictionary","tags":"","text":" Instance Methodsflagflagged?flags class HexaPDF::Type::AcroForm::SignatureField::CertificateSeedValueDictionary Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField A certificate seed value dictionary contains information about the characteristics of the certificate that shall be used when signing. Flags¶ ↑ The flags describe the entries that a signer is required to use. The available flags are: subject, issuer, oid, subject_dn, reserved,
key_usage and url. See: PDF2.0 s12.7.5.5 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:SVCertFfIntegerfalse0SubjectHexaPDF::PDFArray or ArrayfalsenilSubjectDNHexaPDF::PDFArray or ArrayfalsenilKeyUsageHexaPDF::PDFArray or ArrayfalsenilIssuerHexaPDF::PDFArray or ArrayfalsenilOIDHexaPDF::PDFArray or ArrayfalsenilURLStringfalsenilURLTypeSymbolfalse:Browser Public Instance Methods flag(*flags, clear_existing: false) ¶ Sets the given flags, given as flag names or bit indices. If clear_existing is true, all prior flags will be cleared. flagged?(flag) ¶ Returns true if the given flag is set. The argument can either be the flag name or the bit index. flags()¶ Returns an array of flag names representing the set bit flags. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/SignatureField/LockDictionary.html","title":"HexaPDF::Type::AcroForm::SignatureField::LockDictionary","tags":"","text":" class HexaPDF::Type::AcroForm::SignatureField::LockDictionary Parent HexaPDF::Dictionary A signature field lock dictionary specifies a set of form fields that should be locked once the associated signature field is signed. See: PDF2.0 s12.7.5.5 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:SigFieldLockActionSymbolOne of: :All, :Include, :ExcludetruenilFieldsHexaPDF::PDFArray or Arrayfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/SignatureField/SeedValueDictionary.html","title":"HexaPDF::Type::AcroForm::SignatureField::SeedValueDictionary","tags":"","text":" Instance Methodsflagflagged?flags class HexaPDF::Type::AcroForm::SignatureField::SeedValueDictionary Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField A seed value dictionary contains information that constrains the properties of a signature that is applied to the associated signature field. Flags¶ ↑ If a flag is set it means that the associated entry is a required constraint. Otherwise it is optional. The available flags are: filter, sub_filter, v, reasons, legal_attestation, add_rev_info and digest_method. See: PDF2.0 s12.7.5.5 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:SVFfIntegerfalse0FilterSymbolfalsenilSubFilterHexaPDF::PDFArray or ArrayfalsenilDigestMethodHexaPDF::PDFArray or ArrayfalsenilVFloatfalsenilCertHexaPDF::Type::AcroForm::SignatureField::CertificateSeedValueDictionary or HashfalsenilReasonsHexaPDF::PDFArray or ArrayfalsenilMDPHexaPDF::Dictionary or HashfalsenilTimeStampHexaPDF::Dictionary or HashfalsenilLegalAttestationHexaPDF::PDFArray or ArrayfalsenilAddRevInfoTrueClass or FalseClassfalsenil Public Instance Methods flag(*flags, clear_existing: false) ¶ Sets the given flags, given as flag names or bit indices. If clear_existing is true, all prior flags will be cleared. flagged?(flag) ¶ Returns true if the given flag is set. The argument can either be the flag name or the bit index. flags()¶ Returns an array of flag names representing the set bit flags. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/TextField.html","title":"HexaPDF::Type::AcroForm::TextField","tags":"","text":" ConstantsFLAGS_BIT_MAPPINGINHERITABLE_FIELDSInstance Methodscomb_text_field?concrete_field_typecreate_appearancesdefault_field_valuedefault_field_value=field_valuefield_value=file_select_field?initialize_as_comb_text_fieldinitialize_as_file_select_fieldinitialize_as_multiline_text_fieldinitialize_as_password_fieldmultiline_text_field?password_field?update_widgets class HexaPDF::Type::AcroForm::TextField Parent VariableTextField AcroForm text fields provide a box or space to fill-in data entered from keyboard. The text may be restricted to a single line or can span multiple lines. A special type of single-line text field is the comb text field. This type of field divides the existing space into /MaxLen equally spaced positions. Type Specific Field Flags¶ ↑ :multiline If set, the text field may contain multiple lines. :password The field is a password field. This changes the behaviour of the PDF reader application to not echo the input text and to not store it in the PDF file. :file_select The text field represents a file selection control where the input text is the path to a file. :do_not_spell_check The text should not be spell-checked. :do_not_scroll The text field should not scroll (horizontally for single-line fields and vertically for multiline fields) to accomodate more text than fits into the annotation rectangle. This means that no more text can be entered once the field is full. :comb The field is divided into /MaxLen equally spaced positions (so /MaxLen needs to be set). This is useful, for example, when entering things like social security numbers which always have the same length. :rich_text The field is a rich text field. See: PDF2.0 s12.7.5.3 Constants FLAGS_BIT_MAPPING¶ Updated list of field flags. INHERITABLE_FIELDS¶ All inheritable dictionary fields for text fields. Public Instance Methods comb_text_field?()¶ Returns true if this field is a comb text field. concrete_field_type()¶ Returns the concrete text field type, either :single_line_text_field, :multiline_text_field, :password_field, :file_select_field, :comb_text_field or :rich_text_field. create_appearances(force: false)¶ Creates appropriate appearances for all widgets. For information on how this is done see AppearanceGenerator. Note that no new appearances are created if the field value hasn’t changed between invocations. By setting force to true the creation of the appearances can be forced. default_field_value()¶ Returns the default field value. See: field_value default_field_value=(str)¶ Sets the default field value. See: field_value= field_value()¶ Returns the field value, i.e. the text contents of the field, or nil if no value is set. Note that modifying the returned value *might not* modify the text contents in case it is stored as stream! So always use field_value= to set the field value. field_value=(str)¶ Sets the field value, i.e. the text contents of the field, to the given string. Note that for single line text fields, all whitespace characters are changed to simple spaces. file_select_field?()¶ Returns true if this field is a file select field. initialize_as_comb_text_field()¶ Initializes the text field to be a comb text field. This method should only be called directly after creating a new text field because it doesn’t completely reset the object. initialize_as_file_select_field()¶ Initializes the text field to be a file select field. This method should only be called directly after creating a new text field because it doesn’t completely reset the object. initialize_as_multiline_text_field()¶ Initializes the text field to be a multiline text field. This method should only be called directly after creating a new text field because it doesn’t completely reset the object. initialize_as_password_field()¶ Initializes the text field to be a password field. This method should only be called directly after creating a new text field because it doesn’t completely reset the object. multiline_text_field?()¶ Returns true if this field is a multiline text field. password_field?()¶ Returns true if this field is a password field. update_widgets()¶ Updates the widgets so that they reflect the current field value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/AcroForm/VariableTextField.html","title":"HexaPDF::Type::AcroForm::VariableTextField","tags":"","text":" ConstantsINHERITABLE_FIELDSUNSET_ARGClass Methodscreate_appearance_stringparse_appearance_stringInstance Methodsparse_default_appearance_stringset_default_appearance_stringtext_alignment class HexaPDF::Type::AcroForm::VariableTextField Parent HexaPDF::Type::AcroForm::Field An AcroForm variable text field defines how text that it is not known at generation time should be rendered. For example, AcroForm text fields (normally) don’t have an initial value; the value is entered by the user and needs to be rendered correctly by the PDF reader. See: PDF2.0 s12.7.4.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFTSymbolOne of: :Btn, :Tx, :Ch, :SigfalsenilParentHexaPDF::Type::AcroForm::Field or HashfalsenilKidsHexaPDF::PDFArray or ArrayfalsenilTStringfalsenilTUStringfalsenilTMStringfalsenilFfIntegerfalse0VHexaPDF::Dictionary or Symbol or String or HexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilDVHexaPDF::Dictionary or Symbol or String or HexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilAAHexaPDF::Dictionary or HashfalsenilDAStringfalsenilQIntegerOne of: 0, 1, 2false0DSStringfalsenilRVString or HexaPDF::Stream or Hashfalsenil Constants INHERITABLE_FIELDS¶ All inheritable dictionary fields for text fields. Public Class Methods create_appearance_string(document, font: 'Helvetica', font_options: {}, font_size: 0, font_color: 0)¶ Creates an AcroForm appearance string for the HexaPDF document from the given arguments and returns it. font The name of the font. font_options Additional font options like :variant used when loading the font. See HexaPDF::Document::Fonts#add font_size The font size. If this is set to 0, the font size is calculated using the height/width of the field. font_color The font color. See HexaPDF::Content::ColorSpace.device_color_from_specification for allowed values. parse_appearance_string(string) → [font_name, font_size, font_color] ¶ parse_appearance_string(string) {|obj, params| block } → nil ¶ Parses the given appearance string. If no block is given, the appearance string is searched for font name, font size and font color all of which are returned. Otherwise the block is called with each found content stream operator and has to handle them itself. Public Instance Methods parse_default_appearance_string(widget = self)¶ Parses the default appearance string and returns an array containing [font_name, font_size, font_color]. The default appearance string is taken from the
given widget of the field, falls back to the field itself or, if still not available, the default appearance string of the form. The reason why a specific widget of the field can be specified is because the widgets of a field might differ in their visual representation. set_default_appearance_string(font: 'Helvetica', font_options: {}, font_size: 0, font_color: 0)¶ Sets the default appearance string using the provided values or the default values which provide a sane default. See ::create_appearance_string for information on the arguments. text_alignment → alignment ¶ text_alignment(alignment) → field ¶ Sets or returns the text alignment that should be used when displaying text. With no argument, the current text alignment is returned. When a value is provided, the text alignment is set accordingly. The alignment value is one of :left, :center or :right. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Action.html","title":"HexaPDF::Type::Action","tags":"","text":" class HexaPDF::Type::Action Parent HexaPDF::Dictionary Represents a generic PDF action dictionary. Action dictionaries are used, for example, by annotations or outline items to specify the action that should be performed. Each action class should be defined under the Actions module. See: PDF2.0 s12.6 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:ActionSSymboltruenilNextHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or Arrayfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/index.html","title":"HexaPDF::Type::Actions","tags":"","text":" module HexaPDF::Type::Actions Namespace module for all PDF action dictionary types. See: PDF2.0 s12.6.4, Action "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/GoTo.html","title":"HexaPDF::Type::Actions::GoTo","tags":"","text":" class HexaPDF::Type::Actions::GoTo Parent HexaPDF::Type::Action A Go-To action changes the view to a specific destination. See: PDF2.0 s12.6.4.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:ActionSSymboltruenilNextHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilSSymboltrue:GoToDSymbol or HexaPDF::DictionaryFields::PDFByteString or HexaPDF::PDFArray or String or Arraytruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/GoToR.html","title":"HexaPDF::Type::Actions::GoToR","tags":"","text":" class HexaPDF::Type::Actions::GoToR Parent HexaPDF::Type::Action A remote Go-To action dictionary jumps to a destination in a different PDF file. See: PDF2.0 s12.6.4.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:ActionSSymboltruenilNextHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilSSymboltrue:GoToRFHexaPDF::Type::FileSpecification or Hash or StringtruenilDSymbol or HexaPDF::DictionaryFields::PDFByteString or HexaPDF::PDFArray or String or ArraytruenilNewWindowTrueClass or FalseClassfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/Launch/index.html","title":"HexaPDF::Type::Actions::Launch","tags":"","text":" class HexaPDF::Type::Actions::Launch Parent HexaPDF::Type::Action A Launch action dictionary launches an application, opens a document or prints a document. See: PDF2.0 s12.6.4.6 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:ActionSSymboltruenilNextHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilSSymboltrue:LaunchFHexaPDF::Type::FileSpecification or Hash or StringfalsenilWinHexaPDF::Type::Actions::Launch::WinParameters or HashfalsenilNewWindowTrueClass or FalseClassfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/Launch/WinParameters.html","title":"HexaPDF::Type::Actions::Launch::WinParameters","tags":"","text":" class HexaPDF::Type::Actions::Launch::WinParameters Parent HexaPDF::Dictionary The type used for the /Win field of a Launch action dictionary. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFHexaPDF::DictionaryFields::PDFByteString or StringtruenilDHexaPDF::DictionaryFields::PDFByteString or StringfalsenilOStringOne of: \"open\", \"print\"false\"open\"PHexaPDF::DictionaryFields::PDFByteString or Stringfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/SetOCGState.html","title":"HexaPDF::Type::Actions::SetOCGState","tags":"","text":" Instance Methodsadd_state_change class HexaPDF::Type::Actions::SetOCGState Parent HexaPDF::Type::Action A Set-OCG-state action changes the state of one or more optional content groups. See: PDF2.0 s12.6.4.13, HexaPDF::Type::OptionalContentGroup Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:ActionSSymboltruenilNextHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilSSymboltrue:SetOCGStateStateHexaPDF::PDFArray or Arraytrue[]PreserveRBTrueClass or FalseClassfalsetrue Public Instance Methods add_state_change(type, ocgs)¶ Adds a state changing sequence to the /State array. The type argument specifies how the state of the given optional content groups should be changed. type The type of sequence to add, either :on/:ON (for turning the OCGs on) , :off/:OFF (for turning the OCGs off), or :toggle/:Toggle (for toggling the state of the OCGs). ocgs A single optional content group or an array of optional content groups to which the state change defined with type should be applied. The OCGs can be specified via their dictionary or by name which uses the first found OCG with that name. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Actions/URI.html","title":"HexaPDF::Type::Actions::URI","tags":"","text":" class HexaPDF::Type::Actions::URI Parent HexaPDF::Type::Action Represents an URI action dictionary, mostly used for opening Internet pages. See: PDF2.0 s12.6.4.8 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:ActionSSymboltruenilNextHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilSSymboltrue:URIURIStringtruenilIsMapTrueClass or FalseClassfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotation/index.html","title":"HexaPDF::Type::Annotation","tags":"","text":" Instance Methodsappearanceappearance?appearance_dictcreate_appearanceflagflagged?flagsmust_be_indirect?unflag class HexaPDF::Type::Annotation Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField Annotations are used to associate objects like notes, sounds or movies with a location on a PDF page or allow the user to interact with a PDF document using a keyboard or mouse. See: PDF2.0 s12.5 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:AnnotSubtypeSymboltruenilRectHexaPDF::Rectangle or ArraytruenilContentsStringfalsenilPHexaPDF::Dictionary or HashfalsenilNMStringfalsenilMHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilFIntegerfalse0APHexaPDF::Type::Annotation::AppearanceDictionary or HashfalsenilASSymbolfalsenilBorderHexaPDF::PDFArray or Arrayfalse[0, 0, 1]CHexaPDF::PDFArray or ArrayfalsenilStructParentIntegerfalsenilOCHexaPDF::Dictionary or Hashfalsenil Public Instance Methods appearance(type: :normal, state_name: self[:AS])¶ Returns the annotation’s appearance stream of the given type (:normal, :rollover, or :down) or nil if it doesn’t exist. The appearance state in /AS or the one provided via state_name is taken into account if necessary. Also aliased as: appearance? appearance?(type: :normal, state_name: self[:AS])¶ Alias for: appearance appearance_dict()¶ Returns the AppearanceDictionary instance associated with the annotation or nil if none is set. create_appearance(type: :normal, state_name: self[:AS])¶ Creates an empty appearance stream (a Form XObject) of the given type (:normal, :rollover, or :down) and returns it. If an appearance stream already exist, it is overwritten. If there can be multiple appearance streams for the annotation, use the state_name argument to provide the appearance state name. flag(*flags, clear_existing: false) ¶ Sets the given flags on /F, given as flag names or bit indices. If clear_existing is true, all prior flags will be cleared. See flags for the list of available flags. flagged?(flag) ¶ Returns true if the given flag is set on /F. The argument can either be the flag name or the bit index. See flags for the list of available flags. flags()¶ Returns an array of flag names representing the set bit flags for /F. The available flags are: :invisible or 0 Applies only to non-standard annotations. If set, do not render or print the annotation. :hidden or 1 If set, do not render the annotation or allow interactions. :print or 2 If set, print the annotation unless the hidden flag is also set. Otherwise never print the annotation. :no_zoom or 3 If set, do not scale the annotation’s appearance to match the magnification of the page. :no_rotate or 4 If set, do not rotate the annotation’s appearance to match the rotation of the page. :no_view or 5 If set, do not render the annotation on the screen or allow interactions. :read_only or 6 If set, do not allow user interactions. :locked or 7 If set, do not allow the annotation to be deleted or its properties be modified. :toggle_no_view or 8 If set, invert the interpretation of the :no_view flag for annotation selection and mouse hovering. :locked_contents or 9 If set, do not allow the contents of the annotation to be modified. must_be_indirect?()¶ Returns true because annotation objects must always be indirect objects. flag(*flags) ¶ Clears the given flags from /F, given as flag names or bit indices. See flags for the list of available flags. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotation/AppearanceDictionary.html","title":"HexaPDF::Type::Annotation::AppearanceDictionary","tags":"","text":" Instance Methodsdown_appearancenormal_appearancerollover_appearanceset_appearance
class HexaPDF::Type::Annotation::AppearanceDictionary Parent HexaPDF::Dictionary The appearance dictionary references appearance streams for various use cases. Each appearance can either be an XObject or a dictionary mapping names to XObjects. The latter is used when the appearance depends on the state of the annotation, e.g. a check box widget that can be checked or unchecked. See: PDF2.0 s12.5.5 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueNHexaPDF::Dictionary or HexaPDF::Stream or HashtruenilRHexaPDF::Dictionary or HexaPDF::Stream or HashfalsenilDHexaPDF::Dictionary or HexaPDF::Stream or Hashfalsenil Public Instance Methods down_appearance()¶ The down appearance which should be used when the mouse button is pressed or held down inside the active area of the annotation. normal_appearance()¶ The annotation’s normal appearance. rollover_appearance()¶ The rollover appearance which should be used when the cursor is moved into the active area of the annotation without pressing a button. set_appearance(appearance, type: :normal, state_name: nil)¶ Sets the appearance of the given appearance type, which can either be :normal, :rollover or :down, to appearance. If the state_name argument is provided, the appearance is stored under the state_name key in a sub-dictionary of the appearance. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotation/Border.html","title":"HexaPDF::Type::Annotation::Border","tags":"","text":" class HexaPDF::Type::Annotation::Border Parent HexaPDF::Dictionary Border style dictionary used by various annotation types. See: PDF2.0 s12.5.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:BorderWInteger or Floatfalse1SSymbolOne of: :S, :D, :B, :I, :Ufalse:SDHexaPDF::PDFArray or Arrayfalse[3] "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/index.html","title":"HexaPDF::Type::Annotations","tags":"","text":" module HexaPDF::Type::Annotations Namespace module for all PDF annotation dictionary types. See: PDF2.0 s12.5.6, Annotation "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/Link.html","title":"HexaPDF::Type::Annotations::Link","tags":"","text":" class HexaPDF::Type::Annotations::Link Parent HexaPDF::Type::Annotation Link annotations represent a link to a destination elsewhere in the PDF document or an action to be performed. See: PDF2.0 s12.5.6.5, HexaPDF::Type::Annotation Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:AnnotSubtypeSymboltruenilRectHexaPDF::Rectangle or ArraytruenilContentsStringfalsenilPHexaPDF::Dictionary or HashfalsenilNMStringfalsenilMHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilFIntegerfalse0APHexaPDF::Type::Annotation::AppearanceDictionary or HashfalsenilASSymbolfalsenilBorderHexaPDF::PDFArray or Arrayfalse[0, 0, 1]CHexaPDF::PDFArray or ArrayfalsenilStructParentIntegerfalsenilOCHexaPDF::Dictionary or HashfalsenilSubtypeSymboltrue:LinkAHexaPDF::Dictionary or HashfalsenilDestSymbol or HexaPDF::DictionaryFields::PDFByteString or HexaPDF::PDFArray or String or ArrayfalsenilHSymbolOne of: :N, :I, :O, :Pfalse:IPAHexaPDF::Dictionary or HashfalsenilQuadPointsHexaPDF::PDFArray or ArrayfalsenilBSHexaPDF::Type::Annotation::Border or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/MarkupAnnotation.html","title":"HexaPDF::Type::Annotations::MarkupAnnotation","tags":"","text":" class HexaPDF::Type::Annotations::MarkupAnnotation Parent HexaPDF::Type::Annotation Markup annotations are used to “mark up” a PDF document, most of the available PDF annotations are actually markup annotations. See: PDF2.0 s12.5.6.2, HexaPDF::Type::Annotation Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:AnnotSubtypeSymboltruenilRectHexaPDF::Rectangle or ArraytruenilContentsStringfalsenilPHexaPDF::Dictionary or HashfalsenilNMStringfalsenilMHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilFIntegerfalse0APHexaPDF::Type::Annotation::AppearanceDictionary or HashfalsenilASSymbolfalsenilBorderHexaPDF::PDFArray or Arrayfalse[0, 0, 1]CHexaPDF::PDFArray or ArrayfalsenilStructParentIntegerfalsenilOCHexaPDF::Dictionary or HashfalsenilTStringfalsenilPopupHexaPDF::Type::Annotation or HashfalsenilCANumericfalse1.0RCHexaPDF::Stream or String or HashfalsenilCreationDateHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilIRTHexaPDF::Dictionary or HashfalsenilSubjStringfalsenilRTSymbolOne of: :R, :Groupfalse:RITSymbolfalsenilExDataHexaPDF::Dictionary or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/Text.html","title":"HexaPDF::Type::Annotations::Text","tags":"","text":" class HexaPDF::Type::Annotations::Text Parent HexaPDF::Type::Annotations::MarkupAnnotation Text annotations are “sticky notes” attached to a point in a PDF document. They act as if the NoZoom and NoRotate flags were always set. See: PDF2.0 s12.5.6.4, HexaPDF::Type::MarkupAnnotation Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:AnnotSubtypeSymboltruenilRectHexaPDF::Rectangle or ArraytruenilContentsStringfalsenilPHexaPDF::Dictionary or HashfalsenilNMStringfalsenilMHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilFIntegerfalse0APHexaPDF::Type::Annotation::AppearanceDictionary or HashfalsenilASSymbolfalsenilBorderHexaPDF::PDFArray or Arrayfalse[0, 0, 1]CHexaPDF::PDFArray or ArrayfalsenilStructParentIntegerfalsenilOCHexaPDF::Dictionary or HashfalsenilTStringfalsenilPopupHexaPDF::Type::Annotation or HashfalsenilCANumericfalse1.0RCHexaPDF::Stream or String or HashfalsenilCreationDateHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilIRTHexaPDF::Dictionary or HashfalsenilSubjStringfalsenilRTSymbolOne of: :R, :Groupfalse:RITSymbolfalsenilExDataHexaPDF::Dictionary or HashfalsenilSubtypeSymboltrue:TextOpenTrueClass or FalseClassfalsefalseNameSymbolfalse:NoteStateStringOne of: \"Marked\", \"Unmarked\", \"Accepted\", \"Rejected\", \"Cancelled\", \"Completed\", \"None\"falsenilStateModelStringOne of: \"Review\", \"Marked\"falsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/Widget/index.html","title":"HexaPDF::Type::Annotations::Widget","tags":"","text":" ConstantsBorderStyleInstance Methodsbackground_colorborder_styleform_fieldmarker_style class HexaPDF::Type::Annotations::Widget Parent HexaPDF::Type::Annotation Widget annotations are used by interactive forms to represent the appearance of fields and to manage user interactions. See: PDF2.0 s12.5.6.19, HexaPDF::Type::Annotation Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:AnnotSubtypeSymboltruenilRectHexaPDF::Rectangle or ArraytruenilContentsStringfalsenilPHexaPDF::Dictionary or HashfalsenilNMStringfalsenilMHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilFIntegerfalse0APHexaPDF::Type::Annotation::AppearanceDictionary or HashfalsenilASSymbolfalsenilBorderHexaPDF::PDFArray or Arrayfalse[0, 0, 1]CHexaPDF::PDFArray or ArrayfalsenilStructParentIntegerfalsenilOCHexaPDF::Dictionary or HashfalsenilSubtypeSymboltrue:WidgetHSymbolOne of: :N, :I, :O, :P, :TfalsenilMKHexaPDF::Type::Annotations::Widget::AppearanceCharacteristics or HashfalsenilAHexaPDF::Dictionary or HashfalsenilAAHexaPDF::Dictionary or HashfalsenilBSHexaPDF::Type::Annotation::Border or HashfalsenilParentHexaPDF::Dictionary or Hashfalsenil Constants BorderStyle¶ Describes the border of an annotation. The color property is either nil if the border is transparent or else a device color object - see HexaPDF::Content::ColorSpace. The style property can be one of the following: :solid Solid line. :beveled Embossed rectangle seemingly raised above the surface of the page. :inset Engraved rectangle receeding into the page. :underlined Underlined, i.e. only the bottom border is draw. Array: Dash array describing how to dash the line. Public Instance Methods background_color → background_color or nil ¶ background_color(*color) → widget ¶ Returns the current background color as device color object, or nil if no background color is set, when no argument is given. Otherwise sets the background color using the color argument and returns self. See HexaPDF::Content::ColorSpace.device_color_from_specification for information on the allowed arguments. border_style → border_style ¶ border_style(color: 0, width: 1, style: :solid) → widget ¶ Returns a BorderStyle instance representing the border style of the widget when no argument is given. Otherwise sets the border style of the widget and returns self. When setting a border style, arguments that are not provided will use the default: a border with a solid, black, 1pt wide line. This also means that multiple invocations will reset all prior values. color The color of the border. See HexaPDF::Content::ColorSpace.device_color_from_specification for information on the allowed arguments. If the special value :transparent is used when setting the color, a transparent is used. A transparent border will return a nil value when getting the border color. width The width of the border. If set to 0, no border is shown. style Defines how the border is drawn. can be one of the following: :solid Draws a solid border. :beveled Draws a beveled border. :inset Draws an inset border. :underlined Draws only the bottom border. Array An array specifying a line dash pattern (see HexaPDF::Content::LineDashPattern) form_field()¶ Returs the AcroForm field object to which this widget annotation belongs. Since a widget and a field can share the same dictionary object, the returned object is often just the widget re-wrapped in the correct field class. marker_style → marker_style ¶ marker_style(style: nil, size: nil, color: nil) → widget ¶ Returns a MarkerStyle instance representing the marker
style of the widget when no argument is given. Otherwise sets the button marker style of the widget and returns self. This method returns valid information only for check boxes and radio buttons! When setting a marker style, arguments that are not provided will use the default: a black auto-sized checkmark (i.e. :check for for check boxes) or circle (:circle for radio buttons). This also means that multiple invocations will reset all prior values. Note: The marker is called “normal caption” in the PDF 1.7 spec and the /CA entry of the associated appearance characteristics dictionary. The marker size and color are set using the /DA key on the widget (although /DA is not defined for widget, this is how Acrobat does it). See: PDF2.0 s12.5.6.19 and s12.7.4.3 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/Widget/AppearanceCharacteristics.html","title":"HexaPDF::Type::Annotations::Widget::AppearanceCharacteristics","tags":"","text":" class HexaPDF::Type::Annotations::Widget::AppearanceCharacteristics Parent HexaPDF::Dictionary The dictionary used by the /MK key of the widget annotation. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueRIntegerfalse0BCHexaPDF::PDFArray or ArrayfalsenilBGHexaPDF::PDFArray or ArrayfalsenilCAStringfalsenilRCStringfalsenilACStringfalsenilIHexaPDF::Stream or HashfalsenilRIHexaPDF::Stream or HashfalsenilIXHexaPDF::Stream or HashfalsenilIFHexaPDF::Type::IconFit or HashfalsenilTPIntegerOne of: 0, 1, 2, 3, 4, 5, 6false0 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Annotations/Widget/MarkerStyle.html","title":"HexaPDF::Type::Annotations::Widget::MarkerStyle","tags":"","text":" AttributescolorsizestyleClass Methodsnew class HexaPDF::Type::Annotations::Widget::MarkerStyle Parent Object Describes the marker style of a check box or radio button widget. Attributes color[R]¶ A device color object representing the color of the marker - see HexaPDF::Content::ColorSpace. size[R]¶ The size of the marker in PDF points that is shown inside the widget. The special value 0 means that the marker should be auto-sized based on the widget’s rectangle. style[R]¶ The kind of marker that is shown inside the widget. Can either be one of the symbols :check, :circle, :cross, :diamond, :square or :star, or a one character string. The latter is interpreted using the ZapfDingbats font. If an empty string is set, it is treated as if nil was set, i.e. it shows the default marker for the field type. Public Class Methods new(style, size, color)¶ Creates a new instance with the given values. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/CIDFont/index.html","title":"HexaPDF::Type::CIDFont","tags":"","text":" Instance Methodsset_widthswidth class HexaPDF::Type::CIDFont Parent HexaPDF::Font Represents a generic CIDFont which can only be used as a descendant font of a composite PDF font. See: PDF2.0 s9.7.4 Public Instance Methods set_widths(widths, default_width: DEFAULT_WIDTH)¶ Sets the /W and /DW keys using the given array of [CID, width] pairs and an optional default width. See: PDF2.0 s9.7.4.3 width(cid)¶ Returns the unscaled width of the given CID in glyph units, or 0 if the width for the CID is missing. Note that in contrast to other fonts, the argument must not be a code point but a CID! "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/CIDFont/CIDSystemInfo.html","title":"HexaPDF::Type::CIDFont::CIDSystemInfo","tags":"","text":" class HexaPDF::Type::CIDFont::CIDSystemInfo Parent HexaPDF::Dictionary Describes the CIDSystemInfo dictionary specifying the character collection assumed by the CIDFont. See: PDF2.0 s9.7.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueRegistryStringtruenilOrderingStringtruenilSupplementIntegertruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Catalog.html","title":"HexaPDF::Type::Catalog","tags":"","text":" Instance Methodsacro_formmust_be_indirect?namesoptional_contentoutlinepage_labelspages class HexaPDF::Type::Catalog Parent HexaPDF::Dictionary Represents the PDF’s catalog dictionary which is at the root of the document’s object hierarchy. The catalog dictionary is linked via the /Root entry from the Trailer. See: PDF2.0 s7.7.2, Trailer Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:CatalogVersionSymbolfalsenilExtensionsHexaPDF::Dictionary or HashfalsenilPagesHexaPDF::Type::PageTreeNode or HashfalsenilPageLabelsHexaPDF::NumberTreeNode or HashfalsenilNamesHexaPDF::Type::Names or HashfalsenilDestsHexaPDF::Dictionary or HashfalsenilViewerPreferencesHexaPDF::Type::ViewerPreferences or HashfalsenilPageLayoutSymbolOne of: :SinglePage, :OneColumn, :TwoColumnLeft, :TwoColumnRight, :TwoPageLeft, :TwoPageRightfalse:SinglePagePageModeSymbolOne of: :UseNone, :UseOutlines, :UseThumbs, :FullScreen, :UseOC, :UseAttachmentsfalse:UseNoneOutlinesHexaPDF::Type::Outline or HashfalsenilThreadsHexaPDF::PDFArray or ArrayfalsenilOpenActionHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilAAHexaPDF::Dictionary or HashfalsenilURIHexaPDF::Dictionary or HashfalsenilAcroFormHexaPDF::Type::AcroForm::Form or HashfalsenilMetadataHexaPDF::Type::Metadata or HashfalsenilStructTreeRootHexaPDF::Dictionary or HashfalsenilMarkInfoHexaPDF::Type::MarkInformation or HashfalsenilLangStringfalsenilSpiderInfoHexaPDF::Dictionary or HashfalsenilOutputIntentsHexaPDF::PDFArray or ArrayfalsenilPieceInfoHexaPDF::Dictionary or HashfalsenilOCPropertiesHexaPDF::Type::OptionalContentProperties or HashfalsenilPermsHexaPDF::Dictionary or HashfalsenilLegalHexaPDF::Dictionary or HashfalsenilRequirementsHexaPDF::PDFArray or ArrayfalsenilCollectionHexaPDF::Dictionary or HashfalsenilNeedsRenderingTrueClass or FalseClassfalsenil Public Instance Methods acro_form(create: false)¶ Returns the main AcroForm object. If an AcroForm object exists, the create argument is not used. If no AcroForm object exists and create is true, a new AcroForm object with default settings will be created and returned. If no AcroForm object exists and create is false, nil is returned. See: AcroForm::Form must_be_indirect?()¶ Returns true since catalog objects must always be indirect. names()¶ Returns the name dictionary containing all name trees of the document, creating it if needed. See: Names optional_content()¶ Returns the optional content properties dictionary, creating it if needed. This is the main entry point for working with optional content, a.k.a. layers. See: OptionalContentProperties outline()¶ Returns the document outline, creating it if needed. See: Outline page_labels(create: false)¶ Returns the page labels number tree. If a page labels number tree exists, the create argument is not used. If no page labels number tree exists and create is true, a new one is created. If no page labels number tree exists and create is false, nil is returned. See: HexaPDF::Document::Pages pages()¶ Returns the root node of the page tree, creating it if needed. See: PageTreeNode "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/EmbeddedFile/index.html","title":"HexaPDF::Type::EmbeddedFile","tags":"","text":" class HexaPDF::Type::EmbeddedFile Parent HexaPDF::Stream Represents an embedded file stream. An embedded file stream contains the data of, and optionally some meta data about, a file that is embedded into the PDF file. Each embedded file is either associated with a certain Type::FileSpecification dictionary or with the document as a whole through the /EmbeddedFiles entry in the document catalog’s /Names dictionary. See: PDF2.0 s7.11.4, FileSpecification Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenilTypeSymbolfalse:EmbeddedFileSubtypeSymbolfalsenilParamsHexaPDF::Type::EmbeddedFile::Parameters or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/EmbeddedFile/MacInfo.html","title":"HexaPDF::Type::EmbeddedFile::MacInfo","tags":"","text":" class HexaPDF::Type::EmbeddedFile::MacInfo Parent HexaPDF::Dictionary The type used for the /Mac field of an EmbeddedFile::Parameters dictionary. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueSubtypeIntegerfalsenilCreatorIntegerfalsenilResForkHexaPDF::Stream or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/EmbeddedFile/Parameters.html","title":"HexaPDF::Type::EmbeddedFile::Parameters","tags":"","text":" class HexaPDF::Type::EmbeddedFile::Parameters Parent HexaPDF::Dictionary The type used for the /Params field of an EmbeddedFileStream. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueSizeIntegerfalsenilCreationDateHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilModDateHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilMacHexaPDF::Type::EmbeddedFile::MacInfo or HashfalsenilCheckSumHexaPDF::DictionaryFields::PDFByteString or Stringfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FileSpecification/index.html","title":"HexaPDF::Type::FileSpecification","tags":"","text":" Instance Methodsembedembedded_file?embedded_file_streampathpath=unembedurl=url? class HexaPDF::Type::FileSpecification Parent HexaPDF::Dictionary Represents a file specification dictionary. File specifications are used to refer to other files or URLs from within a PDF file. Simple file specifications are just strings. However, the are automatically converted on access to a full file specification to provide a unified interface. Working with File Specifications¶ ↑ A file specification may refer to a file or an URL.
This can easily be checked with url?. Independent of whether the file specification referes to an URL or a file, the path method returns the “best” useable path for it. Modifying a file specification should be done via the path= and url= methods as they ensure that no obsolescent entries are used and the file specification is consistent. Finally, since embedded files in a PDF document are always linked to a file specification it is useful to provide embedding/unembedding operations in this class, see embed and unembed. See: PDF2.0 s7.11 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FilespecFSSymbolfalsenilFHexaPDF::DictionaryFields::PDFByteString or StringfalsenilUFStringfalsenilDOSHexaPDF::DictionaryFields::PDFByteString or StringfalsenilMacHexaPDF::DictionaryFields::PDFByteString or StringfalsenilUnixHexaPDF::DictionaryFields::PDFByteString or StringfalsenilIDHexaPDF::PDFArray or ArrayfalsenilVTrueClass or FalseClassfalsenilEFHexaPDF::Type::FileSpecification::EFDictionary or HashfalsenilRFHexaPDF::Dictionary or HashfalsenilDescStringfalsenilCIHexaPDF::Dictionary or Hashfalsenil Public Instance Methods embed(filename, name: File.basename(filename), register: true) → ef_stream ¶ embed(io, name:, register: true) → ef_stream ¶ Embeds the given file or IO stream into the PDF file, sets the path accordingly and returns the created stream object. If a file is given, the name option defaults to the basename of the file. However, if an IO object is given, the name argument is mandatory. If there already was a file embedded for this file specification, it is unembedded first. The embedded file stream automatically uses the FlateEncode filter for compressing the embedded file. Options: name The name that should be used as path value and when registering. register Specifies whether the embedded file will be added to the EmbeddedFiles name tree under the name. If the name is already taken, it’s value is overwritten. The file has to be available until the PDF document gets written because reading and writing is done lazily. embedded_file?()¶ Returns true if this file specification contains an embedded file. See: embedded_file_stream embedded_file_stream()¶ Returns the embedded file associated with this file specification, or nil if this file specification references no embedded file. If there are multiple possible embedded files, the /EF fields are searched in the following order and the first one with a value is used: /UF, /F, /Unix, /Mac, /DOS. path()¶ Returns the path for the referenced file or URL. An empty string is returned if no file specification string is set. If multiple file specification strings are available, the fields are search in the following order and the first one with a value is used: /UF, /F, /Unix, /Mac, /DOS. The encoding of the returned path string is either UTF-8 (for /UF) or BINARY (for /F /Unix, /Mac and /DOS). path=(filename)¶ Sets the file specification string to the given filename. Since the /Unix, /Mac and /DOS fields are obsolescent, only the /F and /UF fields are set. unembed()¶ Deletes any embedded file streams associated with this file specification. A possible entry in the EmbeddedFiles name tree is also deleted. url=(url)¶ Sets the file specification string to the given URL and updates the file system entry appropriately. The provided URL needs to be in an RFC1738 compliant string representation. If not, an error is raised. url?()¶ Returns true if this file specification references an URL and not a file. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FileSpecification/EFDictionary.html","title":"HexaPDF::Type::FileSpecification::EFDictionary","tags":"","text":" class HexaPDF::Type::FileSpecification::EFDictionary Parent HexaPDF::Dictionary The type used for the /EF field of a FileSpecification Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFHexaPDF::Type::EmbeddedFile or HashfalsenilUFHexaPDF::Type::EmbeddedFile or HashfalsenilDOSHexaPDF::Type::EmbeddedFile or HashfalsenilMacHexaPDF::Type::EmbeddedFile or HashfalsenilUnixHexaPDF::Type::EmbeddedFile or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Font.html","title":"HexaPDF::Type::Font","tags":"","text":" Instance Methodsbounding_boxembedded?font_filefont_wrapperfont_wrapper=glyph_scaling_factormust_be_indirect?to_utf8 class HexaPDF::Type::Font Parent HexaPDF::Dictionary Represents a generic font object. This class is the base class for all font objects, be it simple fonts or composite fonts. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontToUnicodeHexaPDF::Stream or Hashfalsenil Public Instance Methods bounding_box()¶ Returns the bounding box of the font or nil if it is not found. embedded?()¶ Returns true if the font is embedded. font_file()¶ Returns the embeeded font file object or nil if the font is not embedded. font_wrapper()¶ Retrieves the font wrapper that is needed when this font is used for text output. Returns nil if this font can’t be used for text output. Note: For internal use only! See: HexaPDF::Font font_wrapper=(font)¶ Sets the font wrapper. See: font_wrapper glyph_scaling_factor()¶ Returns the glyph scaling factor for transforming from glyph space to text space. must_be_indirect?()¶ Font objects must always be indirect. to_utf8(code)¶ Returns the UTF-8 string for the given character code, or calls the configuration option ‘font.on_missing_unicode_mapping’ if no mapping was found. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontDescriptor.html","title":"HexaPDF::Type::FontDescriptor","tags":"","text":" class HexaPDF::Type::FontDescriptor Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField This class specifies metrics and other attributes of a simple font or a CID font as a whole. See: PDF2.0 s9.8 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontDescriptorFontNameSymboltruenilFontFamilyHexaPDF::DictionaryFields::PDFByteString or StringfalsenilFontStretchSymbolOne of: :UltraCondensed, :ExtraCondensed, :Condensed, :SemiCondensed, :Normal, :SemiExpanded, :Expanded, :ExtraExpanded, :UltraExpandedfalsenilFontWeightNumericfalsenilFlagsIntegertruenilFontBBoxHexaPDF::Rectangle or ArrayfalsenilItalicAngleNumerictruenilAscentNumericfalsenilDescentNumericfalsenilLeadingNumericfalse0CapHeightNumericfalsenilXHeightNumericfalse0StemVNumericfalsenilStemHNumericfalse0AvgWidthNumericfalse0MaxWidthNumericfalse0MissingWidthNumericfalse0FontFileHexaPDF::Stream or HashfalsenilFontFile2HexaPDF::Stream or HashfalsenilFontFile3HexaPDF::Stream or HashfalsenilCharSetHexaPDF::DictionaryFields::PDFByteString or StringfalsenilStyleHexaPDF::Dictionary or HashfalsenilLangSymbolfalsenilFDHexaPDF::Dictionary or HashfalsenilCIDSetHexaPDF::Stream or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontSimple.html","title":"HexaPDF::Type::FontSimple","tags":"","text":" Instance Methodsdecodeencodingfont_descriptorsymbolic?to_utf8widthword_spacing_applicable?writing_mode class HexaPDF::Type::FontSimple Parent HexaPDF::Type::Font Represents a simple PDF font. A simple font has only single-byte character codes and only supports horizontal metrics. See: PDF2.0 s9.6 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontToUnicodeHexaPDF::Stream or HashfalsenilFirstCharIntegerfalsenilLastCharIntegerfalsenilWidthsHexaPDF::PDFArray or ArrayfalsenilFontDescriptorHexaPDF::Type::FontDescriptor or HashfalsenilEncodingHexaPDF::Dictionary or Symbol or Hashfalsenil Public Instance Methods decode(string)¶ Decodes the given string into an array of character codes. encoding()¶ Returns the encoding object used for this font. Note that the encoding is cached internally when accessed the first time. font_descriptor()¶ Returns the font descriptor. May be nil for a standard 14 font. The font descriptor is required except for the standard 14 fonts in PDF version up to 1.7. symbolic?()¶ Returns true if the font is a symbolic font, false if it is not, and nil if it is not known. to_utf8(code)¶ Returns the UTF-8 string for the given character code, or calls the configuration option ‘font.on_missing_unicode_mapping’ if no mapping was found. width(code)¶ Returns the unscaled width of the given code point in glyph units, or 0 if the width for the code point is missing. word_spacing_applicable?()¶ Returns whether word spacing is applicable when using this font. Always returns true for simple fonts. See: PDF2.0 s9.3.3 writing_mode()¶ Returns the writing mode which is always :horizontal for simple fonts like Type1. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontTrueType.html","title":"HexaPDF::Type::FontTrueType","tags":"","text":" Instance Methodsfont_wrapper class HexaPDF::Type::FontTrueType Parent HexaPDF::Type::FontSimple Represents a TrueType font. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontToUnicodeHexaPDF::Stream or HashfalsenilFirstCharIntegerfalsenilLastCharIntegerfalsenilWidthsHexaPDF::PDFArray or ArrayfalsenilFontDescriptorHexaPDF::Type::FontDescriptor or HashfalsenilEncodingHexaPDF::Dictionary or Symbol or HashfalsenilSubtypeSymboltrue:TrueTypeBaseFontSymboltruenil Public Instance Methods font_wrapper()¶ Overrides the default to provide a font wrapper in case none is set and a complete TrueType is embedded. See: Font#font_wrapper Calls superclass method HexaPDF::Type::Font#font_wrapper "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontType0.html","title":"HexaPDF::Type::FontType0","tags":"","text":" Instance Methodsbounding_boxdecodedescendant_fontembedded?font_descriptorfont_fileto_utf8widthword_spacing_applicable?writing_mode class HexaPDF::Type::FontType0 Parent HexaPDF::Type::Font Represents a composite PDF font. Composites fonts wrap a descendant CIDFont and use CIDs to identify glyphs. A CID can be encoded in one
or more bytes and an associated CMap specifies how this encoding is done. Composite fonts also allow for vertical writing mode and support TrueType as well as OpenType fonts. See: PDF2.0 s9.7 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontToUnicodeHexaPDF::Stream or HashfalsenilSubtypeSymboltrue:Type0BaseFontSymboltruenilEncodingHexaPDF::Stream or Symbol or HashtruenilDescendantFontsHexaPDF::PDFArray or Arraytruenil Public Instance Methods bounding_box()¶ Returns the bounding box of the font or nil if it is not found. decode(string)¶ Decodes the given string into an array of CIDs. descendant_font()¶ Returns the CID font of this type 0 font. embedded?()¶ Returns true if the font is embedded. font_descriptor()¶ Returns the font descriptor of the descendant font. font_file()¶ Returns the embeeded font file object or nil if the font is not embedded. to_utf8(code)¶ Returns the UTF-8 string for the given code, or calls the configuration option ‘font.on_missing_unicode_mapping’ if no mapping was found. width(code)¶ Returns the unscaled width of the given CID in glyph units, or 0 if the width for the code point is missing. word_spacing_applicable?()¶ Returns whether word spacing is applicable when using this font. Note that the return value is cached when accessed the first time. See: PDF2.0 s9.3.3 writing_mode()¶ Returns the writing mode which is either :horizontal or :vertical. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontType1/index.html","title":"HexaPDF::Type::FontType1","tags":"","text":" Instance Methodsbounding_boxfont_wrappersymbolic?width class HexaPDF::Type::FontType1 Parent HexaPDF::Type::FontSimple Represents a Type1 font. PDF provides 14 built-in fonts that all PDF readers must understand. These 14 fonts are known as the “Standard 14 Fonts” and are all Type1 fonts. HexaPDF supports these fonts. Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontToUnicodeHexaPDF::Stream or HashfalsenilFirstCharIntegerfalsenilLastCharIntegerfalsenilWidthsHexaPDF::PDFArray or ArrayfalsenilFontDescriptorHexaPDF::Type::FontDescriptor or HashfalsenilEncodingHexaPDF::Dictionary or Symbol or HashfalsenilSubtypeSymboltrue:Type1BaseFontSymboltruenil Public Instance Methods bounding_box()¶ Returns the bounding box of the font or nil if it is not found. Calls superclass method HexaPDF::Type::Font#bounding_box font_wrapper()¶ Overrides the default to provide a font wrapper in case none is set and the font is one of the standard fonts. See: Font#font_wrapper Calls superclass method HexaPDF::Type::Font#font_wrapper symbolic?()¶ Returns true if the font is a symbolic font, false if it is not, and nil if it is not known. Calls superclass method HexaPDF::Type::FontSimple#symbolic? width(code)¶ Returns the unscaled width of the given code point in glyph units, or 0 if the width for the code point is missing. Calls superclass method HexaPDF::Type::FontSimple#width "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontType1/StandardFonts.html","title":"HexaPDF::Type::FontType1::StandardFonts","tags":"","text":" Class Methodsfontstandard_font?standard_name module HexaPDF::Type::FontType1::StandardFonts Provides the names and additional mappings of the Standard 14 Fonts. Public Class Methods font(name)¶ Returns the Type1 font object for the given standard font name, or nil if the given name doesn’t belong to a standard font. standard_font?(name)¶ Returns true if the given name is the name of a standard font. standard_name(name)¶ Returns the standard name of the font in case an additional name is used, or nil if the given name doesn’t belong to a standard font. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/FontType3.html","title":"HexaPDF::Type::FontType3","tags":"","text":" Instance Methodsbounding_boxglyph_scaling_factor class HexaPDF::Type::FontType3 Parent HexaPDF::Type::FontSimple Represents a Type 3 font. Note: We assume the /FontMatrix is only used for scaling, i.e. of the form [x 0 0 +/-x 0 0]. If it is of a different form, things won’t work correctly. This will be handled once such a case is found. See: PDF2.0 s9.6.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:FontToUnicodeHexaPDF::Stream or HashfalsenilFirstCharIntegerfalsenilLastCharIntegerfalsenilWidthsHexaPDF::PDFArray or ArrayfalsenilFontDescriptorHexaPDF::Type::FontDescriptor or HashfalsenilEncodingHexaPDF::Dictionary or Symbol or HashfalsenilSubtypeSymboltrue:Type3NameSymbolfalsenilFontBBoxHexaPDF::Rectangle or ArraytruenilFontMatrixHexaPDF::PDFArray or ArraytruenilCharProcsHexaPDF::Dictionary or HashtruenilResourcesHexaPDF::Dictionary or Hashfalsenil Public Instance Methods bounding_box()¶ Returns the bounding box of the font. glyph_scaling_factor()¶ Returns the glyph scaling factor for transforming from glyph space to text space. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Form/index.html","title":"HexaPDF::Type::Form","tags":"","text":" Attributessource_pathInstance Methodsboxcanvascontentscontents=heightprocess_contentsreference_xobject?referenced_contentresourceswidth class HexaPDF::Type::Form Parent HexaPDF::Stream Represents a form XObject of a PDF document. See: PDF2.0 s8.10 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenilTypeSymbolfalse:XObjectSubtypeSymboltrue:FormFormTypeIntegerOne of: 1false1BBoxHexaPDF::Rectangle or ArraytruenilMatrixHexaPDF::PDFArray or Arrayfalse[1, 0, 0, 1, 0, 0]ResourcesHexaPDF::Type::Resources or HashfalsenilGroupHexaPDF::Type::Form::Group or HashfalsenilRefHexaPDF::Type::Form::Reference or HashfalsenilMetadataHexaPDF::Stream or HashfalsenilPieceInfoHexaPDF::Dictionary or HashfalsenilLastModifiedHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilStructParentIntegerfalsenilStructParentsIntegerfalsenilOPIHexaPDF::Dictionary or HashfalsenilOCHexaPDF::Dictionary or Hashfalsenil Attributes source_path[RW]¶ Returns the path to the PDF file that was used when creating the form object. This value is only set when the form object was created by using the image loading facility (i.e. when treating a single page PDF file as image) and not when the form object was created in any other way (i.e. manually created or already part of a loaded PDF file). Public Instance Methods box()¶ Returns the rectangle defining the bounding box of the form. canvas()¶ Returns the canvas for the form XObject. The canvas object is cached once it is created so that its graphics state is correctly retained without the need for parsing its contents. If the bounding box of the form XObject doesn’t have its origin at (0, 0), the canvas origin is translated into the bottom left corner so that this detail doesn’t matter when using the canvas. This means that the canvas’ origin is always at the bottom left corner of the bounding box. Note that a canvas can only be retrieved for initially empty form XObjects! contents()¶ Returns the contents of the form XObject. Note: This is the same as stream but here for interface compatibility with Page. contents=(data)¶ Replaces the contents of the form XObject with the given string. This also clears the cache to avoid returning invalid objects. Note: This is the same as stream= but here for interface compatibility with Page. height()¶ Returns the height of the bounding box (see box). process_contents(processor, original_resources: nil)¶ Processes the content stream of the form XObject with the given processor object. The original_resources argument has to be set to a page’s resources if this form XObject is processed as part of this page. See: HexaPDF::Content::Processor reference_xobject?()¶ Returns true if the Form XObject is a reference XObject. referenced_content()¶ Returns the referenced page as Form XObject, if this Form XObject is a Reference XObject and the referenced page is found. Otherwise returns nil. resources()¶ Returns the resource dictionary which is automatically created if it doesn’t exist. width()¶ Returns the width of the bounding box (see box). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Form/Group.html","title":"HexaPDF::Type::Form::Group","tags":"","text":" class HexaPDF::Type::Form::Group Parent HexaPDF::Dictionary Represents a group attribute dictionary. See: PDF2.0 s8.10.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:GroupSSymboltruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Form/Reference.html","title":"HexaPDF::Type::Form::Reference","tags":"","text":" class HexaPDF::Type::Form::Reference Parent HexaPDF::Dictionary Represents a reference dictionary which allows an XObject to refer to content in an embedded or linked PDF document. See: PDF2.0 s8.10.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueFHexaPDF::Type::FileSpecification or Hash or StringtruenilPageInteger or StringtruenilIDHexaPDF::PDFArray or Arrayfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/GraphicsStateParameter.html","title":"HexaPDF::Type::GraphicsStateParameter","tags":"","text":" class HexaPDF::Type::GraphicsStateParameter Parent HexaPDF::Dictionary Represents a graphics state parameter dictionary. This dictionary can be used to define most graphics state parameters that are available. Some parameters can only be set by an operator, some only by the dictionary but most by both. See: PDF2.0 s8.4.5, s8.1 Field DefinitionsNameType/Allowed ValuesRequiredDefault
ValueTypeSymboltrue:ExtGStateLWNumericfalsenilLCIntegerfalsenilLJIntegerfalsenilMLNumericfalsenilDHexaPDF::PDFArray or ArrayfalsenilRISymbolOne of: :AbsoluteColorimetric, :RelativeColorimetric, :Saturation, :PerceptualfalsenilOPTrueClass or FalseClassfalsenilopTrueClass or FalseClassfalsenilOPMIntegerfalsenilFontHexaPDF::PDFArray or ArrayfalsenilBGHexaPDF::Dictionary or HexaPDF::Stream or HashfalsenilBG2HexaPDF::Dictionary or HexaPDF::Stream or Symbol or HashfalsenilUCRHexaPDF::Dictionary or HexaPDF::Stream or HashfalsenilUCR2HexaPDF::Dictionary or HexaPDF::Stream or Symbol or HashfalsenilTRHexaPDF::Dictionary or HexaPDF::Stream or HexaPDF::PDFArray or Symbol or Hash or ArrayfalsenilTR2HexaPDF::Dictionary or HexaPDF::Stream or HexaPDF::PDFArray or Symbol or Hash or ArrayfalsenilHTHexaPDF::Dictionary or HexaPDF::Stream or Symbol or HashfalsenilFLNumericfalsenilSMNumericfalsenilSATrueClass or FalseClassfalsenilBMSymbol or HexaPDF::PDFArray or ArrayfalsenilSMaskHexaPDF::Dictionary or Symbol or HashfalsenilCANumericfalsenilcaNumericfalsenilAISTrueClass or FalseClassfalsenilTKTrueClass or FalseClassfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/IconFit.html","title":"HexaPDF::Type::IconFit","tags":"","text":" class HexaPDF::Type::IconFit Parent HexaPDF::Dictionary An IconFit dictionary specifies how an icon should be displayed inside an annotation rectangle. See: PDF2.0 s12.7.8.3.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueSWSymbolOne of: :A, :B, :S, :Nfalse:ASSymbolOne of: :A, :Pfalse:PAHexaPDF::PDFArray or Arrayfalse[0.5, 0.5]FBTrueClass or FalseClassfalsefalse "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Image.html","title":"HexaPDF::Type::Image","tags":"","text":" ConstantsInfoAttributessource_pathInstance Methodsheightinfowidthwrite class HexaPDF::Type::Image Parent HexaPDF::Stream Represents an image XObject of a PDF document. See: PDF2.0 s8.8 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenilTypeSymbolfalse:XObjectSubtypeSymboltrue:ImageWidthIntegertruenilHeightIntegertruenilColorSpaceSymbol or HexaPDF::PDFArray or ArrayfalsenilBitsPerComponentIntegerfalsenilIntentSymbolOne of: :AbsoluteColorimetric, :RelativeColorimetric, :Saturation, :PerceptualfalsenilImageMaskTrueClass or FalseClassfalsefalseMaskHexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilDecodeHexaPDF::PDFArray or ArrayfalsenilInterpolateTrueClass or FalseClassfalsefalseAlternatesHexaPDF::PDFArray or ArrayfalsenilSMaskHexaPDF::Stream or HashfalsenilSMaskInDataIntegerOne of: 0, 1, 2falsenilStructParentIntegerfalsenilIDHexaPDF::DictionaryFields::PDFByteString or StringfalsenilOPIHexaPDF::Dictionary or HashfalsenilMetadataHexaPDF::Stream or HashfalsenilOCHexaPDF::Dictionary or Hashfalsenil Constants Info¶ The structure that is returned by the Image#info method. Attributes source_path[RW]¶ Returns the source path that was used when creating the image object. This value is only set when the image object was created by using the image loading facility and not when the image is part of a loaded PDF file. Public Instance Methods height()¶ Returns the height of the image. info()¶ Returns an Info structure with information about the image. Available accessors: type The type of the image. Either :jpeg, :jp2, :jbig2, :ccitt or :png. width The width of the image. height The height of the image. color_space The color space the image uses. Either :rgb, :cmyk, :gray or :other. indexed Whether the image uses an indexed color space or not. components The number of color components of the color space, or -1 if the number couldn’t be determined. bits_per_component The number of bits per color component. writable Whether the image can be written by HexaPDF. extension The file extension that would be used when writing the file. Either jpg, jpx or png. Only meaningful when writable is true. width()¶ Returns the width of the image. write(basename) ¶ write(io) ¶ Saves this image XObject to the file with the given name and appends the correct extension (if the name already contains this extension, the name is used as is), or the given IO object. Raises an error if the image format is not supported. The output format and extension depends on the image type as returned by the info method: :jpeg Saved as a JPEG file with the extension ‘.jpg’ :jp2 Saved as a JPEG2000 file with the extension ‘.jpx’ :png Saved as a PNG file with the extension ‘.png’ "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Info.html","title":"HexaPDF::Type::Info","tags":"","text":" Instance Methodsmust_be_indirect? class HexaPDF::Type::Info Parent HexaPDF::Dictionary Represents the PDF’s document information dictionary. The info dictionary is linked via the /Info entry from the Trailer and contains metadata for the document. See: PDF2.0 s14.3.3, Trailer Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTitleStringfalsenilAuthorStringfalsenilSubjectStringfalsenilKeywordsStringfalsenilCreatorStringfalsenilProducerStringfalsenilCreationDateHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilModDateHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilTrappedSymbolOne of: :True, :False, :Unknownfalsenil Public Instance Methods must_be_indirect?()¶ Info dictionaries must always be indirect. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/MarkInformation.html","title":"HexaPDF::Type::MarkInformation","tags":"","text":" class HexaPDF::Type::MarkInformation Parent HexaPDF::Dictionary Represents the mark information dictionary which provides some general information related to structured PDF documents. See: PDF2.0 s14.7.1 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueMarkedTrueClass or FalseClassfalsefalseUserPropertiesTrueClass or FalseClassfalsefalseSuspectsTrueClass or FalseClassfalsefalse "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Metadata.html","title":"HexaPDF::Type::Metadata","tags":"","text":" class HexaPDF::Type::Metadata Parent HexaPDF::Stream Represents an XMP metadata stream. XMP metadata streams may be attached to most PDF objects, though it only makes sense for some of them. There is also a main XMP metadata stream for the whole document that is accessible via the /Metadata key of the document catalog. That metadata stream should contain the same values as the PDF’s info dictionary and may contain additional entries. This can be accomplished via HexaPDF::Document#metadata. See: PDF2.0 s14.3.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenilTypeSymboltrue:MetadataSubtypeSymboltrue:XML "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Names.html","title":"HexaPDF::Type::Names","tags":"","text":" Instance Methodsdestinations class HexaPDF::Type::Names Parent HexaPDF::Dictionary Represents the PDF’s names dictionary which associates names with data for various purposes. Each field corresponds to a name tree that holds the information and can be used to find, add or delete an entry. This dictionary is linked via the /Names entry from the HexaPDF::Catalog. See: PDF2.0 s7.7.4, HexaPDF::Catalog, HexaPDF::NameTreeNode Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueDestsHexaPDF::NameTreeNode or HashfalsenilAPHexaPDF::NameTreeNode or HashfalsenilJavaScriptHexaPDF::NameTreeNode or HashfalsenilPagesHexaPDF::NameTreeNode or HashfalsenilTemplatesHexaPDF::NameTreeNode or HashfalsenilIDSHexaPDF::NameTreeNode or HashfalsenilURLSHexaPDF::NameTreeNode or HashfalsenilEmbeddedFilesHexaPDF::NameTreeNode or HashfalsenilAlternatePresentationsHexaPDF::NameTreeNode or HashfalsenilRenditionsHexaPDF::NameTreeNode or Hashfalsenil Public Instance Methods destinations()¶ Returns the destinations name tree containing a mapping from names to destination objects. The name tree will be created if needed. Note: It is possible to use this name tree directly, but HexaPDF::Document::Destinations provides a much easier to work with convenience interface for working with destination objects. See: PDF2.0 s12.3.2 "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/ObjectStream/index.html","title":"HexaPDF::Type::ObjectStream","tags":"","text":" Instance Methodsadd_objectdelete_objectobject_indexparse_streamwrite_objects class HexaPDF::Type::ObjectStream Parent HexaPDF::Stream Represents PDF type ObjStm, object streams. An object stream is a stream that can hold multiple indirect objects. Since the objects are stored inside the stream, filters can be used to compress the stream content and therefore represent the indirect objects more compactly than would be possible otherwise. How are Object Streams Used?¶ ↑ When an indirect object that resides in an object stream needs to be loaded, the object stream itself is parsed and loaded and parse_stream is invoked to get an ObjectStream::Data object representing the stored indirect objects. After that the requested indirect object itself is loaded and returned using this ObjectStream::Data object. From a user’s perspective nothing changes when an object is located inside an object stream instead of directly in a PDF file. The indirect objects initially stored in the object stream are
automatically added to the list of to-be-stored objects when parse_stream is invoked. Additional objects can be assigned to the object stream via add_object or deleted from it via delete_object. Before an object stream is written, it is necessary to invoke write_objects so that the to-be-stored objects are serialized to the stream. This is automatically done by the Writer. A user thus only has to define which objects should reside in the object stream. However, only objects that can be written to the object stream are actually written. The other objects are deleted from the object stream (delete_object) and written normally. See PDF2.0 s7.5.7 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenilTypeSymboltrue:ObjStmNIntegertruenilFirstIntegertruenilExtendsHexaPDF::Stream or Hashfalsenil Public Instance Methods add_object(ref)¶ Adds the given object to the list of objects that should be stored in this object stream. The ref argument can either be a reference or any PDF object. delete_object(ref)¶ Deletes the given object from the list of objects that should be stored in this object stream. The ref argument can either be a reference or a PDF object. object_index(obj)¶ Returns the index into the array containing the to-be-stored objects for the given reference/PDF object. parse_stream()¶ Parses the stream and returns an ObjectStream::Data object that can be used for retrieving the objects defined by this object stream. The object references are also added to this object stream so that they are included when the object gets written. write_objects(revision) → obj_to_stm_hash ¶ Writes the added objects to the stream and returns a hash mapping all written objects to this object stream. There are some reasons why an added object may not be stored in the stream: It has a generation number other than 0. It is a stream object. It doesn’t reside in the given Revision object. Such objects are additionally deleted from the list of to-be-stored objects and are later written as indirect objects. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/ObjectStream/Data.html","title":"HexaPDF::Type::ObjectStream::Data","tags":"","text":" Class MethodsnewInstance Methodsobject_by_index class HexaPDF::Type::ObjectStream::Data Parent Object Holds all necessary information to load objects for an object stream. Public Class Methods new(stream_data, oids, offsets)¶ Initializes the data object with the needed values. Public Instance Methods object_by_index(index)¶ Returns the object specified by the given index together with its object number. Objects are not pre-loaded, so every time this method is invoked the associated stream data is parsed and a new object returned. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentConfiguration/index.html","title":"HexaPDF::Type::OptionalContentConfiguration","tags":"","text":" Instance Methodsadd_ocg_to_uiocg_on?ocg_state class HexaPDF::Type::OptionalContentConfiguration Parent HexaPDF::Dictionary Represents an optional content configuration dictionary. This dictionary is used for the /D and /Configs entries in the optional content properties dictionary. It configures the states of the OCGs as well as defines how those states may be changed by a PDF processor. See: PDF2.0 s8.11.4.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueNameStringfalsenilCreatorStringfalsenilBaseStateSymbolOne of: :ON, :OFF, :Unchangedfalse:ONONHexaPDF::PDFArray or ArrayfalsenilOFFHexaPDF::PDFArray or ArrayfalsenilIntentSymbol or HexaPDF::PDFArray or Arrayfalse:ViewASHexaPDF::PDFArray or ArrayfalsenilOrderHexaPDF::PDFArray or ArrayfalsenilListModeSymbolOne of: :AllPages, :VisiblePagesfalse:AllPagesRBGroupsHexaPDF::PDFArray or ArrayfalsenilLockedHexaPDF::PDFArray or Arrayfalse[] Public Instance Methods add_ocg_to_ui(ocg, path: nil)¶ Makes the given optional content group visible in an interactive PDF processor’s user interface. The OCG is always added to the end of the specified path or, if path is not specified, the top level. The optional argument path specifies the strings or OCGs under which the given OCG should hierarchically be nested. A string is used as a non-selectable label, an OCG reflects an actual nesting of the involved OCGs. Examples: configuration.add_ocg_to_ui(ocg) # Add the OCG as top-level item configuration.add_ocg_to_ui(ocg, path: 'Debug') # Add the OCG under the label 'Debug' # Add the OCG under the label 'Page1' which is under the label 'Debug' configuration.add_ocg_to_ui(ocg, path: ['Debug', 'Page1']) configuration.add_ocg_to_ui(ocg, path: other_ocg) # Add the OCG under the other OCG ocg_on?(ocg)¶ Returns true if the given optional content group is on. ocg_state(ocg) → state ¶ ocg_state(ocg, state) → state ¶ Returns the state (:on, :off or nil) of the optional content group if the state argument is not given. Otherwise sets the state of the OCG to the given state value (:on/:ON or :off/:OFF). The value nil is only returned if the state is not defined by the configuration dictionary (which may only be the case if the configuration dictionary is not the default configuration dictionary). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentConfiguration/UsageApplication.html","title":"HexaPDF::Type::OptionalContentConfiguration::UsageApplication","tags":"","text":" class HexaPDF::Type::OptionalContentConfiguration::UsageApplication Parent HexaPDF::Dictionary Represents an optional content usage application dictionary. This dictionary is used for the elements in the /AS array of an optional content configuration dictionary. It specifies how a PDF processor should use the usage entries of OCGs to automatically change their state based on external factors (like magnifacation factor or language). See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueEventSymbolOne of: :View, :Print, :ExporttruenilOCGsHexaPDF::PDFArray or Arrayfalse[]CategoryHexaPDF::PDFArray or Arraytruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/index.html","title":"HexaPDF::Type::OptionalContentGroup","tags":"","text":" Instance Methodsadd_to_uiapply_intentcreator_infoexport_stateintended_userintent_design?intent_view?languagemust_be_indirect?nameoff!on!on?page_elementprint_stateview_statezoom class HexaPDF::Type::OptionalContentGroup Parent HexaPDF::Dictionary Represents an optional content group (OCG). An optional content group represents graphics that can be made visible or invisible dynamically by the PDF processor. These graphics may reside in any content stream and don’t need to be consecutive with respect to the drawing order. Most PDF viewers call this feature “layers” since it is often used to show/hide parts of drawings or maps. Intent and Usage¶ ↑ An OCG may be assigned an intent (defaults to :View) and usage information. This allows one to specify in more detail how an OCG may be used (e.g. to only show the content when a certain zoom level is active). See: PDF2.0 s8.11.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:OCGNameStringtruenilIntentSymbol or HexaPDF::PDFArray or Arrayfalse:ViewUsageHexaPDF::Type::OptionalContentGroup::OptionalContentUsage or Hashfalsenil Public Instance Methods add_to_ui(path: nil)¶ Adds the OCG to the PDF processor’s user interface in the default configuration (see OptionalContentProperties#default_configuration), either at the top-level or under the given hierarchical path but always as the last item. apply_intent(intent)¶ Applies the given intent (:View, :Design or a custom intent) to the OCG. creator_info → creator_info or nil ¶ creator_info(creator, subtype) → creator_info ¶ Returns the creator info dictionary (see OptionalContentUsage::CreatorInfo) or nil if no argument is given. Otherwise sets the creator info using the given values. The creator info dictionary is used to store application-specific data. The string creator specifies the application that created the group and the symbol subtype defines the type of content controlled by the OCG (for example :Artwork for graphic design applications or :Technical for technical designs such as plans). export_state → true or false ¶ export_state(state) → state ¶ Returns the export state if no argument is given. Otherwise sets the export state using the given value. The export state indicates the recommended state of the content when the PDF document is saved to a format that does not support optional content (e.g. a raster image format). If state is true, the content controlled by the OCG will be visible. intended_user → user_dict or nil ¶ intended_user(type, name) → user_dict ¶ Returns the user dictionary (see OptionalContentUsage::User) or nil if no argument is given. Otherwise sets the user information using the given values. The information specifies one or more users for whom this OCG is primarily intended. The symbol type can either be :Ind (individual), :Ttl (title or position) or :Org (organisation). The argument name can either be a single name or an array of names. intent_design?()¶ Returns true if this OCG has an intent of :Design. intent_view?()¶ Returns true if this OCG has an intent of :View. language → language_info or nil ¶ language(lang, preferred: false) → language_info ¶ Returns the language dictionary (see OptionalContentUsage::Language) or nil if no argument is given. Otherwise sets the langauge using the given values. The language dictionary describes the language of the content controlled by the OCG. The string lang needs to be a language tag as defined in BCP 47
(e.g. ‘en’ or ‘de-AT’). If preferred is true, this dictionary is preferred if there is only a partial match must_be_indirect?()¶ Returns true since optional content group dictionaries objects must always be indirect. name → name ¶ name(value) → value ¶ Returns the name of the OCG if no argument is given. Otherwise sets the name to the given value. off!()¶ Sets the state of the OCG to off in the default configuration (see OptionalContentProperties#default_configuration). on!()¶ Sets the state of the OCG to on in the default configuration (see OptionalContentProperties#default_configuration). on?()¶ Returns true if the OCG is set to on in the default configuration (see OptionalContentProperties#default_configuration). page_element → element_type or nil ¶ page_element(subtype) → element_type ¶ Returns the page element type if no argument is given. Otherwise sets the page element type using the given value. When set, the page element declares that the OCG contains a pagination artificat. The symbol argument subtype can either be :HF (header/footer), :FG (foreground image or graphics), :BG (background image or graphics), or :L (logo). print_state → print_state or nil ¶ print_state(state, subtype: nil) → print_state ¶ Returns the print state (see OptionalContentUsage::Print) or nil if no argument is given. Otherwise sets the print state using the given values. The print state indicates the state of the content when the PDF document is printed. If state is true, the content controlled by the OCG will be printed. The symbol subtype may optionally specify the kind of content controlled by the OCG (e.g. :Trapping or :Watermark). view_state → true or false ¶ view_state(state) → state ¶ Returns the view state if no argument is given. Otherwise sets the view state using the given value. The view state indicates the state of the content when the PDF document is first opened. If state is true, the content controlled by the OCG will be visible. zoom → zoom_dict or nil ¶ zoom(min: nil, max: nil) → zoom_dict ¶ Returns the zoom dictionary (see OptionalContentUsage::Zoom) or nil if no argument is given. Otherwise sets the zoom range using the given values. The zoom range specifies the magnifications at which the content in the OCG is visible. Either min or max or both can be specified as magnification factors (i.e. 1.0 means viewing at 100%): If min is specified but max isn’t, the maximum possible magnification factor of the PDF processor is used for max. If max is specified but min isn’t, the default value of 0 for min is used. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/index.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage Parent HexaPDF::Dictionary Represents an optional content group’s usage dictionary which describes how the content controlled by the group should be used. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueCreatorInfoHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::CreatorInfo or HashfalsenilLanguageHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Language or HashfalsenilExportHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Export or HashfalsenilZoomHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Zoom or HashfalsenilPrintHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Print or HashfalsenilViewHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::View or HashfalsenilUserHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::User or HashfalsenilPageElementHexaPDF::Type::OptionalContentGroup::OptionalContentUsage::PageElement or Hashfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/CreatorInfo.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::CreatorInfo","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::CreatorInfo Parent HexaPDF::Dictionary The dictionary used as value for the /CreatorInfo key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueCreatorStringtruenilSubtypeSymboltruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/Export.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Export","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Export Parent HexaPDF::Dictionary The dictionary used as value for the /Export key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueExportStateSymbolOne of: :ON, :OFFtruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/Language.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Language","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Language Parent HexaPDF::Dictionary The dictionary used as value for the /Language key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLangStringtruenilPreferredSymbolOne of: :ON, :OFFfalse:OFF "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/PageElement.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::PageElement","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::PageElement Parent HexaPDF::Dictionary The dictionary used as value for the /PageElement key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueSubtypeSymbolOne of: :HF, :FG, :BG, :Ltruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/Print.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Print","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Print Parent HexaPDF::Dictionary The dictionary used as value for the /Print key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueSubtypeSymbolfalsenilPrintStateSymbolOne of: :ON, :OFFfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/User.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::User","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::User Parent HexaPDF::Dictionary The dictionary used as value for the /User key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolOne of: :Ind, :Ttl, :OrgtruenilNameString or HexaPDF::PDFArray or Arraytruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/View.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::View","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::View Parent HexaPDF::Dictionary The dictionary used as value for the /View key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueViewStateSymbolOne of: :ON, :OFFtruenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentGroup/OptionalContentUsage/Zoom.html","title":"HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Zoom","tags":"","text":" class HexaPDF::Type::OptionalContentGroup::OptionalContentUsage::Zoom Parent HexaPDF::Dictionary The dictionary used as value for the /Zoom key. See: PDF2.0 s8.11.4.4 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueminNumericfalse0maxNumericfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentMembership.html","title":"HexaPDF::Type::OptionalContentMembership","tags":"","text":" class HexaPDF::Type::OptionalContentMembership Parent HexaPDF::Dictionary Represents an optional content membership dictionary. A membership dictionary allows more complex visibility policies, like: Content that should be visible when a certain optional content group is off instead of on. Content that should be visible when all of a number of OCGs are on. See: PDF2.0 s8.11.2.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:OCMDOCGsHexaPDF::Type::OptionalContentGroup or HexaPDF::PDFArray or Hash or ArrayfalsenilPSymbolOne of: :AllOn, :AnyOn, :AnyOff, :AllOfffalse:AnyOnVEHexaPDF::PDFArray or Arrayfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OptionalContentProperties.html","title":"HexaPDF::Type::OptionalContentProperties","tags":"","text":" Instance Methodsadd_ocgcreate_ocmddefault_configurationocgocgs class HexaPDF::Type::OptionalContentProperties Parent HexaPDF::Dictionary Represents an optional content properties dictionary. This dictionary is the value of the /OCProperties key in the document catalog and needs to exist for optional content to be usable by a PDF processor. In HexaPDF it provides the main entry point for working with optional content. See: PDF2.0 s8.11.4.2 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueOCGsHexaPDF::PDFArray or Arraytrue[]DHexaPDF::Type::OptionalContentConfiguration or HashtruenilConfigsHexaPDF::PDFArray or Arrayfalsenil Public Instance Methods add_ocg(name) → ocg ¶ add_ocg(ocg) → ocg ¶ Adds the given optional content group to the list of known OCGs and returns it. If a string is provided, an optional content group with that name is created before adding it. See: ocg, OptionalContentGroup create_ocmd(ocgs, policy: :any_on)¶ Creates an optional content membership dictionary containing the given optional content group(s). The optional argument policy specifies the visibility policy: :any_on/:AnyOn Content is visible if any of the OCGs are on.
:any_off/:AnyOff Content is visible if any of the OCGs are off. :all_on/:AllOn Content is only visible if all OCGs are on. :all_off/:AllOff Content is only visible if all OCGs are off. See: OptionalContentMembership default_configuration → config_dict ¶ default_configuration(hash) → config_dict ¶ Returns the default optional content configuration dictionary if no argument is given. Otherwise sets the the default optional content configuration to the given hash value. The default configuration defines the initial state of the optional content groups and how those states may be changed by a PDF processor. Example: optional_content.default_configuration(Name: 'My Configuration', OFF: [ocg1], Order: [ocg_all, [ocg1, ocg2, ocg3]]) See: OptionalContentConfiguration ocg(name, create: true) → ocg or +nil+ ¶ Returns the first found optional content group with the given name. If no optional content group with the given name exists but the optional argument create is true, a new OCG with the given name is created and returned. Otherwise nil is returned. See: add_ocg ocgs()¶ Returns the list of known optional content group objects, with duplicates removed. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Outline.html","title":"HexaPDF::Type::Outline","tags":"","text":" Instance Methodsadd_itemeach_item class HexaPDF::Type::Outline Parent HexaPDF::Dictionary Represents the root of the PDF’s document outline containing a hierarchy of outline items (sometimes called bookmarks) in a linked list. The document outline usually contains items for the sections of the document, so that clicking on an item opens the page where the section starts (the section header is). Most PDF viewers are able to display the outline to aid in navigation, though not all apply the optional attributes like the text color. The outline dictionary is linked via the /Outlines entry from the Type::Catalog and can directly be accessed via HexaPDF::Document#outline. Examples¶ ↑ Here is an example for creating an outline: doc = HexaPDF::Document.new 5.times { doc.pages.add } doc.outline.add_item(\"Section 1\", destination: 0) do |sec1| sec1.add_item(\"Page 2\", destination: doc.pages[1]) sec1.add_item(\"Page 3\", destination: 2) sec1.add_item(\"Section 1.1\", text_color: \"red\", flags: [:bold]) do |sec11| sec11.add_item(\"Page 4\", destination: 3) end end Here is one for copying the complete outline from one PDF to another: doc = HexaPDF::Document.open(ARGV[0]) target = HexaPDF::Document.new stack = [target.outline] doc.outline.each_item do |item, level| if stack.size < level stack << stack.last[:Last] elsif stack.size > level (stack.size - level).times { stack.pop } end stack.last.add_item(target.import(item)) end # Copying all the pages so that the references work. doc.pages.each {|page| target.pages << target.import(page) } See: PDF2.0 s12.3.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:OutlinesFirstHexaPDF::Type::OutlineItem or HashfalsenilLastHexaPDF::Type::OutlineItem or HashfalsenilCountIntegerfalsenil Public Instance Methods add_item(title, **options, &block)¶ Adds a new top-level outline item. See OutlineItem#add_item for details on the available options since this method just passes all arguments through to it. each_item {|item| block } → item ¶ each_item → Enumerator ¶ Iterates over all items of the outline. The items are yielded in-order, yielding first the item itself and then its descendants. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/OutlineItem.html","title":"HexaPDF::Type::OutlineItem","tags":"","text":" Instance Methodsactionadd_itemdestinationdestination_pageeach_itemflagflagged?flagslevelmust_be_indirect?open?text_colortitleunflag class HexaPDF::Type::OutlineItem Parent HexaPDF::Dictionary Extended With HexaPDF::Utils::BitField Represents an outline item dictionary. An item has a title and some optional attributes: the action that is activated when clicking (either a simple destination or an explicit action object), the text color, and flags (whether the text should appear bold and/or italic). Additionally, items may have child items which makes it possible to create a hierarchy of items. If no destination/action is set, the item just acts as kind of a header. It usually only makes sense to do this when the item has children. Outline item dictionaries are connected together in the form of a linked list using the /Next and /Prev keys. Each item may have descendant items. If so, the /First and /Last keys point to respectively the first and last descendant items. Since many dictionary keys need to be kept up-to-date when manipulating the outline item tree, it is not recommended to manually do this but to rely on the provided convenience methods. See: PDF2.0 s12.3.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTitleStringtruenilParentHexaPDF::Dictionary or HashtruenilPrevHexaPDF::Type::OutlineItem or HashfalsenilNextHexaPDF::Type::OutlineItem or HashfalsenilFirstHexaPDF::Type::OutlineItem or HashfalsenilLastHexaPDF::Type::OutlineItem or HashfalsenilCountIntegerfalsenilDestSymbol or HexaPDF::DictionaryFields::PDFByteString or HexaPDF::PDFArray or String or ArrayfalsenilAHexaPDF::Type::Action or HashfalsenilSEHexaPDF::Dictionary or HashfalsenilCHexaPDF::PDFArray or Arrayfalse[0, 0, 0]FIntegerfalse0 Public Instance Methods action → action ¶ action(value) → action ¶ Returns the item’s action if no argument is given. Otherwise sets the action to the given value (needs to be a valid HexaPDF::Type::Action dictionary). If an action is set, the destination has to be unset; and vice versa. So when setting an action value, the destination is automatically deleted. add_item(title, destination: nil, action: nil, position: :last, open: true, text_color: nil, flags: nil) { |item| ... }¶ Adds, as child to this item, a new outline item with the given title that performs the provided action on clicking. Returns the newly added item. Alternatively, it is possible to provide an already initialized outline item instead of the title. If so, the only other argument that is used is position. Existing fields /Prev, /Next, /First, /Last, /Parent and /Count are deleted from the given item and set appropriately. If neither :destination nor :action is specified, the outline item has no associated action. This is only meaningful if the new item will have children as it then acts just as a container. If a block is specified, the newly created item is yielded. destination Specifies the destination that should be activated when clicking on the outline item. See HexaPDF::Document::Destinations#use_or_create for details. The argument :action takes precedence if it is also specified, action Specifies the action that should be taken when clicking on the outline item. See HexaPDF::Type::Action for details. If the argument :destination is also specified, the :action argument takes precedence. position The position where the new child item should be inserted. Can either be: :first Insert as first item :last Insert as last item (default) Integer When non-negative inserts before, otherwise after, the item at the given zero-based index. open Specifies whether the outline item should be open (i.e. one or more children are shown) or closed. Default: true. text_color The text color of the outline item text which needs to be a valid RGB color (see text_color for details). If not set, the text appears in black. flags An array of font variants (possible values are :bold and :italic) to set for the outline item text, see flags for detail. Default is to use no variant. Examples: doc.destinations.add(\"Title\") do |item| # no action, just container item.add(\"Second subitem\", destination: doc.pages[1]) # links to page 2 item.add(\"First subitem\", position: :first, destination: doc.pages[0]) end destination → destination ¶ destination(value) → destination ¶ Returns the item’s destination if no argument is given. Otherwise sets the destination to the given value (see HexaPDF::Document::Destinations#use_or_create for the posssible values). If an action is set, the destination has to be unset; and vice versa. So when setting a destination value, the action is automatically deleted. destination_page()¶ Returns the destination page if there is any. If a destination is set, the associated page is returned. If an action is set and it is a GoTo action, the associated page is returned. Otherwise nil is returned. each_item {|descendant_item, level| block } → item ¶ each_item → Enumerator ¶ Iterates over all descendant items of this one. The descendant items are yielded in-order, yielding first the item itself and then its descendants. flag(*flags, clear_existing: false) ¶ Sets the given flags on /F, given as flag names or bit indices. If clear_existing is true, all prior flags will be cleared. See flags for the list of available flags. flagged?(flag) ¶ Returns true if the given flag is set on /F. The argument can either be the flag name or the bit index. See flags for the list of available flags. flags()¶ Returns an array of flag names representing the set bit flags for /F. The available flags are: :italic or 0 The text is displayed in italic. :bold or 1 The text is displayed in bold. level()¶ Returns the outline level this item is one. The level of the items in the main outline dictionary, the root level, is 1. Here is an illustrated example of items contained in a document outline with their associated level: Outline dictionary 0 Outline item 1 1 |- Sub item 1 2 |- Sub item 2 2 |- Sub sub item 1 3 |- Sub item 3 2 Outline item 2 1 must_be_indirect?()¶ Returns true since outline items must always be indirect objects. open?()¶ Returns the open state of the item. true If this item is open, i.e. showing its child items. false If this item is closed, i.e. not showing its child items. nil If this item doesn’t (yet) have any child items. text_color → color ¶ text_color(color) → color ¶ Returns the item’s
text color as HexaPDF::Content::ColorSpace::DeviceRGB::Color object if no argument is given. Otherwise sets the text color, see HexaPDF::Content::ColorSpace.device_color_from_specification for possible color values. Note: The color has to be an RGB color. title → title ¶ title(value) → title ¶ Returns the item’s title if no argument is given. Otherwise sets the title to the given value. flag(*flags) ¶ Clears the given flags from /F, given as flag names or bit indices. See flags for the list of available flags. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Page.html","title":"HexaPDF::Type::Page","tags":"","text":" ConstantsINHERITABLE_FIELDSPAPER_SIZEClass Methodsmedia_boxInstance Methods[]ancestor_nodesboxcanvascontentscontents=copy_inherited_valueseach_annotationflatten_annotationsindexlabelmust_be_indirect?orientationprocess_contentsresourcesrotateto_form_xobject class HexaPDF::Type::Page Parent HexaPDF::Dictionary Represents a page of a PDF document. A page object contains the meta information for a page. Most of the fields are independent from the page’s content like the /Dur field. However, some of them (like /Resources or /UserUnit) influence how or if the page’s content can be rendered correctly. A number of field values can also be inherited: /Resources, /MediaBox, /CropBox, /Rotate. Field inheritance means that if a field is not set on the page object itself, the value is taken from the nearest page tree ancestor that has this value set. See: PDF2.0 s7.7.3.3, s7.7.3.4, Pages Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:PageParentHexaPDF::Type::PageTreeNode or HashtruenilLastModifiedHexaPDF::DictionaryFields::PDFDate or String or Time or Date or DateTimefalsenilResourcesHexaPDF::Type::Resources or HashfalsenilMediaBoxHexaPDF::Rectangle or ArrayfalsenilCropBoxHexaPDF::Rectangle or ArrayfalsenilBleedBoxHexaPDF::Rectangle or ArrayfalsenilTrimBoxHexaPDF::Rectangle or ArrayfalsenilArtBoxHexaPDF::Rectangle or ArrayfalsenilBoxColorInfoHexaPDF::Dictionary or HashfalsenilContentsHexaPDF::Stream or HexaPDF::PDFArray or Hash or ArrayfalsenilRotateIntegerfalse0GroupHexaPDF::Dictionary or HashfalsenilThumbHexaPDF::Stream or HashfalsenilBHexaPDF::PDFArray or ArrayfalsenilDurNumericfalsenilTransHexaPDF::Dictionary or HashfalsenilAnnotsHexaPDF::PDFArray or ArrayfalsenilAAHexaPDF::Dictionary or HashfalsenilMetadataHexaPDF::Stream or HashfalsenilPieceInfoHexaPDF::Dictionary or HashfalsenilStructParentsIntegerfalsenilIDHexaPDF::DictionaryFields::PDFByteString or StringfalsenilPZNumericfalsenilSeparationInfoHexaPDF::Dictionary or HashfalsenilTabsSymbolfalsenilTemplateInstantiatedSymbolfalsenilPresStepsHexaPDF::Dictionary or HashfalsenilUserUnitNumericfalsenilVPHexaPDF::PDFArray or Arrayfalsenil Constants INHERITABLE_FIELDS¶ The inheritable fields. PAPER_SIZE¶ The predefined paper sizes in points (1/72 inch): ISO sizes: A0x4, A0x2, A0-A10, B0-B10, C0-C10 Letter, Legal, Ledger, Tabloid, Executive Public Class Methods media_box(paper_size, orientation: :portrait)¶ Returns the media box for the given paper size or array. If an array is specified, it needs to contain exactly four numbers. The orientation argument is not used in this case. See PAPER_SIZE for the defined paper sizes. Public Instance Methods [](name)¶ Returns the value for the entry name. If name is an inheritable value and the value has not been set on the page object, its value is retrieved from the ancestor page tree nodes. See: Dictionary#[] Calls superclass method HexaPDF::Dictionary#[] ancestor_nodes()¶ Returns all parent nodes of the page up to the root of the page tree. The direct parent is the first node in the array and the root node the last. box(type = :crop) → box ¶ box(type = :crop, rectangle) → rectangle ¶ If no rectangle is given, returns the rectangle defining a certain kind of box for the page. Otherwise sets the value for the given box type to rectangle (an array with four values or a HexaPDF::Rectangle). This method should be used instead of directly accessing any of /MediaBox, /CropBox, /BleedBox, /ArtBox or /TrimBox because it also takes the fallback values into account! The following types are allowed: :media The media box defines the boundaries of the medium the page is to be printed on. :crop The crop box defines the region to which the contents of the page should be clipped when it is displayed or printed. The default is the media box. :bleed The bleed box defines the region to which the contents of the page should be clipped when output in a production environment. The default is the crop box. :trim The trim box defines the intended dimensions of the page after trimming. The default value is the crop box. :art The art box defines the region of the page’s meaningful content as intended by the author. The default is the crop box. See: PDF2.0 s14.11.2 canvas(type: :page, translate_origin: true)¶ Returns the requested type of canvas for the page. There are potentially three different canvas objects, one for each of the types :underlay, :page, and :overlay. The canvas objects are cached once they are created so that their graphics states are correctly retained without the need for parsing the contents. This also means that on subsequent invocations the graphic states of the canvases might already be changed. type Can either be :page for getting the canvas for the page itself (only valid for initially empty pages) :overlay for getting the canvas for drawing over the page contents :underlay for getting the canvas for drawing unter the page contents translate_origin Specifies whether the origin should automatically be translated into the lower-left corner of the crop box. Note that this argument is only used for the first invocation for every canvas type. So if a canvas was initially requested with this argument set to false and then with true, it won’t have any effect as the cached canvas is returned. To check whether the origin has been translated or not, use canvas.pos(0, 0) and check whether the result is [0, 0]. If it is, then the origin has not been translated. contents()¶ Returns the concatenated stream data from the content streams as binary string. Note: Any modifications done to the returned value *won’t* be reflected in any of the streams’ data! contents=(data)¶ Replaces the contents of the page with the given string. This is done by deleting all but the first content stream and reusing this content stream; or by creating a new one if no content stream exists. copy_inherited_values()¶ Copies the page’s inherited values from the ancestor page tree nodes into a hash and returns the hash. The hash can then be used to update the page itself (e.g. when moving a page from one position to another) or another page (e.g. when importing a page from another document). each_annotation {|annotation| block} → page ¶ each_annotation → Enumerator ¶ Yields each annotation of this page. flatten_annotations(annotations = self[:Annots])¶ Flattens all or the given annotations of the page. Returns an array with all the annotations that couldn’t be flattened because they don’t have an appearance stream. Flattening means making the appearances of the annotations part of the content stream of the page and deleting the annotations themselves. Invisible and hidden fields are deleted but not rendered into the content stream. If an annotation is a form field widget, only the widget will be deleted but not the form field itself. index()¶ Returns the index of the page in the page tree. label()¶ Returns the label of the page which is an optional, alternative description of the page index. See HexaPDF::Document::Pages for details. must_be_indirect?()¶ Returns true since page objects must always be indirect. orientation(type = :crop)¶ Returns the orientation of the specified box (default is the crop box), either :portrait or :landscape. process_contents(processor)¶ Processes the content streams associated with the page with the given processor object. See: HexaPDF::Content::Processor resources()¶ Returns the, possibly inherited, resource dictionary which is automatically created if it doesn’t exist. rotate(angle, flatten: false)¶ Rotates the page angle degrees counterclockwise where angle has to be a multiple of 90. Positive values rotate the page to the left, negative values to the right. If flatten is true, the rotation is not done via the page’s meta (i.e. the /Rotate key) data but by rotating the canvas itself and all other necessary objects like the various page boxes and annotations. Notes: The given angle is applied in addition to a possibly already existing rotation (specified via the /Rotate key) and does not replace it. Specifying 0 for angle is valid and means that no additional rotation should be applied. The only meaningful usage of 0 for angle is when flatten is set to true (so that the /Rotate key is removed and the existing rotation information incorporated into the canvas, page boxes and annotations). The /Rotate key of a page object describes the angle in a clockwise orientation but this method uses counterclockwise rotation to be consistent with other rotation methods (e.g. HexaPDF::Content::Canvas#rotate). to_form_xobject(reference: true)¶ Creates a Form XObject from the page’s dictionary and contents for the given PDF document. If reference is true, the page’s contents is referenced when possible to avoid unnecessary decoding/encoding. Note 1: The created Form XObject is not added to the document automatically! Note 2: If reference is false and if a canvas is used on this page (see canvas), this method should only be called once the contents of the page has been fully defined. The reason is that during the copying of the content stream data the contents may be modified to make it a fully valid content stream. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/PageLabel.html","title":"HexaPDF::Type::PageLabel","tags":"","text":" Instance
Methodsconstruct_labelnumbering_styleprefixstart_number class HexaPDF::Type::PageLabel Parent HexaPDF::Dictionary Represents a page label dictionary. A page label dictionary contains information about the numbering style, the label prefix and the start number to construct page labels like ‘A-1’ or ‘iii’. What is not stored is the page to which it is applied since that is stored in a number tree referenced through the /PageLabels entry in the document catalog. See HexaPDF::Document::Pages for details on how to create and manage page labels. Examples: numbering style :decimal, prefix none, start number default value 1, 2, 3, 4, … numbering style :lowercase_letters, prefix ‘Appendix ’, start number 5 Appendix e, Appendix f, Appendix g, … numbering style :uppercase_roman, prefix none, start number 10 X, XI, XII, XIII, … numbering style :none, prefix ‘Page’, start number default value Page, Page, Page, Page, … numbering style :none, prefix none, start number default value “”, “”, “”, … (i.e. always the empty string) See: PDF2.0 s12.4.2, HexaPDF::Document::Pages, HexaPDF::Type::Catalog Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymbolfalse:PageLabelSSymbolOne of: :D, :R, :r, :A, :afalsenilPStringfalsenilStIntegerfalse1 Public Instance Methods construct_label(index)¶ Constructs the page label for the given index which needs to be relative to the page index of the first page in the associated labelling range. This method is usually not called directly but through HexaPDF::Document::Pages#page_label. numbering_style → numbering_style ¶ numbering_style(value) → numbering_style ¶ Returns the numbering style if no argument is given. Otherwise sets the numbering style to the given value. The following numbering styles are available: :none No numbering is done; the label only consists of the prefix. :decimal Decimal arabic numerals (1, 2, 3, 4, …). :uppercase_roman Uppercase roman numerals (I, II, III, IV, …) :lowercase_roman Lowercase roman numerals (i, ii, iii, iv, …) :uppercase_letters Uppercase letters (A, B, C, D, …) :lowercase_letters Lowercase letters (a, b, c, d, …) prefix → prefix ¶ prefix(value) → prefix ¶ Returns the label prefix if no argument is given. Otherwise sets the label prefix to the given string value. start_number → start_number ¶ start_number(value) → start_number ¶ Returns the start number if no argument is given. Otherwise sets the start number to the given integer value. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/PageTreeNode.html","title":"HexaPDF::Type::PageTreeNode","tags":"","text":" Instance Methodsadd_pagedelete_pageeach_pageinsert_pagemove_pagemust_be_indirect?pagepage_count class HexaPDF::Type::PageTreeNode Parent HexaPDF::Dictionary Represents a node in the page tree of the PDF’s document. The page tree is a tree structure containing page tree nodes for the root and intermediate nodes and page objects for the leaf nodes (see Page). The root node of the page tree is linked via the /Pages entry in the Catalog. All operations except add_page on the page tree are rather expensive because page tree nodes and page objects can be mixed. This means that for finding a page at a specific index we have to go through all objects that come before it. Page indices are zero-based, not one-based. Therefore the first page has an index of 0! Since the page tree needs a certain structure it is not advised to directly modify page tree nodes. The validation feature can correct most problems but until the page tree is in order the methods may not work correctly! Newly created pages use the ‘page.default_media_box’ configuration option for the /MediaBox value. If an inherited /Resources dictionary does not exist, an empty one is created for the page. See: PDF2.0 s7.7.3.2, Page Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueTypeSymboltrue:PagesParentHexaPDF::Dictionary or HashfalsenilKidsHexaPDF::PDFArray or Arraytrue[]CountIntegertrue0ResourcesHexaPDF::Type::Resources or HashfalsenilMediaBoxHexaPDF::Rectangle or ArrayfalsenilCropBoxHexaPDF::Rectangle or ArrayfalsenilRotateIntegerfalsenil Public Instance Methods add_page(page = nil)¶ Adds the page or a new empty page at the end and returns it. See: insert_page delete_page(page) ¶ delete_page(index) ¶ Deletes the given page or the page at the position specified by the zero-based index from the page tree and the document. Negative indices count backwards from the end, i.e. -1 is the last page. each_page {|page| block } → pages ¶ each_page → Enumerator ¶ Iterates over all pages that are beneath this page tree node, from the first to the last page. insert_page(index, page = nil)¶ Inserts the page or a new empty page at the zero-based index and returns it. Negative indices count backwards from the end, i.e. -1 is the last page. When using negative indices, the page will be inserted after that element. So using an index of -1 will insert the page after the last page. Must be called on the root of the page tree, otherwise the /Count entries are not correctly updated! If an existing page is inserted, it may be necessary to use Page#copy_inherited_values before insertion so that the page dictionary contains all necessary information. move_page(page, to_index) ¶ move_page(index, to_index) ¶ Moves the given page or the page at the position specified by the zero-based index to the to_index position. If the page that should be moved, doesn’t exist or is invalid, an error is raised. Negative indices count backwards from the end, i.e. -1 is the last page. When using a negative index, the page will be moved after that element. So using an index of -1 will move the page after the last page. must_be_indirect?()¶ Returns true since page tree objects must always be indirect. page(index)¶ Returns the page for the zero-based index or nil if no such page exists. Negative indices count backwards from the end, i.e. -1 is the last page. page_count()¶ Returns the number of pages under this page tree. Note: If this methods is not called on the root object of the page tree, the returned number is not the total number of pages in the document! "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Resources.html","title":"HexaPDF::Type::Resources","tags":"","text":" Instance Methodsadd_color_spaceadd_ext_gstateadd_fontadd_patternadd_property_listadd_xobjectcolor_spaceext_gstatefontpatternproperty_listxobject class HexaPDF::Type::Resources Parent HexaPDF::Dictionary Represents the resources needed by a content stream. See: PDF2.0 s7.8.3 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueExtGStateHexaPDF::Dictionary or HashfalsenilColorSpaceHexaPDF::Dictionary or HashfalsenilPatternHexaPDF::Dictionary or HashfalsenilShadingHexaPDF::Dictionary or HashfalsenilXObjectHexaPDF::Dictionary or HashfalsenilFontHexaPDF::Dictionary or HashfalsenilProcSetHexaPDF::PDFArray or ArrayfalsenilPropertiesHexaPDF::Dictionary or Hashfalsenil Public Instance Methods add_color_space(color_space)¶ Adds the color space to the resources and returns the name under which it is stored. If there already exists a color space with the same definition, it is reused. The device color spaces :DeviceGray, :DeviceRGB and :DeviceCMYK are never stored, their respective name is just returned. add_ext_gstate(object)¶ Adds the graphics state parameter dictionary to the resources and returns the name under which it is stored. If there already exists a name for the given dictionary, it is just returned. add_font(object)¶ Adds the font dictionary to the resources and returns the name under which it is stored. If there already exists a name for the given dictionary, it is just returned. add_pattern(object)¶ Adds the pattern dictionary to the resources and returns the name under which it is stored. If there already exists a name for the given dictionary, it is just returned. add_property_list(dict)¶ Adds the property list to the resources and returns the name under which it is stored. If there already exists a name for the given property list, it is just returned. add_xobject(object)¶ Adds the XObject to the resources and returns the name under which it is stored. If there already exists a name for the given XObject, it is just returned. color_space(name)¶ Returns the color space stored under the given name. If the color space is not found, an error is raised. Note: The color spaces :DeviceGray, :DeviceRGB and :DeviceCMYK are returned without a lookup since they are fixed. ext_gstate(name)¶ Returns the graphics state parameter dictionary (see Type::GraphicsStateParameter) stored under the given name. If the dictionary is not found, an error is raised. font(name)¶ Returns the font dictionary stored under the given name. If the dictionary is not found, an error is raised. pattern(name)¶ Returns the pattern dictionary stored under the given name. If the dictionary is not found, an error is raised. property_list(name)¶ Returns the property list stored under the given name. If the property list is not found, an error is raised. xobject(name)¶ Returns the XObject stored under the given name. If the XObject is not found, an error is raised. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/Trailer.html","title":"HexaPDF::Type::Trailer","tags":"","text":" Instance Methodscataloginfoset_random_idupdate_id class HexaPDF::Type::Trailer Parent HexaPDF::Dictionary Represents the PDF file trailer. The file trailer is the starting point for the PDF’s object tree. It links to the Catalog (the main PDF document structure) and the Info dictionary and holds the information necessary for encrypting the PDF document. Since a PDF document can contain multiple revisions, each revision needs to have its own file trailer (see HexaPDF::Revision#trailer). When cross-reference streams are used the information that is normally stored in the file trailer is stored directly in the cross-reference stream dictionary. However, a HexaPDF::Revision object’s
trailer dictionary is always of this type. Only when a cross-reference stream is written is the trailer integrated into the stream’s dictionary. See: PDF2.0 s7.5.5, s14.4; XRefStream Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueSizeIntegerfalsenilPrevIntegerfalsenilRootHexaPDF::Type::Catalog or HashfalsenilEncryptHexaPDF::Dictionary or HashfalsenilInfoHexaPDF::Type::Info or HashfalsenilIDHexaPDF::PDFArray or ArrayfalsenilXRefStmIntegerfalsenil Public Instance Methods catalog()¶ Returns the document’s Catalog (see Type::Catalog), creating it if needed. info()¶ Returns the document’s information dictionary (see Type::Info), creating it if needed. set_random_id()¶ Sets the /ID field to an array of two copies of a random string and returns this array. See: PDF2.0 14.4 update_id()¶ Updates the second part of the /ID field (the first part should always be the same for a PDF file, the second part should change with each write). "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/ViewerPreferences.html","title":"HexaPDF::Type::ViewerPreferences","tags":"","text":" class HexaPDF::Type::ViewerPreferences Parent HexaPDF::Dictionary Represents the PDF’s viewer preferences dictionary which defines how a document should be presented on screen or in print. This dictionary is linked via the /ViewerPreferences entry from the Type::Catalog. See: PDF2.0 s12.2, Catalog Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueHideToolbarTrueClass or FalseClassfalsefalseHideMenubarTrueClass or FalseClassfalsefalseHideWindowUITrueClass or FalseClassfalsefalseFitWindowTrueClass or FalseClassfalsefalseCenterWindowTrueClass or FalseClassfalsefalseDisplayDocTitleTrueClass or FalseClassfalsefalseNonFullScreenPageModeSymbolOne of: :UseNone, :UseOutlines, :UseThumbs, :UseOCfalse:UseNoneDirectionSymbolOne of: :L2R, :R2Lfalse:L2RViewAreaSymbolfalse:CropBoxViewClipSymbolfalse:CropBoxPrintAreaSymbolfalse:CropBoxPrintClipSymbolfalse:CropBoxPrintScalingSymbolfalse:AppDefaultDuplexSymbolOne of: :Simplex, :DuplexFlipShortEdge, :DuplexFlipLongEdgefalsenilPickTrayByPDFSizeTrueClass or FalseClassfalsenilPrintPageRangeHexaPDF::PDFArray or ArrayfalsenilNumCopiesIntegerfalsenil "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Type/XRefStream.html","title":"HexaPDF::Type::XRefStream","tags":"","text":" Instance Methodstrailerupdate_with_xref_section_and_trailerxref_section class HexaPDF::Type::XRefStream Parent HexaPDF::Stream Represents PDF type XRef, cross-reference streams. A cross-reference stream is used as a more compact representation for an cross-reference section and trailer dictionary. The trailer dictionary is incorporated into the stream dictionary and the cross-reference section entries are stored in the stream itself, compressed to save space. How are Cross-reference Streams Used?¶ ↑ Cross-reference stream objects are only used when parsing or writing a PDF document. When a file is read and a cross-reference stream is found, it is loaded and its information is stored in a HexaPDF::Revision object. So from a user’s perspective nothing changes when a cross-reference stream instead of a cross-reference section and trailer is encountered. This also means that all information stored in a cross-reference stream between parsing and writing is discarded when the PDF document gets written! Upon writing a revision it is checked whether that revision contains a cross-reference stream object. If it does the cross-reference stream object is updated with the cross-reference section and trailer information and then written. Otherwise a normal cross-reference section plus trailer are written. See: PDF2.0 s7.5.8 Field DefinitionsNameType/Allowed ValuesRequiredDefault ValueLengthIntegerfalsenilFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilFHexaPDF::Type::FileSpecification or Hash or StringfalsenilFFilterSymbol or HexaPDF::PDFArray or ArrayfalsenilFDecodeParmsHexaPDF::Dictionary or HexaPDF::PDFArray or Hash or ArrayfalsenilDLIntegerfalsenilTypeSymboltrue:XRefSizeIntegertruenilIndexHexaPDF::PDFArray or ArrayfalsenilPrevIntegerfalsenilWHexaPDF::PDFArray or Arraytruenil Public Instance Methods trailer()¶ Returns a hash with the entries that represent the file trailer part of the cross-reference stream’s dictionary. See: Type::Trailer update_with_xref_section_and_trailer(xref_section, trailer)¶ Makes this cross-reference stream represent the data in the given HexaPDF::XRefSection and Type::Trailer. The xref_section needs to contain an entry for this cross-reference stream and it is necessary that this entry is the one with the highest byte position (for calculating the correct /W entry). The given cross-reference section is not stored but only used to rewrite the associated stream to reflect the cross-reference section. The dictionary is updated with the information from the trailer and the needed entries for the cross-reference section. If there are changes to the cross-reference section or trailer, this method has to be invoked again. xref_section()¶ Returns an XRefSection that represents the content of this cross-reference stream. Each invocation returns a new XRefSection object based on the current data in the associated stream and dictionary. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/UnsupportedEncryptionError.html","title":"HexaPDF::UnsupportedEncryptionError","tags":"","text":" class HexaPDF::UnsupportedEncryptionError Parent HexaPDF::EncryptionError Raised when the encryption method is not supported. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/index.html","title":"HexaPDF::Utils","tags":"","text":" ConstantsEPSILON module HexaPDF::Utils This module contains helper methods for the whole library. Constants EPSILON¶ The precision with which to compare floating point numbers. This is chosen with respect to precision that is used for serializing floating point numbers. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/BitField.html","title":"HexaPDF::Utils::BitField","tags":"","text":" Instance Methodsbit_field module HexaPDF::Utils::BitField This module is intended to be used to extend class objects. It provides the method bit_field for declaring a bit field. Public Instance Methods bit_field(name, mapping, lister: \"¶ Creates a bit field for managing the integer attribute name. The mapping argument specifies the mapping of names to zero-based bit indices which allows one to use either the bit name or its index when getting or setting. When using an unknown bit name or bit index, an error is raised. The calling class needs to respond to #name and #name= because these methods are used to get and set the raw integer value; or provide custom method names using the value_getter and value_setter arguments. After invoking the method the calling class has four new instance methods: NAME_values which returns an array of bit names representing the set bits. NAME_include?(bit) which returns true if the given bit is set. set_NAME(*bits, clear_existing: false) for setting the given bits. unset_NAME(*bits) for clearing the given bits. The method names can be overridden using the arguments lister, getter, setter and unsetter. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/BitStreamReader.html","title":"HexaPDF::Utils::BitStreamReader","tags":"","text":" Class MethodsnewInstance Methods<<append_datareadread?remaining_bits class HexaPDF::Utils::BitStreamReader Parent Object Helper class for reading variable length integers from a bit stream. This class allows one to read integers with a variable width from a bit stream using the read method. The data from where these bits are read, can be set on intialization and additional data can later be appended. Public Class Methods new(data = +'')¶ Creates a new object, optionally providing the string from where the bits should be read. Public Instance Methods <<(str)¶ Alias for: append_data append_data(str)¶ Appends some data to the string from where bits are read. Also aliased as: << read(bits)¶ Reads bits number of bits. Returns nil if not enough bits are available for reading. read?(bits)¶ Returns true if bits number of bits can be read. remaining_bits()¶ Returns the number of remaining bits that can be read. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/BitStreamWriter.html","title":"HexaPDF::Utils::BitStreamWriter","tags":"","text":" Instance Methodsfinalizewrite class HexaPDF::Utils::BitStreamWriter Parent Object Helper class for writing out variable length integers one after another as bit stream. This class allows one to write integers with a variable width of up to 16 bit to a bit stream using the write method. Every time when at least 16 bits are available, the write method returns those 16 bits as string and removes them from the internal cache. Once all data has been written, the finalize method must be called to get the last remaining bits (again as a string). Public Instance Methods finalize()¶ Retrieves the final (zero padded) bits as a string. write(int, bits)¶ Writes the integer int with a width of bits to the bit stream. Returns a 16bit binary string if enough bits are available or an empty binary string otherwise. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/GraphicsHelpers.html","title":"HexaPDF::Utils::GraphicsHelpers","tags":"","text":" Instance Methodscalculate_dimensionspoint_on_line module HexaPDF::Utils::GraphicsHelpers This module provides some helper functions for graphics. Public Instance Methods calculate_dimensions(width, height, rwidth: nil, rheight: nil)¶ Calculates and returns the requested dimensions for the rectangular object with the given width and height based on the following: options: rwidth The requested width. If rheight is not specified, it is chosen so that the aspect ratio is maintained. In case of width
begin zero, height is used for the height. rheight The requested height. If rwidth is not specified, it is chosen so that the aspect ratio is maintained. In case of height begin zero, width is used for the width. point_on_line(x0, y0, x1, y1, distance:)¶ Given two points p0 = (x0, y0) and p1 = (x1, y1), returns the point on the line through these points that is distance units away from p0. v = p1 - p0 result = p0 + distance * v/norm(v) "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/LRUCache.html","title":"HexaPDF::Utils::LRUCache","tags":"","text":" Class MethodsnewInstance Methods[][]= class HexaPDF::Utils::LRUCache Parent Object A simple least recently used (LRU) cache. The cache relies on the fact that Ruby’s Hash class maintains insertion order. So deleting and re-inserting a key-value pair on access moves the key to the last position. When an entry is added and the cache is full, the first entry is removed. Public Class Methods new(size)¶ Creates a new LRUCache that can hold size entries. Public Instance Methods [](key)¶ Returns the stored value for key or nil if no value was stored under the key. []=(key, value)¶ Stores the value under the key. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/MathHelpers.html","title":"HexaPDF::Utils::MathHelpers","tags":"","text":" Instance Methodsdeg_to_radrad_to_deg module HexaPDF::Utils::MathHelpers This module provides some mathematical helper functions. Public Instance Methods deg_to_rad(degrees)¶ Converts degrees to radians. rad_to_deg(radians)¶ Converts radians to degress. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/ObjectHash.html","title":"HexaPDF::Utils::ObjectHash","tags":"","text":" Attributesmax_oidClass MethodsnewInstance Methods[][]=deleteeachentry?gen_for_oidoids class HexaPDF::Utils::ObjectHash Parent Object Included Modules Enumerable There are some structures in a PDF file, for example cross reference tables, that index data based on object and generation numbers. However, there is a restriction that in such structures the object numbers must be unique, e.g. there may not be entries for [1, 0] and [1, 1] at the same time. This class can be used for storing/retrieving data for such structures. Attributes max_oid[R]¶ The biggest object number that is stored in the object hash or zero if no objects are stored. Public Class Methods new()¶ Creates a new object hash. Public Instance Methods objhash[oid] → data or nil ¶ objhash[oid, gen] → data or nil ¶ Returns the data for the given object number, or for the given object and generation numbers. If there is no such data, nil is returned. objhash[oid, gen] = data ¶ Sets the data for the given object and generation numbers. If there is already an entry for the given object number (even if the generation number is different), this entry will be removed. delete(oid)¶ Deletes the entry for the given object number. each {|oid, gen, data| block } → objhash ¶ each → Enumerator ¶ Calls the given block once for every entry, passing an array consisting of the object and generation number and the associated data as arguments. entry?(oid) → true or false ¶ entry?(oid, gen) → true or false ¶ Returns true if there is an entry for the given object number, or for the given object and generation numbers. gen_for_oid(oid) → Integer or nil ¶ Returns the generation number that is stored along the given object number, or nil if the object number is not used. oids()¶ Returns all used object numbers as an array. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/PDFDocEncoding.html","title":"HexaPDF::Utils::PDFDocEncoding","tags":"","text":" ConstantsCHARACTER_MAPClass Methodsconvert_to_utf8 module HexaPDF::Utils::PDFDocEncoding Implements encoding conversion functions for the PDFDocEncoding. The PDFDocEncoding is used, together with UTF-16BE, for strings outside content streams. When a PDF file is loaded and a text string in a PDF object does not start with the UTF-16BE BOM U+FEFF, it is automatically converted to UTF-8 on access. The same is done for text strings in UTF-16BE encoding. Therefore all text strings can be assumed to be in UTF-8. When a PDF file is written, text strings are automatically encoded in either PDFDocEncoding or UTF-16BE depending on the characters in the text string. See: PDF2.0 s7.9.2, D.1, D.3 Constants CHARACTER_MAP¶ Public Class Methods convert_to_utf8(str)¶ Converts the given string to UTF-8, assuming it contains bytes in PDFDocEncoding. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Utils/SortedTreeNode.html","title":"HexaPDF::Utils::SortedTreeNode","tags":"","text":" Instance Methodsadd_entrydelete_entryeach_entryfind_entrymust_be_indirect? module HexaPDF::Utils::SortedTreeNode Provides the convenience methods that are used for name trees and number trees. The provided methods require two methods defined in the including class so that they work correctly: leaf_node_container_name Defines the dictionary entry name that contains the leaf node entries. For example, for name trees this would be :Names. key_type Defines the class that is used for the keys in the tree. The class defined this way is used for making sure that only valid keys are used. For example, for name trees this would be String. Note: Like with HexaPDF::Dictionary, the keys are assumed to always be direct objects! See: HexaPDF::NameTreeNode, HexaPDF::NumberTreeNode Public Instance Methods add_entry(key, data, overwrite: true) → true or false ¶ Adds a new tree entry (key-data pair) to the sorted tree and returns true if it was successfully added. If the option overwrite is true, an existing entry is overwritten. Otherwise an error is raised. This method has to be invoked on the root node of the tree! delete_entry(key)¶ Deletes the entry specified by the key from the tree and returns the data. If the tree doesn’t contain the key, nil is returned. This method has to be invoked on the root node of the tree! each_entry {|key, data| block } → node ¶ each_entry → Enumerator ¶ Calls the given block once for each entry (key-data pair) of the sorted tree. find_entry(key)¶ Finds and returns the associated entry for the key, or returns nil if no such key is found. must_be_indirect?()¶ Tree nodes must always be indirect. Note: There is no requirement that the root node of a tree must be indirect. However, making it indirect simplifies the implementation and is not against the spec. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/Writer.html","title":"HexaPDF::Writer","tags":"","text":" Class MethodsnewwriteInstance Methodswritewrite_incremental class HexaPDF::Writer Parent Object Writes the contents of a PDF document to an IO stream. Public Class Methods new(document, io)¶ Creates a new writer object for the given HexaPDF document that gets written to the IO object. write(document, io, incremental: false)¶ Writes the document to the IO object and returns the last XRefSection written. If incremental is true and the document was created from an existing PDF file, the changes are appended to a full copy of the source document. Public Instance Methods write()¶ Writes the document to the IO object and returns the file position of the start of the last cross-reference section and the last XRefSection written. write_incremental()¶ Writes the complete source document unmodified to the IO and then one revision containing all changes. Returns the file position of the start of the cross-reference section and the XRefSection object of that one revision. For this method to work the document must have been created from an existing file. "},{"loc":"http://hexapdf.gettalong.org/documentation/api/HexaPDF/XRefSection.html","title":"HexaPDF::XRefSection","tags":"","text":" ConstantsEntryClass Methodscompressed_entryfree_entryin_use_entryInstance Methodsadd_compressed_entryadd_free_entryadd_in_use_entryeach_subsectionmerge! class HexaPDF::XRefSection Parent HexaPDF::Utils::ObjectHash Manages the indirect objects of one cross-reference section or stream. A PDF file can have more than one cross-reference section or stream which are all daisy-chained together. This allows later sections to override entries in prior ones. This is automatically and transparently done by HexaPDF. Note that a cross-reference section may contain a single object number only once. See: HexaPDF::Revision, PDF2.0 s7.5.4, s7.5.8 Constants Entry¶ One entry of a cross-reference section or stream. An entry has the attributes type, oid, gen, pos and objstm and can be created like this: Entry.new(type, oid, gen, pos, objstm) -> entry The type attribute can be: :free Denotes a free entry. :in_use A used entry that resides in the body of the PDF file. The pos attribute defines the position in the file at which the object can be found. :compressed A used entry that resides in an object stream. The objstm attribute contains the reference to the object stream in which the object can be found and the pos attribute contains the index into the object stream. Objects in an object stream always have a generation number of 0! See: PDF2.0 s7.5.4, s7.5.8 Public Class Methods compressed_entry(oid, objstm, pos)¶ Creates a compressed cross-reference entry. See Entry for details on the arguments. free_entry(oid, gen)¶ Creates a free cross-reference entry. See Entry for details on the arguments. in_use_entry(oid, gen, pos)¶ Creates an in-use cross-reference entry. See Entry for details on the arguments. Public Instance Methods add_compressed_entry(oid, objstm, pos)¶ Adds a compressed entry to the cross-reference section. See: ::compressed_entry add_free_entry(oid, gen)¶ Adds a free entry to the cross-reference section. See: ::free_entry add_in_use_entry(oid, gen, pos)¶ Adds an in-use entry to the cross-reference section. See: ::in_use_entry each_subsection {|sub| block } → xref_section ¶ each_subsection → Enumerator ¶ Calls the given block once for every subsection of this
cross-reference section. Each yielded subsection is a sorted array of cross-reference entries. If this section contains no objects, a single empty array is yielded (corresponding to a subsection with zero elements). The subsections are dynamically generated based on the object numbers in this section. merge!(xref_section)¶ Merges the entries from the given cross-reference section into this one. "}]};
