

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Digital Signatures

 	Getting Started
	Basics
	Document Creation
	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures	Introduction	How Signing Works
	CMS and PAdES Signatures
	Signing Modes
	Types of PDF Signatures
	Restricting Changes to a Signed Document

	How-to: Signing PDFs

	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	How Signing Works
	CMS and PAdES Signatures
	Signing Modes
	Types of PDF Signatures
	Restricting Changes to a Signed Document

Digital Signatures

Digital signatures are used to authenticate the content of PDF files and of users. When a digital
signature is applied, it stores the state of the document at the signing time as well as information
about the signer. The signer is identified by their X.509 certificate and private key.

How Signing Works

The digital signature and associated information is stored in a signature
dictionary. And that signature dictionary is the value of a
signature form field.

So, to sign a PDF document there must either be an existing signature field to fill in or a new one
must be created. Since a signature is associated with a form field, it is possible to visually
represent the signature with an appearance stream.

When a PDF file is signed, the signature dictionary is filled with all the necessary information,
like the signing time, the signing reason or whether the signed document should allow further
changes.

Then the PDF file is written but it is still incomplete. If there are no existing signatures, one
has the choice to either save the complete file or just append a new revision by using the
incremental writing feature. Once there are existing signatures only incremental writing may be done
because otherwise the existing signatures would be invalidated.

The written file is analysed and the offset and length of the placeholder for the actual
cryptographic signature is determined. This information is filled back into the written file into
the appropriate field of the signature dictionary.

Afterwards a digest over the whole file minus the placeholder is taken and this digest is then
signed with the provided certificate and private key (or handled via an external signing provider).
The resulting signature structure is embedded into the written file and now the PDF file is properly
finished.

Note: Since the PDF document needs to be written to be properly signed, no changes to it can be
made afterwards. So to work with the signed document, one has to load it again.

CMS and PAdES Signatures

The PDF 2.0 specification defines three types of supported digital signatures:

	PKCS#1 signatures
	CMS (Cryptographic Message Syntax a.k.a. PKCS#7) signatures
	PAdES signatures (CAdES - CMS Advanced Electronic Signatures - signatures as used in PDF)

With PDF 2.0 the PKCS#1 signatures are deprecated and therefore creating such signatures is not
supported by HexaPDF. While CMS signatures have been supported by PDF for a long time, PAdES
signatures are new with PDF 2.0 (although they have been possible with PDF 1.7 through the use of
extensions).

HexaPDF supports both old-style CMS as well as the newer PAdES signatures through
HexaPDF::DigitalSignature::Signing::DefaultHandler. By default CMS signatures are used for
backwards-compatibility and PAdES signatures are created when explicitly requested.

PAdES signatures are more complicated and have more features/requirements. They support two
different profiles called PAdES-BES (Basic Electronic Signature) and PAdES-EPES (Explicit Policy
Electronic Signature). HexaPDF supports part of the PAdES-BES profile which has four levels of
baseline signatures called B-B, B-T, B-LT, and B-LTA. Of these four levels B-B and B-T are currently
supported where the difference between B-B and B-T is that a timestamp signature is incorporated for
B-T.

While the PDF specification supports creating CMS digital signatures for certificates using the RSA,
DSA and ECDSA algorithms, HexaPDF currently only supports certificates using the RSA algorithm.

Signing Modes

As suggested above there are basically two ways for creating the CMS signatures needed when signing
a PDF file (customizable through HexaPDF::DigitalSignature::Signing::DefaultHandler#external_signing):

	Internal Signing
	
 If all the signing certificate and private key are available to HexaPDF, HexaPDF can create the
CMS signature itself without relying on anything external. This is the preferred way if is
possible.

	External Signing
	
 If the private key is not available to HexaPDF, it cannot (completely) create the CMS signature
and has to rely on an external mechanism for signing and/or creating the CMS signature.

 Depending on whether the signing certificate is available the signing happens differently:

 	
 If the certificate is available, the CMS signature object itself is created by HexaPDF and only
the signing itself is done by the external mechanism. This is useful, for example, if the
signing key is only available through a HSM.

	
 If the certificate is not available, the external mechanism has to create the complete CMS
signature. This is useful for creating CMS signatures that HexaPDF is not yet able to create
itself, e.g. when a certificate uses an unsupported algorithm.

	Asynchrounous Signing
	
 This is a variant of external signing where the CMS signature creation happens at a different time
than the creation of the prepared PDF file itself. In such a case the PDF is “finished” with a
dummy CMS signature and the correct one later replaces the dummy one.

Types of PDF Signatures

The PDF specifications also defines different types of signatures:

	
 Certification signature (aka author signature)

 There can be only one certification signature on a PDF document and it has to be the first one.
This type of signature allows the author of a PDF document to define what kind of changes may be
applied to the signed document so that the signature is not invalidated. See the next
section for details.

	
 Approval signatures (aka recipient signatures)

 These are the standard type of signatures and what is normally done when signing an existing
document. Such a signature basically says that the signer approves of the signed document. For
example, when digitally signing a contract both (or more) parties sign the document, thereby
agreeing to it.

	
 Timestamp signatures

 These signatures were introduced with PDF 2.0 and are used when the time of signing is important.
They use a trusted timestamp server to receive a signed timestamp token.

Restricting Changes to a Signed Document

When using a certification signature, it is possible to restrict the changes so that any unallowed
change invalidates the signature.

This is done via the so called DocMDP transformation method set on the signature dictionary which
defines a set of permissions that have to be followed. The following three types of permissions are
available:

	No changes.
	Filling in forms and signing.
	Filling in forms, signing and annotation creation, deletion and modification.

Preventing any modifications with option 1 is useful, for example, when creating signed invoices.
Any and all modifications will be flagged by PDF readers.

Option 2 is the default if nothing is specified and allows users to fill out the form fields and
sign the PDF.

Option 3 allows in addition to the permitted changes of option 2 the creation, deletion and
modification of annotations. Note that in this case. it might be possible to change the document in
a way that it still validates but misleads the recipients (see the PDF Insecurity
website).

The default signing handler supports this feature via the
HexaPDF::DigitalSignature::Signing::DefaultHandler#doc_mdp_permissions= method.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

