

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Basics

 	Getting Started
	Basics	Introduction	About PDF
	HexaPDF API Design
	General Usage Pattern

	PDF Object Representation
	Document Structure
	Creating a PDF from Scratch
	Modifying a PDF Document
	Analysing PDFs

	Document Creation
	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	About PDF
	HexaPDF API Design
	General Usage Pattern

 Introduction

PDF files are ubiquitous in today’s digital world and HexaPDF provides easy but fully-featured
access to all those PDF files. The only thing HexaPDF won’t implement is rendering of PDF documents.

About PDF

PDF, the Portable Document Format, is a file format created by Adobe for representing digital
documents independently from applications, operating systems or hardware. It is the defacto standard
for digital documents and for their interchange. It can not only contain text and graphics but also
annotations, links, form fields, layers, rich media like video and many more things.

While the PDF specification has started out as a propriertary, though open, document format at
Adobe, the PDF 1.7 specification became an ISO standard (32000-1:2008) in 2008. It then took nine
years for the next version of the specification, PDF 2.0, to get published in 2017.

Because the original ISO standard was nearly identical to the then already publicly available Adobe
PDF 1.7 specification, it is one of the few ISO specifications that is freely available to the
public at Adobe’s website.

While it was not publicly available from the beginning, the PDF Association has managed to make
the PDF 2.0 specification freely available via sponsors. Although it is
more evolution than revolution, it is better to get it while it is easily available since it has
better and more detailed explanations for a few sections and fixes and corrections for previously
underspecified functionality. I suggest getting it for first-hand knowledge about PDF topics.

You will find that the API documentation has many references to applicable sections of the PDF 2.0
specification. So having the specification at hand will allow you dive deeper into a certain topic.

HexaPDF API Design

HexaPDF was designed with ease of use and performance in mind. To this end the API follows some
guidelines:

	
 To use HexaPDF you only need to require 'hexapdf'. All other parts of HexaPDF are automatically
loaded when needed to avoid unnecessary resource usage.

	
 Everything should be accessible through methods once the main HexaPDF::Document (or
HexaPDF::Composer) instance is created. This especially means that you don’t need to remember a
multitude of class names.

	
 There is a low-level interface which allows direct access to PDF internals. However, you will
only rarely use that interface since the high-level interface is much more convenient. The
low-level interface is there for cases where some PDF feature is not yet implemented in the
high-level HexaPDF interface or when you need more control over PDF structures.

	
 The main PDF data type is the dictionary (hash) which is used to implement the various PDF
dictionary types, like the page object. HexaPDF implements those PDF types by subclassing the
HexaPDF::Dictionary class. However, even if a PDF dictionary type is not yet supported by
HexaPDF through a high-level interface, you can work with it through the standard dictionary
interface.

	
 The high-level interface is usually implemented directly on the class implementing the PDF
type, for example HexaPDF::Type::Page or HexaPDF::Type::Outline. If some PDF functionality
can’t be implemented on a concrete PDF dictionary type, a helper class is created and made
accessible on the main document class, for example HexaPDF::Document::Destinations via
HexaPDF::Document#destinations.

	
 It is possible to use the low-level interface to directly manipulate PDF structures like the page
tree. However, when available it is advised to use the high-level interface to ensure the validity
of the created PDF structures as some of them have various complex requirements.

	
 The base PDF object classes HexaPDF::Object, HexaPDF::PDFArray and HexaPDF::Dictionary as
well as the implemented PDF dictionary types contain validation routines to ensure the
underlying PDF structures are valid. Validation is automatically done by default before writing a
PDF document, see below for more information.

Apart from these guidelines concerning the API care has been taken to make sure that HexaPDF
performs well and doesn’t use much memory. Most parts of HexaPDF are therefore already very
optimized and various benchmarks ensure that HexaPDF gets still faster over time.

The library is also thoroughly tested with 100% code coverage.

General Usage Pattern

As stated above you will only need to remember the class name HexaPDF::Document for creating a new
document or loading an existing one:

doc = HexaPDF::Document.new
or
doc = HexaPDF::Document.open(pdf_file)

You might optionally set some configuration options when instantiating the main class or later
via the HexaPDF::Document#config method. The configuration options allow you to fine tune internal
behaviour to your liking. For example, by default HexaPDF is quite forgiving when it comes to
corrupt or invalid PDF files and can handle or recover from many. This can be changed by changing
the appropriate configuration options like parser.on_correctable_error.

Next you work with the document: add, delete or change pages, handle annotations, fill out or create
interactive forms and much more.

The final step is to write out the document:

doc.write('output.pdf', optimize: true)

Optimizing the resulting file is optional but highly recommended to produce quite a bit smaller PDF
files. The default optimization should be fine for most cases. However, if you need more control,
you can invoke the task HexaPDF::Task::Optimize yourself before writing out the document.

Additionally, before writing out the document, the validation routine HexaPDF::Document#validate
is called to validate and possibly auto-correct problems. It is advised not to disable it.
Un-correctable validation problems lead to an exception. If you want to handle this part yourself,
e.g. by customizing your reaction to validation problems, you would pass validate: false to
HexaPDF::Document#write and invoke #validate before writing.

The smallest HexaPDF application which writes out a minimal PDF is:

HexaPDF::Document.new.write('output.pdf')

HexaPDF doesn’t automatically add any content to a newly created document, not even a page. However,
if you look at the resulting PDF you will see that it has a single, blank page. This is because for
a PDF to valid it needs at least one page and the validation routine ensure that.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

