[0.001s][warning][perf,memops] Cannot use file /tmp/hsperfdata_ec2-user/286934 because it is locked by another process (errno = 11)

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » News

Atom-Feed

News Items

 	HexaPDF 0.35.0 - Fallback Fonts
	HexaPDF 0.34.0 - Optional Content aka Layers
	HexaPDF 0.33.0 - Table Support
	HexaPDF 0.29.0 - PAdES Compatible Digital Signatures
	HexaPDF 0.28.0
	HexaPDF 0.27.0 - Timestamp Signatures
	HexaPDF 0.24.0 - Document Layout Update
	HexaPDF 0.23.0
	HexaPDF 0.20.0 - Digital Signatures
	HexaPDF 0.18.0
	HexaPDF 0.17.0
	HexaPDF 0.15.0
	HexaPDF 0.14.3
	HexaPDF 0.14.1 - Performance Work
	HexaPDF 0.14.0 - Interactive Forms Improvements
	HexaPDF 0.13.0 - Cross-reference Table Reconstruction
	HexaPDF 0.12.0 - Interactive Forms
	HexaPDF 0.11.0
	HexaPDF 0.10.0 and New Website
	HexaPDF 0.9.0 - Document Layout
	HexaPDF 0.8.0 - Box Layout
	HexaPDF 0.6.0 - Code Refinements
	HexaPDF 0.5.0 - Advanced Text Layout
	Simple Text Metrics
	Advanced Text Layout is Coming
	HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements
	HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements
	Second Release - Further Improvements
	Initial Release of HexaPDF

 HexaPDF 0.35.0 - Fallback Fonts
 Published on Sunday, 07 January 2024

This release contains many small features and fixes and breaking changes. So make sure you read
the changelog before upgrading!

The most notable additions and changes are:

	
 The document layout engine gained support for fallback fonts. Just define the fallback fonts
using the new configuration option ‘font.fallback’ and you are set.

 The fallback font support is also used when generating appearances for AcroForm text fields.

	
 It is now possible to use the document layout functionality for a single canvas/page via the new
HexaPDF::Content::CanvasComposer class, easily instantiated via
canvas.composer.

	
 The style properties ‘align’ and ‘valign’ have been renamed (breaking change) to ‘text_align’
and ‘text_valign’ so that the old names can be used for box placement. With the addition of the
style property ‘mask_mode’ one has now even more control over box placement, e.g. overlaying boxes
is now possible (see the added example).

	
 The new ‘psd’ command for hexapdf inspect provides easier to read output for page content
streams, e.g. by decoding the text output parts and showing the nesting levels.

As always, have a look at the changelog for an overview of all changes.

 HexaPDF 0.34.0 - Optional Content aka Layers
 Published on Sunday, 22 October 2023

The highlight of this release is the support for optional content aka layers.

Optional content allows one to selectively show or hide content. It is most often used to
provide something akin to layers, think a building plan with separate layers for the walls,
electrical infrastructure, furniture and so on. However, it can also be used for something more
mundane, like hiding the answers of a quiz.

Apart from this larger change there is a new style property HexaPDF::Layout::Style#fill_horizontal
which allows a text fragment to fill the remaining space of a line. This is very useful when
creating table of content entries.

There is new documentation for the optional content feature and the document creation section got a
new how-tos section which will be expanded in the
future.

As always, have a look at the changelog for an overview of all changes.

 HexaPDF 0.33.0 - Table Support
 Published on Thursday, 03 August 2023

This release contains many different changes and fixes. The highlight, however, is the support for
tables.

Table Implementation

The biggest change in this release is the addition of HexaPDF::Layout::TableBox which allows the
creation of fixed width tables:

With this addition creating a table becomes very easy:

require 'hexapdf'

HexaPDF::Composer.create('table.pdf') do |composer|
 composer.table([['This', 'is'], ['a', 'table']], column_widths: [100, 100])
end

The table implementation supports

	one or more boxes of any type inside a table cell,
	header and footer rows,
	column and row spans, as well as
	easy styling of the whole table, rows, columns or individual cells.

There is also a new table benchmark which shows that HexaPDF is outperforming Prawn with the
prawn-table gem.

Website Overhaul

The website got an overhaul and looks a bit (just a bit) different now. The changes were made to
make the website feel more coherent in terms of styling and colors. Here are before and after images
where this can be seen:

The documentation pages have also been enhanced with more sample PDFs. While the former version had
183 PDFs created with HexaPDF during the website generation, the current version has 237, so about
30% more!

Other Notable Changes

There was a bit of work making HexaPDF faster and use less memory. This can be seen in the line
wrapping benchmark where the low-level version and the HexaPDF::Composer version are now nearly
on par. Another change reduced the number of Fiber instances which greatly improves HexaPDF
performance on TruffleRuby.

The API documentation of many classes has also been updated and enhanced. This is an ongoing process
which will see all API documentation being updated.

As always, have a look at the changelog for an overview of all changes.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

