

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Interactive Forms

 	Getting Started
	Basics
	Document Creation
	Metadata
	Outline / Bookmarks
	Interactive Forms	AcroForm vs XFA Forms
	Interactive Forms (AcroForm)
	Main Interactive Form Dictionary
	Form Fields
	Widget Annotations
	Form Flattening
	General Sequence When Creating a Form

	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	AcroForm vs XFA Forms
	Interactive Forms (AcroForm)
	Main Interactive Form Dictionary
	Form Fields
	Widget Annotations
	Form Flattening
	General Sequence When Creating a Form

Interactive Forms

PDF is mainly used as format that provides consistent output regardless of the output device.
However, it also provides various interactive features, one of them being support for forms.

AcroForm vs XFA Forms

The PDF specification provides two different ways for representing forms: AcroForm and XFA forms:

	
 AcroForms are static forms where each form field is predefined with respect to its size,
possible values and so on. These types of forms have been in the PDF specification since PDF 1.2
and have broad support among PDF reader applications. When speaking of an interactive form we
always mean an AcroForm.

	
 XFA forms (Adobe XML Forms Architecture) were introduce with PDF 1.5 and are much more
advanced. They allow, for example, that fields are dependent on other fields and that text fields
can vary in size, possibly adding pages to the document. XFA forms have been deprecated with PDF
2.0.

XFA forms need much more functionality in a PDF reader application than AcroForm forms. Due to this
support for XFA forms is only available in certain commercial software applications.

Since XFA forms are already deprecated, HexaPDF only has support for interactive forms.

Interactive Forms (AcroForm)

An interactive form consists of the main form dictionary, form fields and widget annotations.
Together they define the structure and visible appearance of the form.

The main form dictionary references the root fields which in turn can reference child fields. This
allows one to build a hierarchy of fields and to inherit attributes from parent fields. Fields
without child fields are called terminal fields.

These terminal fields can have a visible appearance which is provided by a widget annotation. Each
field can have zero, one or more associated widgets.

Main Interactive Form Dictionary

The main form dictionary can be referenced from the document catalog via the /AcroForm key (see
HexaPDF::Type::Catalog#acro_form). It is implemented by the HexaPDF::Type::AcroForm::Form class.

It only provides a few entries, the most important of which are:

	
 /Fields contains the array of root fields. See the various methods on the form class on how to
access and modify form fields.

	
 /NeedAppearances defines whether appearances should be constructed by the PDF reader
application. This is useful for libraries/applications which can’t do this due to the added
complexity. They just set this key to true and the reader application constructs all
appearances.

 See #need_appearances!.

	
 /DR//DA: The former is a dictionary containing the default resources (like fonts, color
spaces, …) that should be used when constructing appearances. The latter defines a “default
appearance string” that defines, at least, the font and font size to be used when creating text
field appearances. The two keys together allow a PDF reader application to convert text input by a
user into a proper PDF content stream.

 See #set_default_appearance_string.

The form dictionary object is the main entry point for handling interactive forms with HexaPDF. It
allows you to list, modify, create and delete the form fields. By relying on the provided
convenience methods all the tedious but needed book-keeping is done behind the scenes.

Form Fields

A form field dictionary contains, among other things, the type of the field, its name and its value.

There are four main types of fields which are further sub-divided:

	Button fields
	
 These fields represent interactive controls that a user can manipulate with a mouse.

 A button field may be a push button (something to click which produces a result immediately),
a check box (for toggling between two states) or a radio button (typically one button in a
set can be turned on).

 See HexaPDF::Type::AcroForm::ButtonField.

	Text fields
	
 These fields allow the user to input text from the keyboard.

 The text can be entered into a single-line or multi-line field and there is also the possibility
for rich text strings which allow inline formatting of the text.

 See HexaPDF::Type::AcroForm::TextField.

	Choice fields
	
 These fields contain several text items of which the user can select one or more.

 A choice field may be presented as a scrollable list box or a combo box. The latter also
allows the user to input a value other than the predefined ones.

 See HexaPDF::Type::AcroForm::ChoiceField.

	Signature fields
	
 These fields represent digital signatures and optional data for authenticating the signer name and
the document’s contents.

Each field has a unique full name consisting of all the partial names connected with dots, i.e.
“parent.child.terminal”. This is possible because fields may be nested and the leafs of this field
tree are called terminal fields. All other fields are non-terminal fields.

It is possible that two different field instances have the same full field name. In such a case
those two field instances actually represent the same field. This is most often the case when the
widget annotation is embedded in the field instances instead of using the /Kids.

The visual appearance is defined by associated widget annotations. Each terminal field can have
zero, one or more associated widgets. For example, each widget annotation of a radio button field
describes one possible selection value. Another use for multiple widget annotations is on a
multi-page form where a name entered by the user should appear in a header or footer on every page.

Text and choice fields are so called variable text fields whose visual appearance mainly consists
of their text value. To create such an appearance it must be known what font and font size should be
used. This is handled by the /DA dictionary field of the field or, if not set, by the /DA
dictionary field of the main AcroForm dictionary. The value of the /DA key has to at least specify
the font name and font size, with the font name being resolved to a font object through the /DR
key of the main AcroForm dictionary.

HexaPDF currently cannot handle variable text fields using an arbitrary font. The reason for this is
that HexaPDF only uses the font information stored in the PDF itself and does not reference or load
fonts stored on the host in case the font is not usable (e.g. because the character to glyph mapping
was removed from the embedded font program).

The standard PDF fonts Helvetica, Times and Courier work correctly and those are used in most
interacctive forms. For all other fonts a fallback font configured through the
‘acro_form.fallback_font` configuration option will be used.

It is also possible to use Javascript actions together with form fields, for example for
calculating the value of a form field based on the values of other form fields. As HexaPDF does
not support Javascript those calculations won’t work when filling out a form. However, HexaPDF
does support some special Javascript based formatting methods, for example, for formatting numbers.

Widget Annotations

A widget annotation describes the visual appearance of a form field on a page. It is implemented by
HexaPDF::Type::Annotations::Widget.

As with all other annotations the widgets placement on the page is specified by the /Rect key and
the visual appearance by the /AS and /AP keys.

Additionally, each widget can specify a background color and border style and, depending on the type
of the associated field, other properties.

When using HexaPDF you don’t have to worry about the visual appearance. HexaPDF creates the needed
appearance streams automatically using a default style similar to those found in popular PDF reader
applications (see HexaPDF::Type::AcroForm::AppearanceGenerator). This is done by setting the
needed widget annotation and field properties when the widget is created. Later these properties are
used during the creation of the appearance (like some PDF readers would do when the
/NeedAppearances key on the main form object is set).

You can naturally provide the appearance streams yourself if needed since those are just Form
XObjects.

It is also possible to force the creation of appearance streams even if there are existing ones.
This is useful, for example, if an interactive form was filled out with a PDF reader that created
bad or invalid visual appearances. Note that existing appearances for button fields are not deleted
because they could potentially be reused somewhere.

Form Flattening

Form flattening is the process of converting the whole interactive form or only some fields into a
static representation that is not changable anymore.

When a field is flattened all its widget annotations are flattened, meaning, their appearances are
embedded into the page’s content and the widget annotations themselves are removed. Furthermore, the
field itself is removed from the field tree.

Flattening can be achieved via HexaPDF::Type::AcroForm::Form#flatten.

General Sequence When Creating a Form

If you want to create a PDF containing an interactive form, the general sequence of instructions is
describe below. Whether you create the non-form parts of the pages before, during or after form
creation is your choice. Most commenly, however, the form fields and their widgets are created
together with the rest of the document because that makes it easier to get the needed information
like the annotation rectangle.

The sequence:

	
 First you create the main form dictionary using HexaPDF::Type::Catalog#acro_form(create: true).
Either store the form object somewhere or just use the same method call to retrieve it later.

	
 Next, use one of the various #create_<FIELD> methods of the form object to create a field. Some
often needed properties can be set directly with this invocation. Set additionally needed field
properties using the various field methods.

	
 Create a widget using the #create_widget method of the field. When creating a button field, some
properties are set by default to style the button field with a default appearance (otherwise it
would be invisible).

 By using HexaPDF::Type::Annotations::Widget#background_color,
HexaPDF::Type::Annotations::Widget#border_style and
HexaPDF::Type::Annotations::Widget#marker_style you can change the widget’s appearance.

	
 Set the field’s value which will update all associated widgets to reflect that value.

If you add additional widgets later, either manually call the field’s #update_widgets method
afterwards or rely on the validation pass when writing out the PDF.

Note, however, that if you change the appearance settings of a widget later, you need to force the
creation of new appearance streams as this is not done automatically.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

