

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Basics » Analysing PDFs

 	Getting Started
	Basics	Introduction
	PDF Object Representation
	Document Structure
	Creating a PDF from Scratch
	Modifying a PDF Document
	Analysing PDFs 	How hexapdf inspect Works
	Traversing the PDF Tree Structure
	Analysing Pages
	Searching for Data
	Comparing PDF File Structure

	Document Creation
	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

Analysing PDFs

This how-to guide shows how to use the hexapdf inspect command to analyse PDF files.

How hexapdf inspect Works

The hexapdf command line tool comes with a variety of sub-commands, one of them being the
inspect command. This command is designed to allow its user to inspect and analyse a PDF file.

The default mode is the interactive mode which is used when no command line arguments besides the
PDF file are given. The interactive mode loads the PDF file and allows running one or more commands
against it which is useful if the PDF file in question is huge.

If additional arguments are provided on the command line, they are interpreted as interactive mode
commands and executed.

Let’s see those two ways of running hexapdf inspect in action:

	
 First we invoke the interactive mode and run three commands: h for showing the help, pages for
displaying all pages and quit for quitting the interactive mode.

	
 Then we use command line arguments to run the same three commands (although quit wouldn’t be
necessary). Note how we have to add a semicolon (escaped because otherwise it would be interpreted
by the shell) after the pages command as command separator because otherwise it would use q as
argument.

That’s all the needed basics, let’s dive into various usage scenarios and explore the inspect
command’s functionality.

Traversing the PDF Tree Structure

The key topic on PDF’s document structure explains the main structures used in PDF
files. Basic knowledge of the places where certain information can be found is useful when analysing
PDF files.

The trailer, object, catalog and stream commands can help you navigate through this tree
structure by showing the objects in question. Let’s see them in action:

	
 The trailer or t command shows the trailer dictionary. This dictionary may have an
associated object identifier but since that is not always the case this special command is
available.

 Interesting objects in the trailer dictionary are the /Info dictionary with basic meta data, the
/Encryption dictionary with encryption information and the catalog dictionary under the /Root
key containing the main PDF objects.

	
 Next we use the short form of the object command by just providing the object number referenced
in the /Root entry. This will show us the catalog dictionary. We then use the catalog command
to show the same object. So if you want to start at the catalog, its faster to use the provided
catalog command.

	
 Finally we navigate through the page tree, which only contains one page, and then show the
contents of the page - more on that below.

The used sample PDF is very simple, in normal PDFs the catalog dictionary contains many more keys
for various things like annotations or form fields.

Another way to view the tree structure of a PDF is to use the recursive command. This command will
not only show the requested object but also all objects referenced from it. Note that this will
often show you the whole document tree when one page is referenced since page nodes have a reference
to their parent. See Comparing PDF Files below for details.

Analysing Pages

In the last section you got a glimpse at inspecting pages, by navigating from the catalog
dictionary. Since inspecting pages is often necessary the special pages command exists. It will
display all page object identifiers in the correct order, together with the object identifiers for
their content streams:

	
 In the example you can see that the PDF file has one page and that the page has one content
stream. Using two object commands at once we show the respective objects.

	
 From the page object we see that the page has size A4 (the /MediaBox key and knowing that the
numbers represent PDF points with 72 points per inch) and that it references (but may not actually
use) one font (in the /Resources → /Font dictionary).

	
 The stream object itself is rather plain, the interesting part is the stream contents. A page’s
content stream is written with the same syntax as a PDF file and contains the render instructions
for the viewer.

 Since we use a very simple PDF as example (see the tutorial “Creating a PDF Document from
Scratch” for how it was created), deciphering the instructions is not that hard:

 	The first line selects a font from the resource dictionary and sets the font size to 50 points.
	The second line sets the “text color” (actually the fill color) to an RGB value of (0, 128,
255).
	The next four lines draw the text “Hello World” at the location (150, 396).

Page objects often contain much more information, for example references to image resources,
annotations or form fields.

Searching for Data

Sometimes you need to find an object with some specific data in it. For example, when an error
message provides the name of a dictionary key or (part of) a value. Or when you want to find all
objects referencing a specific indirect object.

In such cases the search command comes in handy: It searches through all indirect objects and
prints those matching the given argument (a regular expression). Here is an example:

	
 First we search for occurrences of “hexa”, finding the information dictionary where the search
string appears under the /Producer key.

	
 Then we search for all references to the indirect object (2,0) by using the search string \b2 0
R\b (in this case it is important to use the \b anchors for word boundaries). This results in
two objects being shown, the catalog dictionary and the dictionary of the only page, because the
object (2,0) refers to the root of the page tree.

Comparing PDF File Structure

Comparing the structures of two PDF files allows you to analyse “behind the scenes” changes done by
a program. If you want to compare two PDF files visually, i.e. the appearance of the page content,
we recommend using a tool like DiffPDF.

To compare PDF structures use the recursive command to output the whole structure of the PDFs in
question and then compare the output. By using the process substitution feature of the shell you
don’t even need to create temporary files.

Here is a simple example showing the difference between the hello-world.pdf we have used
throughout this guide and the optimized version:

	
 First we produce the optimized version using the hexapdf optimize command which compresses the
PDF down to about 50% of the original file size.

	
 Then we use the recursive command in hexapdf inspect’s command line mode for hello-world.pdf
and hello-world-opt.pdf and use their output directly with vimdiff to show the differences.

	
 There are only three differences shown:

 	
 The second part of the /ID key changed. This is expected as this part should always change
when an existing file is modified.

	
 The /ModDate field also changed to reflect the date of the change.

	
 And although the file is smaller now it contains two more objects: one cross-reference stream
and one object stream. These stream objects are never referenced from the main structure since
they only provide a different way of storing data in the PDF file. Therefore they also don’t
appear in the recursive output.

 If the PDF file was created by another program and not HexaPDF, the /Producer line would also
have changed.

	
 The meaning of this is that nothing essential really changed when the PDF file was optimized,
which was expected.

 If you try this with bigger files and ones not created with HexaPDF, the output will probably show
many more changes because HexaPDF also removes unneeded key-value pairs of dictionaries.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

