

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Basics » Document Structure

 	Getting Started
	Basics	Introduction
	PDF Object Representation
	Document Structure 	File Trailer
	Document Catalog
	Page Tree
	Page

	Creating a PDF from Scratch
	Modifying a PDF Document
	Analysing PDFs

	Document Creation
	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	File Trailer
	Document Catalog
	Page Tree
	Page

PDF Document Structure

The PDF specification defines a single entry point into the document structure, the file trailer
dictionary, from which all other objects are referenced (n.b.: It is possible to store objects in a
PDF file without any reference to them. However, no standard PDF reader would be able to use them).
This means that the file trailer can be thought of as the root of a tree of PDF objects.

Although HexaPDF provides abstractions and convenience methods for working with the most important
PDF objects, basic knowledge of the structure of a PDF file helps a lot. For in-depth information or
for information about parts that are not covered, please consult the relevant parts of the PDF
specification.

File Trailer

The file trailer dictionary (implemented by HexaPDF::Type::Trailer) is not really useful for the
library user but for the PDF library itself because it contains all the information to properly
parse a PDF file, for example, encryption information.

Additionally, it provides access to the document catalog via the /Root key and to the information
dictionary via the /Info key.

If you need to access it, use HexaPDF::Document#trailer.

Document Catalog

Although the file trailer provides the entry point to all objects, the document catalog (see
HexaPDF::Type::Catalog) is the real root of the document tree.

It contains references to all the important parts of a PDF file, for example, the page tree, the
objects for interactive form support and the outline.

Additionally, it can be used to specify how the PDF document should be displayed through the keys
/ViewerPreferences, /PageLayout and /PageMode.

The document catalog can be accessed via HexaPDF::Document#catalog.

Page Tree

The page tree is a tree-like object structure that contains references to all the pages of a PDF
document.

The PDF specification could have used a simple array with references to the pages instead of the
page tree. However, when a PDF document contains many pages and is viewed on a device with limited
memory, a tree structure is better suited.

Since the object structure contains several redundant fields to aid in quickly getting the right
page object and since these fields need to be in sync, it is not advised to manually alter the
structure by inserting or deleting pages. HexaPDF can recover from such modifications but only if
explicitly told so through its validation feature.

Because of this complexity the class HexaPDF::Type::PageTreeNode which implements nodes of the
tree provides all the necessary convenience methods for adding, retrieving and deleting pages as
well as getting the zero-based index of a page.

To make it still easier to work with pages, HexaPDF provides an additional convenience wrapper
HexaPDF::Document::Pages that can be accessed via HexaPDF::Document#pages. This wrapper allows
you to use standard methods names like #add, #delete and #[] when working with pages. If you
still want to access the page tree itself, use HexaPDF::Document::Pages#root.

Page

For each page in a PDF document exists one page object that holds all the needed information for
displaying that page.

The most important information is stored in the following keys:

	Media box (key /MediaBox)
	
 Defines the size of the physical medium on which the page is to be printed.

 This key is required and HexaPDF sets this key when creating a new page, defaulting to A4.

	Crop box (key /CropBox)
	
 Defines the region to which the contents of the page should be clipped when viewed or printed.

 This key is optional and if not set defaults to the value of the media box. Note, however, that
this key is used (by HexaPDF and other PDF libraries, viewers, …) to determine the actual page
size!

	Content streams (key /Contents)
	
 Holds references to one or more content streams that define the contents of page.

	Ressource dictionary (key /Ressources)
	
 Contains reference to ressources that may be used by the page, like fonts or images.

There are many other keys for specifying things like page transitions, annotations or actions.

Page pbjects are represented by HexaPDF::Type::Page. This class provides all the necessary
convenience methods to work with pages, for example:

	#canvas
	
 Gives you access to a HexaPDF::Content::Canvas object for drawing on the page. You could
manually assemble the content streams but this is error prone and very tedious - better rely on
the canvas object.

	#orientation and #rotation
	
 Use these methods to retrieve the page orientation and to rotate a page.

	#box
	
 Allows you to view or change the various page boxes like the crop box.

	#each_annotation
	
 Iterates over all annotations of the page. It is also possible to flatten one or more annotations.

To access an existing page object you can use HexaPDF::Document::Pages#[] with a zero-based index;
to add a new one use HexaPDF::Document::Pages#add.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

