

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Basics » PDF Object Representation

 	Getting Started
	Basics	Introduction
	PDF Object Representation 	Basic Object Types
	Dictionary Types
	Mapping Dictionary Types to Classes

	Document Structure
	Creating a PDF from Scratch
	Modifying a PDF Document
	Analysing PDFs

	Document Creation
	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	Basic Object Types
	Dictionary Types
	Mapping Dictionary Types to Classes

PDF Objects

A PDF file essentially consists of PDF objects in serialized form; the additional information in the
file is just needed to locate and load these objects.

These PDF objects define everything, from the meta data needed for a page to how certain parts of a
page are defined as form fields.

Basic Object Types

The PDF specification defines several basic object types and most of them map directly to native
Ruby classes:

	Booleans
	
 Represented by true and false.

	Numerics
	
 Integers like 123 and floats like 123.45.

	Strings
	
 Represented by Ruby’s String class and the special HexaPDF::DictionaryFields::PDFByteString
class. Strings can be pure ASCII strings, Unicode strings or binary strings. There are two
serialization formats: One uses parentheses, e.g. (Test), the other angle brackets with
hex-encoding, like <54657374>.

	Names
	
 Work like symbols in Ruby and are therefore mapped to them. PDF names are serialized by prefixing
a slash to the name, e.g. /Name.

	Arrays
	
 Represented by Array or HexaPDF::PDFArray and serialized by using brackets around the values,
e.g. [123 (Test) /Name].

 The HexaPDF::PDFArray class provides, among other things, automatic dereferencing of values (see
below).

	Dictionaries
	
 Represented by Hash or HexaPDF::Dictionary but can only have name objects as keys.
Serialization is done using double angle brackets where each key is followed by its value, e.g.
<</Key (Value) /AnotherKey 12345>>.

 HexaPDF uses HexaPDF::Dictionary instead of plain hashes where possible. The reason is that the
dictionary class provides various methods that allow for much more convenient use. For example,
accessing a value automatically dereferences it so that not the reference itself is returned, but
the referenced indirect object (see below).

	Null
	
 Represented by nil and serialized as null.

	Streams
	
 A sequence of potentially unlimited bytes. Represented by the HexaPDF::Stream class and
serialized as a dictionary followed by stream\n...stream bytes...\nendstream. A stream is always
an indirect object (see below).

 Since the stream data can amount to many mebibytes, the stream data itself is lazily loaded on
first access.

	Indirect objects
	
 An object of any of the above types that is additionally assigned an object identifier consisting
of an object number (a positive integer) and a generation number (a non-negative integer).
Represented by the HexaPDF::Object class and serialized by putting the object between OID GEN
obj and endobj, like this 4 0 obj (SomeObject) endobj. Can be referenced in serialized form
from another object like this: 4 0 R.

 Indirect objects are special in that they don’t define a separate type but allow an object of any
other type to be referenced. This reference mechanism allows HexaPDF to provide lazy loading of
indirect objects, e.g. only those indirect objects that are actually accessed are loaded.

Sometimes a direct object is also represented by a subclass of HexaPDF::Object (e.g. to work with
the object using convenience methods). In such cases the object number 0 is used to indicate that
the object is a direct object. Use HexaPDF::Object#indirect? to determine whether an object direct
or indirect.

Since most of the PDF object types map perfectly to Ruby classes, working with PDF objects is very
easy because you don’t need to do anything special in nearly all cases. As an example, the following
code creates a new PDF document, manually assembles a page dictionary and then adds it to the
document’s page tree:

require 'hexapdf'

doc = HexaPDF::Document.new
page = doc.add({Type: :Page, MediaBox: [0, 0, 100, 100]})
page.contents = "0 0 m 100 100 l S"
doc.pages << page
doc.write("sample.pdf")

Note that the HexaPDF::Document#add call actually returns a HexaPDF::Type::Page object and not a
simple dictionary, allowing the use of its #contents method. See below for details.

Dictionary Types

While specifying an object as indirect object gives you access to it from anywhere in the PDF file,
the meaning of this indirect object may not be apparent. This is where the dictionary object type
comes into play.

The PDF specification uses dictionary objects to describe various dictionary types, like pages,
fonts or annotations. It defines each key of such a dictionary type, together with additional
information like the allowed object types of the value, possible default value, earliest PDF version
that key is available and, naturally, a description

These dictionary types are implemented as subclasses of HexaPDF::Dictionary and use
HexaPDF::Dictionary::define_field to define the fields described in the PDF specification together
with the mentioned meta data about them.

This meta data allows HexaPDF to do things like validating values and mapping objects to more
specific classes (see the next section).

Mapping Dictionary Types to Classes

Most of the dictionary types have a special /Type key with which an object can be recognized. For
example, the main PDF object, the catalog, has the type /Catalog.

While many dictionary types require the /Type key to be present, sometimes it is optional. And
there are also dictionary types that don’t have a /Type key at all. In such cases the dictionary
type can be inferred via the object from which it is referenced. For example, the viewer preferences
type doesn’t have a /Type key but because it is referenced from the document catalog via the
/ViewerPreferences key we know how to interpret it.

This allows HexaPDF to provide an automatic mapping of objects to more specific classes! For
example, a page object would normally be represented by HexaPDF::Dictionary. However, since there
is a more specific subclass HexaPDF::Type::Page registered for it, this subclass is used.

Internally, this is made possible by HexaPDF::Object not actually storing the (indirect) object’s
data but just a HexaPDF::PDFData object that holds everything related to a PDF object. So it
doesn’t matter whether a HexaPDF::Dictionary or a HexaPDF::Type::Page object is used as wrapper
as long as they use the same HexaPDF::PDFData object. This increases memory usage but the gains
are worth it.

The automatic mapping happens in two places:

	HexaPDF::Document#wrap
	
 Whenever an object is loaded from a PDF or manually added through HexaPDF::Document#add, the
#wrap method is called. This method contains the logic to map a hash to a concrete dictionary
type class, mainly based on the contents of the hash.

	HexaPDF::Dictionary#[]
	
 The only required meta data item of a dictionary field definition is the type of the field. When
the #[] method is used to retrieve a value, this type information is used to wrap the value in
the correct dictionary class. Internally, this is done by the
HexaPDF::DictionaryFields::DictionaryConverter module.

How the mapping from dictionary object to concrete implementation class is done can be configured
via the global configuration object (see HexaPDF::GlobalConfiguration). The default configuration
uses all the classes shipped with HexaPDF. However, you can easily replace a class or add a new
mapping by changing the configuration.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

