

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » News » 2017 » Advanced Text Layout is Coming

News Items

 	HexaPDF 0.35.0 - Fallback Fonts
	HexaPDF 0.34.0 - Optional Content aka Layers
	HexaPDF 0.33.0 - Table Support
	HexaPDF 0.29.0 - PAdES Compatible Digital Signatures
	HexaPDF 0.28.0
	HexaPDF 0.27.0 - Timestamp Signatures
	HexaPDF 0.24.0 - Document Layout Update
	HexaPDF 0.23.0
	HexaPDF 0.20.0 - Digital Signatures
	HexaPDF 0.18.0
	HexaPDF 0.17.0
	HexaPDF 0.15.0
	HexaPDF 0.14.3
	HexaPDF 0.14.1 - Performance Work
	HexaPDF 0.14.0 - Interactive Forms Improvements
	HexaPDF 0.13.0 - Cross-reference Table Reconstruction
	HexaPDF 0.12.0 - Interactive Forms
	HexaPDF 0.11.0
	HexaPDF 0.10.0 and New Website
	HexaPDF 0.9.0 - Document Layout
	HexaPDF 0.8.0 - Box Layout
	HexaPDF 0.6.0 - Code Refinements
	HexaPDF 0.5.0 - Advanced Text Layout
	Simple Text Metrics
	Advanced Text Layout is Coming
	HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements
	HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements
	Second Release - Further Improvements
	Initial Release of HexaPDF

 Advanced Text Layout is Coming
 Published on Friday, 28 April 2017

Since HexaPDF 0.4.0 was released, I focused on becoming more knowledgeable in the area of text
layout and the role font files play in this regard. Therefore not much coding was done in the last
few weeks.

The reason for this foray is that one of the next features to land in HexaPDF is advanced text
layout. This means that one can specify a (for the time being) rectangular area in which text
should be placed as well as formatting options (like text alignment, font and font size, color, …)
and HexaPDF does the rest. Additionally, kerning, ligatures and such will also be supported.

Such a feature may sound easy to implement for anyone having worked with GUI interfaces. However,
with GUI interfaces one doesn’t need to concern oneself with font details like glyphs (more or less
a visual representation of a character), glyph spacing, ascenders, descenders, ligatures, kerning,
right-to-left text and much more. Strictly speaking, much of this (like ligatures and kerning) is
not necessary for the box layouting of text.

When I started creating the Canvas class for drawing on a page, I started with the easy things,
the vector graphics directly supported by the PDF format. These are easy because there is no need
for deep knowledge about graphics rendering (e.g. Bézier curve drawing or anti-aliasing) because the
rendering is done by the PDF reader application, not the writer.

However, with text it is exactly the other way around. The writer application has to do
everything and the reader application just needs to draw the glyphs at the given positions. This
certainly leads to a more consistent appearance of PDF files across different platforms and reader
applications but makes implementing a good writer application that much harder. One positive effect
of this approach, though, is that embedded font files can be stripped down to the minimum
information needed (note that sometimes this doesn’t seem to be wildly known…).

You might say: “But HexaPDF already supports text output in the Canvas class!”. And you would be
right. However, currently only the very low-level functionality is implemented which can be used
for text output but doesn’t lead to nice results. I.e. there is no automatic line-wrapping, fitting
into a pre-defined box, automatic kerning, support for ligatures, …

Since some of the features like kerning and ligatures are orthogonal to the box layouting facility,
they will be implemented separately and in a way to customize each step. For example, it will be
possible to do box layouting without other advanced text layout features like automatic kerning when
this is not needed.

To give you a small idea of the problems that have to be dealt with:

	
 Some characters can be represented in multiple ways in in Unicode. For example, “ä” may be
represented using the single codepoint 0x00E4 or two codepoints 0x0061 (“a”) and 0x0308 (combining
diaeresis). If such differences are not taken into account, the output will not look
correct.

	
 Kerning describes how the spacing between two characters need to be adjusted to achieve a
better visual result. This information is available in most TrueType fonts. However, some font
files use a ‘kern’ table while others use the new OpenType table ‘GPOS’.

 Due to the fact that kerning must be done in addition to everything else, some PDF writers do not
implement kerning due to performance concerns. For example, whereas Prawn does support kerning,
ReportLab does not.

	
 Ligatures are sometimes used to provide nicer visual results, like combining ‘fi’ into a
single character. However, some languages like Arabic more or less (I’m not an expert) need
ligatures to be correctly displayed. Again, this information is available in modern font files,
for example in the ‘GSUB’ table of OpenType fonts.

	
 Speaking of Arabic, some languages are laid out from right to left. To do this correctly with
Unicode the Unicode Bidirectional Algorithm has to be used. And correctly combined with
glyph substitution (e.g. ligatures) and positioning (e.g. kerning). Oh, and some are laid out
vertically.

	
 There are already may algorithms for line breaking and layouting text in a box. One classic
algorithm is the Knuth-Plass line breaking algorithm. So in this area one only has
to choose the needed sophistication of the line breaking and layouting algorithm.

These are just some things I’m currently thinking about with regards to HexaPDF. And to give you
another idea of the complexity behind all this: iText, one of the biggest players in the PDF area
with their product written in Java and therefore even able to use many external libraries, only
implemented full support for complex text layout with version 7, released last year.

So I will keep it small and simple for the time being and build the more complex parts later on. I
will start with support for kerning and a simple box layouting algorithm. If you have a request,
drop me an e-mail or open an issue!

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

