

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » News » 2018 » HexaPDF 0.9.0 - Document Layout

News Items

 	HexaPDF 0.35.0 - Fallback Fonts
	HexaPDF 0.34.0 - Optional Content aka Layers
	HexaPDF 0.33.0 - Table Support
	HexaPDF 0.29.0 - PAdES Compatible Digital Signatures
	HexaPDF 0.28.0
	HexaPDF 0.27.0 - Timestamp Signatures
	HexaPDF 0.24.0 - Document Layout Update
	HexaPDF 0.23.0
	HexaPDF 0.20.0 - Digital Signatures
	HexaPDF 0.18.0
	HexaPDF 0.17.0
	HexaPDF 0.15.0
	HexaPDF 0.14.3
	HexaPDF 0.14.1 - Performance Work
	HexaPDF 0.14.0 - Interactive Forms Improvements
	HexaPDF 0.13.0 - Cross-reference Table Reconstruction
	HexaPDF 0.12.0 - Interactive Forms
	HexaPDF 0.11.0
	HexaPDF 0.10.0 and New Website
	HexaPDF 0.9.0 - Document Layout
	HexaPDF 0.8.0 - Box Layout
	HexaPDF 0.6.0 - Code Refinements
	HexaPDF 0.5.0 - Advanced Text Layout
	Simple Text Metrics
	Advanced Text Layout is Coming
	HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements
	HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements
	Second Release - Further Improvements
	Initial Release of HexaPDF

 	Document Composition
	Incremental Writing
	Splitting PDF Files
	Other Changes

 HexaPDF 0.9.0 - Document Layout
 Published on Monday, 31 December 2018

With the ground work for document layout management done in the 0.8.0 release the focus was shifted
to the refinement of these features and to the actual document layout functionality.

The major changes for this release are the document composition functionality, incremental PDF
writing, a CLI command for splitting PDF files and compatibility with Ruby 2.6.

Document Composition

One of the goals of HexaPDF is to provide high-level functionality for document composition. With
this release the initial working version of this goal has been achieved with the new
HexaPDF::Composer class.

This class uses the functionality introduced in the last release (e.g. frames, text boxes, …) to
make creating a PDF document as easy as it is with other libraries, for example Prawn. Here is a
simple example:

require 'hexapdf'

HexaPDF::Composer.create('hello-world.pdf') do |pdf|
 pdf.text("Hello World!", font_size: 50, align: :center, valign: :center)
end

Text (or more generally every box) is layed out from top-to-bottom and can be flown around objects
that have been placed on the page before. This makes it easy, for example, to flow text around
images (see the new composer example). Also, if some box doesn’t fit on a page or can’t be
split, a new page is automatically created.

Arbitrary drawing operations can still be performed by using the HexaPDF::Content::Canvas object
that is provided by the composer.

Incremental Writing

Starting with this version HexaPDF supports incremental writing. Writing a PDF document in
incremental mode means that the new or changed content is just appended to the original PDF. This is
used, for example, if the original document was cryptographically signed so as to not invalidate the
signature.

Incremental writing in HexaPDF is not perfect in the sense that it doesn’t completely minimize the
amount of data that gets written. The reason for this is HexaPDF’s automatic conversion of hash
values. For example, PDF dates (which are stored as strings) are automatically converted to Ruby
date objects on access, making the comparison fail even though there are no differences when
serializing.

Splitting PDF Files

The hexapdf command line application already has a command for merging files but the reverse was
missing. So this version brings the split command that can do exactly that.

As an example, consider the following: hexapdf split input.pdf out_%02d.pdf. This would split the
input.pdf file page by page and generate files of the form out_01.pdf, out_02.pdf and so on.

Other Changes

There were some other changes and bug fixes, the most noteworthy are:

	
 Usage of some non-described stdlib behaviour was fixed to make HexaPDF compatible with Ruby 2.6.

	
 Text boxes now respect width/height/padding/border when fitting.

	
 Variable width line wrapping now correctly considers line spacing when determining line width.

As always, have a look at the changelog for an overview of all changes.

And Happy New Year!

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

