

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » News » 2022 » HexaPDF 0.24.0 - Document Layout Update

News Items

 	HexaPDF 0.35.0 - Fallback Fonts
	HexaPDF 0.34.0 - Optional Content aka Layers
	HexaPDF 0.33.0 - Table Support
	HexaPDF 0.29.0 - PAdES Compatible Digital Signatures
	HexaPDF 0.28.0
	HexaPDF 0.27.0 - Timestamp Signatures
	HexaPDF 0.24.0 - Document Layout Update
	HexaPDF 0.23.0
	HexaPDF 0.20.0 - Digital Signatures
	HexaPDF 0.18.0
	HexaPDF 0.17.0
	HexaPDF 0.15.0
	HexaPDF 0.14.3
	HexaPDF 0.14.1 - Performance Work
	HexaPDF 0.14.0 - Interactive Forms Improvements
	HexaPDF 0.13.0 - Cross-reference Table Reconstruction
	HexaPDF 0.12.0 - Interactive Forms
	HexaPDF 0.11.0
	HexaPDF 0.10.0 and New Website
	HexaPDF 0.9.0 - Document Layout
	HexaPDF 0.8.0 - Box Layout
	HexaPDF 0.6.0 - Code Refinements
	HexaPDF 0.5.0 - Advanced Text Layout
	Simple Text Metrics
	Advanced Text Layout is Coming
	HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements
	HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements
	Second Release - Further Improvements
	Initial Release of HexaPDF

 	Column and List Boxes
	More Convenient Box and Document Creation
	Other Changes

 HexaPDF 0.24.0 - Document Layout Update
 Published on Monday, 01 August 2022

The focus of this release was to provide a major improvement in document layout and creation.
Nearly all classes in HexaPDF::Layout were adapted or refactored which also resulted in some
breaking changes.

Column and List Boxes

The most user visible changes are the addition of HexaPDF::Layout::ColumnBox for laying out boxes
in columns and HexaPDF::Layout::ListBox for creating ordered or unordered lists:

These two new box classes represent a major step forward since they are container boxes, i.e.
boxes that contain other boxes. For such classes to work flawlessly with the rest of the layout
engine, the class HexaPDF::Layout::BoxFitter was introduced. It allows fitting multiple boxes
into one or more (temporary) frames and storing the results for later use; exactly what is needed
for container boxes.

The container boxes can be used like any other box which means they can also be split. And they can
be nested in one another, like having a column box inside a list box inside a column box:

Since the container boxes internally rely on the same layout engine that is used everywhere else,
they can also recognize and flow around cut-outs, like the black box in the image above.

One of the nice advantages of having this system of individual box classes which represent certain
parts of a document is that it allows for adding additional information later on. For example,
adding support for tagged PDF (i.e. providing accessibility related information) should not be much
of a problem in the future.

More Convenient Box and Document Creation

There was also much work done to improve the document layout API to make it easier to use.

The new HexaPDF::Document::Layout class, accessible through HexaPDF::Document#layout, is now
the central hub for creating box objects. It allows for the easy instantiation of all built-in box
classes as well as user-provided ones.

Additionally, that class contains a central style registry which allows one to associate names to
specific box styles and reference those styles later by their given name.

The HexaPDF::Composer class from which most of the methods in HexaPDF::Document::Layout came
from, uses this new class and can now concentrate on the special behaviour needed when creating
whole documents. It is now also possible to easily define the children of container boxes:

require 'hexapdf'

HexaPDF::Composer.create("list.pdf") do |composer|
 composer.text("Hello World!", font_size: 30, align: :center, padding: [0, 0, 20])
 composer.box(:list, item_spacing: 20) do |list|
 list.lorem_ipsum_box
 list.image('examples/machupicchu.jpg', height: 100)
 list.box(:list, item_type: :decimal) do |sub_list|
 sub_list.text("Item 1")
 sub_list.text("Another item")
 end
 end
end

Other Changes

The code base and test suite have been adapted so that all tests now pass on Linux, macOS and
Windows using Ruby versions 2.6, 2.7, 3.0, 3.1 and the current Ruby head version.

There were also some other, smaller changes, like the ability to move pages around in a document.
And as usual there were several bug fixes

As always, have a look at the changelog for an overview of all changes.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

