

    
      
        HexaPDF
        
          
          
          
            
            Menu

            HomeExamplesDocsCodeNews
            

          

          

        

      

    

    
  
    Home  »  News  »  2018  »  HexaPDF 0.8.0 - Box Layout
  





  
     

News Items


     
       
       	HexaPDF 0.35.0 - Fallback Fonts
	HexaPDF 0.34.0 - Optional Content aka Layers
	HexaPDF 0.33.0 - Table Support
	HexaPDF 0.29.0 - PAdES Compatible Digital Signatures
	HexaPDF 0.28.0
	HexaPDF 0.27.0 - Timestamp Signatures
	HexaPDF 0.24.0 - Document Layout Update
	HexaPDF 0.23.0
	HexaPDF 0.20.0 - Digital Signatures
	HexaPDF 0.18.0
	HexaPDF 0.17.0
	HexaPDF 0.15.0
	HexaPDF 0.14.3
	HexaPDF 0.14.1 - Performance Work
	HexaPDF 0.14.0 - Interactive Forms Improvements
	HexaPDF 0.13.0 - Cross-reference Table Reconstruction
	HexaPDF 0.12.0 - Interactive Forms
	HexaPDF 0.11.0
	HexaPDF 0.10.0 and New Website
	HexaPDF 0.9.0 - Document Layout
	HexaPDF 0.8.0 - Box Layout
	HexaPDF 0.6.0 - Code Refinements
	HexaPDF 0.5.0 - Advanced Text Layout
	Simple Text Metrics
	Advanced Text Layout is Coming
	HexaPDF 0.4.0 - Composite Font Support and many CLI enhancements
	HexaPDF 0.3.0 - TTF Font Subsetting and CLI enhancements
	Second Release - Further Improvements
	Initial Release of HexaPDF


     
     
  


  
    
    
  HexaPDF 0.8.0 - Box Layout
    Published on Friday, 26 October 2018
  

  
The last release, 0.7.0, was done to fix some issues and didn’t include any of the major changes
since 0.6.0. With the 0.8.0 release these major changes are now incorporated into HexaPDF and lay
the groundwork for document layouting.


So what is new for HexaPDF?


The 0.6.0 release enhanced the base box layout class with many more styling properties but it still
wasn’t possible to easily position such boxes. So naturally the next step was to design how they
would be layed out on a page.


In HexaPDF layout boxes represent all things that should be put on a page, be it text (like
headings and paragraphs), images or other content. Typically (at least with western languages), the
boxes are layed out from top to bottom and left to right. So the easiest thing would be to define a
“cursor” position that represents the vertical position to place the current box and after placing
it, move the cursor downwards.


However, with such a model you cannot easily do things like having a picture and flowing text around
it. Or putting a box into the middle of the page and then flowing the boxes around this hole. Or
having non-rectangular regions to put boxes in.


Therefore I decided to do things differently:


	
    To layout boxes HexaPDF uses frames where a frame is a set of
rectilinear polygons (i.e. only consisting of vertical and horizontal lines).

  
	
    When a box gets placed in a frame, the occupied region is subtracted from the frame’s polygons,
resulting in new polygons for the frame.

  
	
    Each frame knows how to find the position where the next box should be placed (the top-most,
left-most point) and how big the available rectangular region at that position is.

  
	
    If a box doesn’t fit, the frame also knows how to calculate the next possible position and region.

  



Doing things in this way seems very complicated at first but it certainly makes some things very
easy:


	
    A frame can have any form and can contain holes. This is the reason a frame can potentially
consist of multiple polygons.

  
	
    Boxes can be styled using the new position and
position_hint style properties to remove the whole vertical stripe in which they are in,
imitating the basic cursor model.

  
	
    And these style properties can also make a box “float” to the left or right, like blocks in HTML,
removing only their occupied region.

  



I also hope that this design will make future additions straightforward (like, for example, multi
column layout).


To make working with the frame’s polygons easier, I created a new rubygem called geom2d. There
were some Ruby libraries available that define basic 2D geometric objects and some algorithms but
none really fit the needs. The goal of geom2d was to provide a polygon class and an algorithm for
intersecting two polygons. To this end I read several papers on boolean operations on polygons and
then implemented one of them.


The HexaPDF::Layout::TextLayouter class has been enhanced as well to allow placing text in an
arbitrary polygon. This is needed because otherwise placing text in a frame and flowing it
according to the frame’s polygon wouldn’t be possible.


So, now that I have bored you with the technical details, have a look at the new examples to see how
this can be put to good use:


	
    The automatic box placement example shows how to use a frame to place multiple
boxes.

  
	
    The text flow example shows how text is automatically flown around floating boxes.

  



Mind you that doing things like this is still not really “high level” since there are some essential
things missing, like splitting a box if it doesn’t fit (think of text at the bottom of a page), not
to mention high level constructs like tables.


The next step is to provide a class that abstracts the composition aspects so that one can say: Here
are N styled boxes, here are the definitions of the frames that should be used (e.g. a special
frame definition for the first page and a common definition for all other pages), lay out the boxes
while creating pages as needed.


As always, have a look at the changelog for an overview of all changes.






  





    
      
        © Thomas Leitner
        |  gettalong/hexapdf
        | Legal Notice
        | Privacy Policy
      

    

    
    
    
    






  