

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Document Creation » Canvas Tutorial

 	Getting Started
	Basics
	Document Creation	Introduction
	Document Layout
	Canvas Tutorial 	Basics
	Creating a Canvas
	Coordinate System
	Graphics State
	Drawing Graphics
	Drawing Text
	Reusing Graphics
	The Complete Code and Result PDF

	Composer Tutorial
	How-tos
	Migrating from Prawn

	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	Basics
	Creating a Canvas
	Coordinate System
	Graphics State
	Drawing Graphics
	Drawing Text
	Reusing Graphics
	The Complete Code and Result PDF

 Using the Canvas

In this tutorial you will get to know the HexaPDF::Content::Canvas class which is the low-level
class for drawing on a page. You might want to open the resulting PDF to more
easily understand the operations.

Basics

The canvas class provides access to all PDF drawing instructions. The available instructions are
quite similar to other canvas implementations, like the HTML <canvas> element. So you can style
and draw graphics as well as text.

The main difference between e.g. the HTML canvas and the PDF canvas is that the PDF canvas methods
result in a stream of text instructions that define the content of a PDF page. Whereas the result of
HTML canvas methods is an image. This means that one could write the text instructions themselves
instead of using the canvas methods. However, since certain rules have to be followed, it is not
advised to do so.

With that out of the way, let’s draw some things!

Creating a Canvas

An instance of the canvas class is always tied to one of two PDF objects: a
page or a Form XObject. The reason is that the content
needs to be associated with such an object to be usable/displayable and that sometimes during
drawing operations PDF objects need to be created and correctly assigned.

Therefore the two type classes provide a #canvas method for getting the appropriate canvas
instance:

require 'hexapdf'

doc = HexaPDF::Document.new

page = doc.pages.add
canvas = page.canvas

form = doc.add({ Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 100]})
form_canvas = form.canvas

Note that we need to define the bounding box for the Form XObject. The bounding box of a page is its
crop box which defaults to the page size by default (which is A4 by default). Anything drawn outside
the bounding box/crop box will not be visible.

To access the bounding box of the underlying PDF object we can use the
#box method:

page_box = canvas.context.box

Coordinate System

The coordinate system of the canvas follows the mathematical model. This means that the positive
x-axis is to the right and the positive y-axis to the top. The origin is at (0, 0) which usually
coincides with the lower-left corner of the bounding box (but doesn’t need to). Coordinates are
specified in PDF points where 72 PDF points are one inch (= 25.4mm).

It is possible to transform the coordinate system using various methods, like the general
#transform method or the more specific
#translate method.

Let’s move the origin to somewhere else and draw a rectangle inside which we will draw things:

canvas.translate(100, 100)
canvas.rectangle(0, 0, page_box.width - 200, page_box.height - 200, radius: 15).stroke

Since we translated the origin to the point (100, 100), the rectangle’s lower-left corner will
actually be at (100, 100) instead of (0, 0).

Graphics State

The canvas (and also later the PDF application rendering the instructions) keeps track of the so
called graphics state.

The graphics state contains properties like the fill and stroke colors, the line width, the font,
the character spacing and the current transformation matrix. It is accessible via the
#graphics_state method of the canvas.

Let’s use the current transformation matrix of the graphics state to find out the real position of
the current origin:

Note that one would normally use canvas.pos(0, 0) for this
p canvas.graphics_state.ctm.evaluate(0, 0) # prints [100, 100]

Since some changes to the graphics state can’t be undone, like certain coordinate system
transformations or clipping operations, it is possible to save and restore the graphics state:

canvas.save_graphics_state do
 canvas.rectangle(-50, -50, 100, 100).clip_path.end_path # restricts drawing operations
 canvas.fill_color("lightgreen").opacity(fill_alpha: 0.5).
 rectangle(-100, -100, 1000, 1000).fill
end

The above instructions fill a rectangle of size 100x100 instead of 1000x1000. If we hadn’t saved the
graphics state before and restored it afterwards, we wouldn’t be able to draw anywhere else from
this point onwards.

Drawing Graphics

As already said the canvas class provides methods for all PDF drawing
instructions. Since those are only low-level constructs there are also some methods that can draw
more common graphics like circles.

Let’s draw some basic shapes. We start at the top left, so the y-coordinates are initially high and
will get lower:

canvas.fill_color("blue").stroke_color("red").
 rectangle(20, 550, 100, 30).fill_stroke
canvas.line_width(10).
 move_to(150, 550).curve_to(200, 630, p1: [100, 610]).
 line_to(220, 550).close_subpath.stroke
canvas.polygon(300, 550, 300, 630, 360, 590, 270, 580, radius: 10).stroke

Note that we first change parts of the graphics state, setting the fill color to blue and the stroke
color to red. Although it might seem that this change is restricted to the rectangle, it is actually
not. The same happens with the line width which stays changed for the rounded polygon.

To restrict graphics state changes to only a part of the drawing operations, either use the block
form of the methods or explicitly save and restore the graphics state:

canvas.line_width(1) do
 canvas.line(10, 520, 200, 520).stroke
end
canvas.save_graphics_state do
 canvas.stroke_color("green").line(200, 520, 370, 520).stroke
end

The canvas also features an extension system which allows one to easily draw more complex things,
like a pie chart:

pie = canvas.graphic_object(:solid_arc, cx: 100, cy: 450,
 outer_a: 50, outer_b: 50)
canvas.fill_color('aaaaff')
canvas.draw(pie, start_angle: 30, end_angle: 110).fill
canvas.fill_color('ffaaaa')
canvas.draw(pie, start_angle: 110, end_angle: 130).fill
canvas.fill_color('aaffaa')
canvas.draw(pie, start_angle: 130, end_angle: 30).fill

Drawing Text

Before any text can be drawn, one has to define at least the font and font size since there is no
default value for both values.

PDF has built-in support for the fonts Helvetica, Times and Courier (all tree in normal, bold,
italic and bold-italic variants) as well as Symbol and Zapf Dingbats (which are symbolic fonts).
Those are called the 14 standard PDF fonts. Note that those fonts only contain a limited set of
glyphs, see the standard PDF fonts example for a full list.

Let’s write some text in all standard non-symbolic PDF fonts:

canvas.fill_color("black")
['Helvetica', 'Times', 'Courier'].each_with_index do |font, x|
 [:none, :bold, :italic, :bold_italic].each_with_index do |variant, y|
 canvas.font(font, variant: variant, size: 12)
 canvas.text('HexaPDF Canvas', at: [20 + 120 * x, 360 - 20 * y])
 end
end

Besides the standard PDF fonts it is also possible to use any TrueType font with HexaPDF:

canvas.font('/usr/share/fonts/truetype/lato/Lato-Regular.ttf', size: 12)
canvas.text("HexaPDF Canvas with\nTrueType font", at: [20, 270])

Either specify the font file directly, as above, or configure and reference it by name later:

doc.config['font.map'] = {
 'Lato' => {
 none: '/usr/share/fonts/truetype/lato/Lato-Regular.ttf',
 italic: '/usr/share/fonts/truetype/lato/Lato-Italic.ttf',
 }
}
canvas.font('Lato', variant: :italic)
canvas.text("Lato Italic font variant", at: [200, 270])

The #text method used here for drawing recognizes line breaks but
nothing more. For more complex text output one would need to use HexaPDF::Layout::TextLayouter
(low-level) or HexaPDF::Composer (high-level)a.

Reusing Graphics

At the beginning we introduced Form XObjects as the other PDF object type supporting a canvas. Form
XObjects are used to define graphics once and use them multiple times.

One thing to remember is that Form XObjects do not reset the graphics state. So all the graphics
state set when drawing a Form XObject will be used for the drawing operations of the Form XObject.

Let’s draw something on our Form XObject and then draw it twice:

form_canvas.rectangle(10, 10, 80, 80, radius: 10).stroke
form_canvas.ellipse(0, 0, a: 40, b: 25, inclination: 30).fill_stroke

canvas.xobject(form, at: [20, 120])
canvas.line_width(5).stroke_color("black").opacity(stroke_alpha: 0.5).
 fill_color("blue")
canvas.xobject(form, at: [220, 120])

As expected anything outside of the form’s bounding box is clipped and not visible when drawing the
form. And it can clearly be seen that the change in the graphics state between the invocations
influences the form’s drawing operations.

Now we just need to write the document

doc.write("canvas-tutorial.pdf")

which will conclude this tutorial!

The Complete Code and Result PDF

Here is the complete code generating this result PDF:

require 'hexapdf'

doc = HexaPDF::Document.new

page = doc.pages.add
canvas = page.canvas

form = doc.add({ Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 100]})
form_canvas = form.canvas

page_box = canvas.context.box

canvas.translate(100, 100)
canvas.rectangle(0, 0, page_box.width - 200, page_box.height - 200, radius: 15).stroke

Note that one would normally use canvas.pos(0, 0) for this
p canvas.graphics_state.ctm.evaluate(0, 0) # prints [100, 100]

canvas.save_graphics_state do
 canvas.rectangle(-50, -50, 100, 100).clip_path.end_path # restricts drawing operations
 canvas.fill_color("lightgreen").opacity(fill_alpha: 0.5).
 rectangle(-100, -100, 1000, 1000).fill
end

canvas.fill_color("blue").stroke_color("red").
 rectangle(20, 550, 100, 30).fill_stroke
canvas.line_width(10).
 move_to(150, 550).curve_to(200, 630, p1: [100, 610]).
 line_to(220, 550).close_subpath.stroke
canvas.polygon(300, 550, 300, 630, 360, 590, 270, 580, radius: 10).stroke

canvas.line_width(1) do
 canvas.line(10, 520, 200, 520).stroke
end
canvas.save_graphics_state do
 canvas.stroke_color("green").line(200, 520, 370, 520).stroke
end

pie = canvas.graphic_object(:solid_arc, cx: 100, cy: 450,
 outer_a: 50, outer_b: 50)
canvas.fill_color('aaaaff')
canvas.draw(pie, start_angle: 30, end_angle: 110).fill
canvas.fill_color('ffaaaa')
canvas.draw(pie, start_angle: 110, end_angle: 130).fill
canvas.fill_color('aaffaa')
canvas.draw(pie, start_angle: 130, end_angle: 30).fill

canvas.fill_color("black")
['Helvetica', 'Times', 'Courier'].each_with_index do |font, x|
 [:none, :bold, :italic, :bold_italic].each_with_index do |variant, y|
 canvas.font(font, variant: variant, size: 12)
 canvas.text('HexaPDF Canvas', at: [20 + 120 * x, 360 - 20 * y])
 end
end

canvas.font('/usr/share/fonts/truetype/lato/Lato-Regular.ttf', size: 12)
canvas.text("HexaPDF Canvas with\nTrueType font", at: [20, 270])

doc.config['font.map'] = {
 'Lato' => {
 none: '/usr/share/fonts/truetype/lato/Lato-Regular.ttf',
 italic: '/usr/share/fonts/truetype/lato/Lato-Italic.ttf',
 }
}
canvas.font('Lato', variant: :italic)
canvas.text("Lato Italic font variant", at: [200, 270])

form_canvas.rectangle(10, 10, 80, 80, radius: 10).stroke
form_canvas.ellipse(0, 0, a: 40, b: 25, inclination: 30).fill_stroke

canvas.xobject(form, at: [20, 120])
canvas.line_width(5).stroke_color("black").opacity(stroke_alpha: 0.5).
 fill_color("blue")
canvas.xobject(form, at: [220, 120])

doc.write("canvas-tutorial.pdf")

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

