

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Document Creation » Migrating from Prawn

 	Getting Started
	Basics
	Document Creation	Introduction
	Document Layout
	Canvas Tutorial
	Composer Tutorial
	How-tos
	Migrating from Prawn 	Code Comparison Example
	Creating a Document
	Working with Graphics and Text
	Other Prawn Functionality
	Prawn functionality not yet supported in HexaPDF
	HexaPDF functionality not supported in Prawn

	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	Code Comparison Example
	Creating a Document
	Working with Graphics and Text
	Other Prawn Functionality
	Prawn functionality not yet supported in HexaPDF
	HexaPDF functionality not supported in Prawn

Migrating from Prawn

This how-to guide provides information and code samples for Prawn users to get familiar with
HexaPDF. While Prawn and HexaPDF are different in their respective capabilities, HexaPDF can do many
of the things that Prawn can do and can often be used instead of Prawn.

Throughout this guide the following variables are consistently used:

	doc
	The Prawn document instance.
	document
	The HexaPDF document instance.
	composer
	The HexaPDF composer instance.
	canvas
	The HexaPDF canvas instance of a page.

Code Comparison Example

The following example shows the same document, a very simple invoice, being created in Prawn and in
HexaPDF. It doesn’t use all available functionality in both libraries but shows general usage. A
short comparison of the two code samples can be found after them.

Here is the Prawn example, generating this result:

require 'prawn'
require 'prawn/table'

doc = Prawn::Document.new(page_size: "A4", margin: [72, 72, 72, 72], compress: true)

doc.font("Helvetica")
doc.font_size(12)

doc.save_graphics_state do
 doc.canvas do
 doc.fill_color("77C3EC")
 doc.fill_rectangle([0, 50], doc.bounds.right, 50)
 doc.fill_rectangle([0, doc.bounds.top], doc.bounds.right, 50)
 doc.fill_color("000000")
 end
end

doc.float do
 doc.bounding_box([doc.bounds.right - 150, doc.cursor], width: 150, height: 100) do
 doc.stroke_bounds
 doc.text_box("Prawn Example Inc.\nGarnish Street 3a\n4567 New South East\nWorld",
 at: [5, doc.bounds.top - 5], width: 140, height: 90)
 end
end

doc.bounding_box([0, doc.cursor], width: 150, height: 100) do
 doc.stroke_bounds
 doc.text_box("Customer Here\nAvailability Arcarde 1\n 8901 Old North West\nMoon",
 at: [5, doc.bounds.top - 5], width: 140, height: 90)
end

doc.move_down(40)

doc.font_size(24) do
 doc.text("Invoice 1234")
end

doc.move_down(40)

invoice_data = [
 ["Item", "Amount", "Total Price"],
]
1.upto(10) do |i|
 invoice_data << ["Super Dooper #{i}", i, "$ #{10*i}"]
end
invoice_data << ["", "", "$ 450"]

doc.table(invoice_data, width: doc.bounds.width,
 cell_style: {padding: 5, height: 25}, column_widths: [250, 80]) do |table|
 table.row(0).font_style = :bold
 table.row(0).background_color = "EEEEEE"
 table.row(-1).font_style = :bold
 table.row(-1).background_color = "EEEEEE"
 table.column(-2..-1).align = :right
end

doc.move_down(40)

doc.formatted_text(
 [{text: "Please transfer the money to the following bank account:\n"},
 {text: "IBAN: ", styles: [:bold]},
 {text: "AT65 1234 1234 5678 9012 3456, "},
 {text: "BIC: ", styles: [:bold]},
 {text: "ABCDAT12345\n"},
 {text: "Thank you for choosing us!", styles: [:italic], size: 8}],
 align: :center
)

doc.render_file("invoice-prawn.pdf")

And here is the HexaPDF code with its result:

require 'hexapdf'

composer = HexaPDF::Composer.new(skip_page_creation: true)
composer.page_style(:default, page_size: :A4) do |canvas, style|
 box = canvas.context.box(:media)
 canvas.save_graphics_state do
 canvas.fill_color("77C3EC").
 rectangle(0, 0, box.width, 50).
 rectangle(0, box.height - 50, box.width, 50).
 fill
 end
 style.frame = style.create_frame(canvas.context, 72)
end
composer.style(:base, font: "Helvetica", font_size: 12, line_spacing: 1.2)

composer.new_page
composer.text("HexaPDF Example Inc.\nGarnish Street 3a\n4567 New South East\nWorld",
 width: 150, height: 100, padding: 5, border: {width: 1},
 position: :float, align: :right)

composer.text("Customer Here\nAvailability Arcarde 1\n 8901 Old North West\nMoon",
 width: 150, height: 100, padding: 5, border: {width: 1})

composer.text("Invoice 1234", font_size: 24, margin: [40, 0])

invoice_data = [
 ["Item", "Amount", "Total Price"],
]
1.upto(10) do |i|
 invoice_data << ["Super Dooper #{i}", i, "$ #{10*i}"]
end
invoice_data << ["", "", "$ 450"]

composer.table(invoice_data, column_widths: [250, 80], margin: [0, 0, 40]) do |args|
 args[0, 0..-1] = {font: ["Helvetica", variant: :bold], cell: {background_color: "EEE"}}
 args[-1, 0..-1] = {font: ["Helvetica", variant: :bold], cell: {background_color: "EEE"}}
 args[0..-1, 1..-1] = {text_align: :right}
end

composer.formatted_text(
 ["Please transfer the money to the following bank account:\n",
 {text: "IBAN: ", font: ["Helvetica", variant: :bold]},
 "AT65 1234 1234 5678 9012 3456, ",
 {text: "BIC: ", font: ["Helvetica", variant: :bold]},
 "ABCDAT12345\n",
 {text: "Thank you for choosing us!", font: ["Helvetica", variant: :italic], font_size: 8}],
 text_align: :center
)

composer.write("invoice-hexapdf.pdf", optimize: true)

Short comparison:

	
 The use of the HexaPDF::Composer#text method makes creating the text boxes with styling for the
sender and recipient rather easy. Prawn’s bounding boxes are more versatile but also more verbose
when doing this task.

	
 Use of the #formatted_text methods in Prawn and HexaPDF is quite similar which is no coincidence
since the idea was taken from Prawn. What HexaPDF doesn’t allow but Prawn does is using HTML-like
inline formatting.

	
 Both examples use the default method for optimizing the size of the output file. The PDF file
created by HexaPDF is about 11% smaller than the one from Prawn.

Creating a Document

Document creation in Prawn and HexaPDF is very similar. The usual flow is to create a document
instance at the beginning and to write the result at the end:

Prawn
doc = Prawn::Document.new
doc.text("Hello World") # Do something
doc.render_file("hello-prawn.pdf")

HexaPDF
document = HexaPDF::Document.new
document.pages.add.canvas.
 font("Helvetica", size: 10).
 text("Hello World", at: [100, 500]) # Do something
document.write("hello-hexapdf.pdf")

HexaPDF Composer
composer = HexaPDF::Composer.new
composer.text("Hello World") # Do something
composer.write("hello-composer.pdf")

With HexaPDF there are two possible ways when creating a document:

	
 The first one shown creates a new document instance and is intended for small scale creation task.
The reason for this is that it doesn’t really provide convenient document creation facilities out
of the box. Have a look at the Canvas Tutorial to get started.

	
 The second one uses the HexaPDF::Composer class which is similar to Prawn’s document class in
that it provides convenience methods for creating the contents of a document. Since one can access
the document instance, it is also possible to do low-level stuff when needed. This is what one
would usually use. Have a look at the Composer Tutorial to get started.

Additionally, there is also the possibility to use a block form when creating a document:

Prawn
Prawn::Document.generate("hello-prawn.pdf") do |doc|
 # Do something with the document
end

HexaPDF Composer
HexaPDF::Composer.create("hello-composer.pdf") do |composer|
 # Do something with the composer
end

Working with Graphics and Text

When working with Prawn one is really mostly working with the Prawn::Document instance which
is the catch-all object doing everything. It also provides the graphics methods that directly map to
PDF operators as well as some convenience methods for more complex tasks, like drawing circles.

When these methods are invoked, they are applied to the content stream of the current page. Once the
page is changed to a new page, new invocations apply to the new page.

Another thing to take into account is the default use of a document bounding box in Prawn that
influences the position of these operations. To explicitly disable this bounding box one needs to
use the Prawn::Document#canvas method.

HexaPDF has an explicit canvas class that is associated with a page.
Any operation on such a canvas instance will only ever apply to that single page. And there is no
bounding box whatsoever; so all coordinates are relative to the page’s origin at the bottom left.
The canvas methods are intentionally low-level as this class should just be a thin layer of
convenience methods above the respective PDF operators.

The HexaPDF composer class provides high-level methods for working with text, images, … and is
more in line with what one would expect coming from Prawn. The current canvas object can be accessed
via HexaPDF::Composer#canvas and through this all graphical operations are available.

The following lists show the HexaPDF equivalents of common operations:

	Basic path construction methods directly supported by PDF
	
 doc.move_to, doc.line_to, doc.curve_to, doc.rectangle

 canvas.move_to,
canvas.line_to,
canvas.curve_to,
canvas.rectangle
canvas.close_subpath
canvas.end_path

 These methods are basically the same in Prawn and HexaPDF but have slightly different interfaces.
E.g. doc.curve_to uses a :bounds argument where as canvas.curve_to allows specifying either
of the two bezier points :p1 and/or :p2, for a complete mapping to PDF operators.

	Additional path construction methods
	
 doc.line, doc.vertical_line, doc.horizontal_line, doc.curve, doc.rounded_rectangle,
doc.polygon, doc.rounded_polygon, doc.circle, doc.ellipse

 canvas.line,
canvas.polyline,
canvas.polygon,
canvas.circle,
canvas.ellipse,
canvas.arc
canvas.graphic_object
canvas.draw

 HexaPDF also supports rounded variants of rectangles and polygons, just provide the radius
argument to the methods.

 The #arc method works similar to #curve_to but is actually implemented in a separate class as
a so called graphic object. These graphic objects provide an
easy way to extend the available shapes. Built-in are, for example, implementations for arcs in
center and
endpoint parameterizations as well as an
implementation of solid arcs.

	Path painting methods
	
 doc.fill, doc.stroke, doc.fill_and_stroke, doc.close_and_stroke

 canvas.fill,
canvas.stroke,
canvas.fill_stroke,
canvas.close_stroke,
canvas.close_fill_stroke,
canvas.clip_path

 The methods practically work the same in Prawn and HexaPDF. Note that Prawn doesn’t have an
explicit method for defining a clipping path.

 In addition to these methods that directly map to a PDF operator, Prawn also defines helper
methods for applying filling or stroking operations to a single shape, like a rectangle. Since
HexaPDF doesn’t define such methods, one needs to invoke the appropriate path painting method
after drawing the shape(s):

 doc.fill_rectangle([100, 100], 200, 50) # Prawn
canvas.rectangle(100, 100, 200, 50).fill # HexaPDF

	Path property methods
	
 doc.line_width=, doc.cap_style=, doc.join_style=, doc.dash

 canvas.line_width,
canvas.line_cap_style,
canvas.line_join_style,
canvas.line_dash_pattern,
canvas.miter_limit

	Color methods
	
 doc.fill_color, doc.stroke_color

 canvas.fill_color,
canvas.stroke_color

 Prawn supports setting an RGB color using a hex color string and a CMYK color using four values.

 HexaPDF supports those two methods as well as color strings of the form ‘RGB’ (in addition to of
‘RRGGBB’), three values for an RGB color, CSS Color Module Level 3 color names and one value for
grayscale colors.

	Canvas transformation methods
	
 doc.translate, doc.rotate, doc.scale

 canvas.transform,
canvas.translate,
canvas.scale,
canvas.rotate,
canvas.skew

	Text drawing and positioning methods
	
 doc.cursor, doc.move_cursor_to, doc.move_down, doc.move_up, doc.pad_top,
doc.pad_bottom, doc.draw_text, doc.text, doc.text_box, doc.formatted_text,
doc.formatted_text_box

 canvas.begin_text,
canvas.end_text,
canvas.text,
canvas.show_glyphs,
canvas.show_glyphs_only,
canvas.text_cursor,
canvas.move_text_cursor,
canvas.text_matrix

 composer.x,
composer.y,
composer.text,
composer.formatted_text

 Prawn has the notion of a cursor which is the current vertical position on a page. Most operations
will be done at the current cursor position, with the horizontal position being the left side of
the current bounding box. HexaPDF’s canvas object has no notion of a cursor but the composer has
something similar, exposed through the composer.x and composer.y methods. These coordinates
indicate the position of the next box placement.

 Most of the text drawing methods of Prawn support various options like :character_spacing to
style the text itself. It is also possible to use HTML-like inline formatting tags. The only real
low-level method for text output is doc.draw_text.

 HexaPDF canvas’ methods are intentionally low-level to allow the full spectrum of PDF
functionality. One would normally only use canvas.text or the high-level facilities provided by
the composer and its associated classes.

	Text property methods
	
 doc.font, doc.font_size, doc.default_leading, doc.text_rendering_mode

 canvas.font,
canvas.font_size,
canvas.character_spacing,
canvas.horizontal_scaling,
canvas.text_rise,
canvas.word_spacing,
canvas.leading,
canvas.text_rendering_mode

 While HexaPDF supports text properties on the canvas class using dedicated methods, Prawn mostly
supports them through options passed to e.g. doc.text. This way kerning, character spacing,
leading and text color can be specified.

 When using the HexaPDF::Composer class and its box system, styling of text works through an
explicit style object of class HexaPDF::Layout::Style. Such a style object can be applied to a
whole text box (e.g. for text alignment, padding, margin, border, …) as well as to text
fragments (e.g. for font, text color, character spacing, …).

	Other methods
	
 doc.save_graphics_state, doc.restore_graphics_state, doc.transparency, doc.image

 canvas.save_graphics_state,
canvas.restore_graphics_state,
canvas.opacity,
canvas.rendering_intent,
canvas.image,
canvas.xobject,
canvas.marked_content_point,
canvas.marked_content_sequence,
canvas.end_marked_content_sequence

 composer.image

Other Prawn Functionality

	Tables (doc.table)
	
 This functionality is not part of Prawn itself but part of the official prawn-table gem.
Creating tables with Prawn is very easy and straightforward, with advanced functionality also
available.

 HexaPDF also has a table box implementation which is quite similar:

 # Prawn
doc.table([['Cell 1', 'Cell 2'], ['Row 2 Cell 1', 'Row 2 Cell 2']])

HexaPDF
composer.table([['Cell 1', 'Cell 2'], ['Row 2 Cell 1', 'Row 2 Cell 2']])

 Both, Prawn and HexaPDF, support defining cell borders and background colors as well as column and
row spans, can selectively apply styling to certain cell ranges, and split the table.

 In addition, HexaPDF’s implementation allows any kind of content in a cell while Prawn is limited
to text, images or sub-tables.

	Column box (doc.column_box)
	
 HexaPDF also has the notion of a column box:

 # Prawn
doc.column_box([0, doc.cursor], columns: 2, width: doc.bounds.width) do
 doc.text("Some content here")
end

HexaPDF
composer.column(columns: 2, gaps: 10) do |column|
 column.text("Some content here")
end

 The column box works like any other box. It can use position: :flow for using the shape of the
current frame instead of just a rectangular region. And it can make all column heights (roughly)
equal if specified to do so.

	Repeatable content (doc.repeat)
	
 This can be done in HexaPDF by iterating over the pages, getting their canvas objects and drawing
on them:

 # Prawn
doc.repeat(:all) do
 doc.draw_text("All pages", at: [0, 0])
end

HexaPDF
document.pages.each do |page|
 page.canvas.text("All pages", at: [0, 0])
end

 Granted, this doesn’t look as nice but it allows for more flexibility. Want to put that repeated
content into the background? Use the underlay canvas.

	Stamps (doc.create_stamp, doc.stamp, doc.stamp_at)
	
 These are just Form XObjects and those are directly supported by HexaPDF:

 # Prawn
doc.create_stamp("pdf") do
 doc.draw_text("PDF software", at: [50, 0])
end
doc.stamp_at("pdf", [200, 100])

HexaPDF
stamp = document.add({Type: :XObject, Subtype: :Form, BBox: [0, 0, 100, 50]})
stamp.canvas.text("PDF software", at: [0, 0])
canvas.xobject(stamp, at: [200, 100])

HexaPDF Composer
stamp = composer.create_stamp(100, 50) do |canvas|
 canvas.text("PDF software", at: [0, 0])
end
composer.image(stamp)

 The HexaPDF::Composer#create_stamp method allows creating such stamps but currently only
provides a canvas to draw on (and not a composer-like interface).

	Document encryption
	
 Encrypting a document in Prawn (doc.encrypt_document) is possible but should not be done. The
reason for this is that it only allows for a very weak encryption scheme (40bit RC4).

 In contrast, HexaPDF supports all standard encryption schemes, up to the latest one from PDF 2.0
(AES 256bit):

 # Prawn
doc.encrypt_document(user_password: 'foo')

HexaPDF
document.encrypt(user_password: 'foo')

	Document outline
	
 Prawn supports defining a document outline (a.k.a. bookmarks) for a document.

 This can also be done by HexaPDF. Additionally, it supports setting the text color for an outline
item as well as whether the text should appear in bold and/or italic, and actions instead of
destinations are also supported.

 # Prawn
5.times { doc.start_new_page }
doc.outline.define do
 section("Section 1", destination: 1) do
 page(title: "Page 2", destination: 2)
 page(title: "Page 3", destination: 3)
 section("Section 1.1") do
 page(title: "Page 3", destination: 4)
 end
 end
end

HexaPDF
5.times { document.pages.add }
document.outline.add_item("Section 1", destination: 0) do |sec1|
 sec1.add_item("Page 2", destination: document.pages[1])
 sec1.add_item("Page 3", destination: 2)
 sec1.add_item("Section 1.1", text_color: "red", flags: [:bold]) do |sec11|
 sec11.add_item("Page 4", destination: 3)
 end
end

Prawn functionality not yet supported in HexaPDF

There are some things that are not yet supported in HexaPDF via convenience methods:

	
 Bounding boxes (doc.bounding_box, doc.span, doc.indent). This functionality will most
probably not be incorporated into HexaPDF in this way due to a different approach in document
layouting using the HexaPDF::Composer class and the box system.

	
 Gradients (doc.fill_gradient, doc.stroke_gradient)

	
 Soft masks (doc.soft_mask)

	
 Grids (doc.define_grid, doc.grid)

HexaPDF functionality not supported in Prawn

Since HexaPDF is a full-blown PDF library, it can do many more things than just creating a document,
for example:

	Advanced boxes
	
 In addition to the column box HexaPDF also supports bullet and
numbered lists.

	Existing PDF file as template
	
 Granted, there is prawn-template but it is very restricted in which files it can load/work with.
Since HexaPDF is a fully-featured PDF library it can load any PDF file (even most damaged ones) as
template and add content.

	Advanced file compression
	
 HexaPDF is built to create small files by default. The additional optimize: true option when
writing a document activates some more features to achieve even better results.

 Compared to Prawn the PDF files created by HexaPDF are about 15% to 25% smaller.

	Interactive forms
	
 HexaPDF integrates functionality for the creation and pre-rendering of interactive forms a.k.a.
AcroForms. This functionality is not yet integrated into the composer but can manually be combined
with it.

 See the topic “Interactive Forms” and the interactive form
example for what’s possible.

	Digital signatures
	
 HexaPDF supports adding one or more digital signatures to a document. Such signed documents will
be visually flagged in supported PDF readers.

 See the topic “Digital Signatures” and HexaPDF::DigitalSignature::Signatures#add for more
information on this.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

