

 HexaPDF

 Menu

 HomeExamplesDocsCodeNews

 Home » Docs » Document Creation » Document Layout

 	Getting Started
	Basics
	Document Creation	Introduction
	Document Layout 	Introduction
	Layout Class Overview
	Boxes for Content
	Frames for Layout
	Fitting Boxes into Frames
	Convenience Interface
	All-in-one Document Composition

	Canvas Tutorial
	Composer Tutorial
	How-tos
	Migrating from Prawn

	Metadata
	Outline / Bookmarks
	Interactive Forms
	Optional Content / Layers
	Encryption
	Digital Signatures
	

	API Reference
	hexapdf CLI Manual
	Benchmarks
	Changelog
	Implementation Status

 	Introduction
	Layout Class Overview
	Boxes for Content
	Frames for Layout	Frame Shape
	Box Placement

	Fitting Boxes into Frames
	Convenience Interface
	All-in-one Document Composition

Document Layout

The automatic document layout feature of HexaPDF allows one to easily create complex documents. It
works by first defining the space where the content should be placed and then adding content boxes.
The layout engine places the boxes into the space according to the their position information and
allows, for example, for flowing text around other content.

Introduction

Defining the contents of a PDF document works a bit differently than what one is used to from word
processors like LibreOffice Writer.

Word processors usually store the contents, being text, images, graphics or other things, as is
together with styling information like font, font size, position information, border style and so
on. The word processor itself is responsible for laying out the content according to this
information when a file is opened. This is also the reason why different word processor applications
might display files differently, for example, if they are not 100% compatible with the used file
format.

In contrast to this, the contents of a PDF document is stored already layed out. For example,
text is not stored as Unicode text but as glyph identifiers together with the exact position for
each glyph. A PDF viewer takes this information and just renders this content, without doing any
layouting at all. This is still quite a complex task but it ensures – generally – that the display
of a PDF document is the same across different PDF viewers.

Due to this difference layouting of PDF content is the responsibility of the PDF creation software.

Every PDF creation software can do the easy graphics and text operations that map directly to PDF
operators, like showing text at a certain position. More complex document layout needs additional
work like line wrapping algorithms, hyphenation algorithms, flowing text around other content and
more.

HexaPDF is naturally able to do the basic document creation tasks. These can be done using the
HexaPDF::Content::Canvas class which also provides basic text output. The complex tasks are
handled by the classes in the HexaPDF::Layout module.

Most classes in the HexaPDF::Layout module are completely decoupled from the PDF-specific parts of
HexaPDF. This is because the PDF parts only come into play once text and graphics have been properly
laid out and need to be drawn on a canvas.

Layout Class Overview

The main classes used by the layout engine are

	
 HexaPDF::Layout::Box and its subclasses for encapsulating content and defining how to fit, split
and draw that content,

	
 HexaPDF::Layout::Style for encapsulating all the styling information for boxes (and some other
classes),

	
 HexaPDF::Layout::Frame for providing the space where to place the boxes, and

	
 HexaPDF::Layout::BoxFitter for fitting boxes into one or more frames using their style
information.

These classes can either be used directly or through HexaPDF::Document::Layout which provides a
convenience interface for working with them. However, they are most commonly used through
HexaPDF::Composer which ties them neatly together and provides the easiest interface for users.

The inner workings and main features of the mentioned classes are discussed below.

Boxes for Content

Boxes encapsulate content and know how to fit the content into a frame, how to optionally split the
content and how to draw the content.

Examples of box classes that directly encapsulate content are HexaPDF::Layout::TextBox for drawing
text and HexaPDF::Layout::ImageBox for drawing an image. Additionally, there are box classes that
act as containers like HexaPDF::Layout::ListBox and HexaPDF::Layout::ColumnBox. Those container
classes internally use Frame and BoxFitter objects to do the actual layouting.

Each box has at least the following attributes:

	width, height
	
 They define the width and height the box should have. A value of zero means that the value of the
attribute is determined during the layouting process. For example, if an image box has a set width
but a height of zero, the height will be calculated so that the aspect ratio of the image
persists.

	style
	
 The style of a box is an instance of HexaPDF::Layout::Style and encapsulates all the style
information for that box. Examples of style attributes are position (describing how to place the
box in the frame) and font_size.

The base class HexaPDF::Layout::Box already provides some useful properties for all box classes,
for example the ability to draw a background and border.

By encapsulating content into a box class and not drawing it directly onto the canvas, the drawing
logic becomes easily re-usable. Additionally, the box instances can be used together with frames for
automatic positioning.

Therefore it is best to create new box subclasses whenever something needs to be drawn, even if only
one time.

Frames for Layout

A HexaPDF::Layout::Frame defines the space where content boxes can be placed and provides the
methods to place them. Once placed their occupied area (which is different for different types of
positions) is removed from the available space, making the frame ready for the next box placement.
Note that placing a box in a frame doesn’t necessarily mean actually drawing the box, e.g. when
frames are used inside container boxes.

Frame Shape

The shape of a frame is initially rectangular. Once boxes are fitted and drawn inside the frame,
its available space gets reduced. Due to this the shape of a frame may be a polygon set consisting
of arbitrary rectilinear polygons. For example, if a box is placed using absolute coordinates, a
hole in the shape may appear.

The frame’s shape is used to determine the current placement position (available through the
HexaPDF::Layout::Frame#x and HexaPDF::Layout::Frame#y attributes). Together with the
HexaPDF::Layout::Frame#available_width and HexaPDF::Layout::Frame#available_height attributes
they define a rectangular region inside which the next box is placed.

There is one exception though: If the to-be-placed box is to be flown around content (style property
position=:flow), this rectangular region is ignored and the frame’s shape is directly used to
determine where to place the box’s content.

Box Placement

The general work flow for placing a box in a frame is like this:

	Fitting the box
	
 The first step is fitting the box using the HexaPDF::Layout::Frame#fit method. This method in
turn calls HexaPDF::Layout::Box#fit and lets the box decide whether it fits or not. The result
of Frame#fit is a HexaPDF::Layout::Frame::FitResult object, holding the information about
whether fitting was successful, where the box in the frame is placed and which area needs to be
removed from the frame.

 If the box fits at the current position, it can either be drawn directly afterwards or the fit
result stored for later use.

	Handling a negative fit result
	
 There are two reasons for a box not fitting at the current position:

 	The box is too big to completely fit but a part fits.
	The box doesn’t fit at all.

 To determine whether it is 1. or 2. the HexaPDF::Layout::Frame#split method needs to be called.
The result is an array where the first item is the current box or nil and the second item is the
split-off box or nil.

 If the first item is not nil, it means that at least a part fits and that the box can be drawn
with the already available fit result object. The second item is then nil if the box fit
completely (and a call to #split was not really necessary) or another box containing the content
that didn’t fit.

 In case the first item is nil, the box didn’t fit at all and is returned as the second item. In
this case the HexaPDF::Layout::Frame#find_next_region method may be called to determine a new
region for fitting the box and the process is repeated from the top.

	Drawing the result and/or removing the box’s occupied area
	
 Once a successful fit result has been obtained, the HexaPDF::Layout::Frame#draw method can be
called to draw the box and remove the occupied area of the box from the frame’s shape.

 Alternatively, the HexaPDF::Layout::Frame#remove_area method is called to just remove the box’s
occupied area from the frame’s shape without drawing the box. This is useful, for example, when
boxes are fitted into a temporary frame inside a container box.

To have the most control over this process, one can use the frame class directly. However, in most
cases it is easier to use the BoxFitter class.

Fitting Boxes into Frames

The HexaPDF::Layout::BoxFitter class encapsulates the default logic for laying out boxes into one
or more frames. Due to this it is used by container boxes like the HexaPDF::Layout::ColumnBox for
doing the actual layouting work.

All one needs to do is to provide the frames and then use the #fit method to fit the boxes, one
after the other. The logic for placing the boxes uses the flow described above,
adjusted for use with multiple frames:

	
 Fit the box into the current position of the current frame.

	
 If it fits, the area occupied by the box is removed from the frame and the fit result stored.

	
 If it doesn’t fit, the box is split.

	
 If a part now fits, its area is removed from the frame and the fit result stored. If there is a
remaining box, the process is started with it again. Otherwise all is done.

	
 If no part of the box fits, a new region of the frame is determined and the process started again.

	
 If no space is left on the current frame, the next frame is selected and the process started
again. However, it there is no next frame, the box (and any other after it) can’t be fitted
anymore and is stored separately from the fit results.

After the #fit method is called for every box, the stored fit results can be used to draw the
boxes. And the stored remaining boxes can be used during a box splitting operation.

Convenience Interface

Though the layout classes can be created directly, it is easier to use the convenience interface
provided by HexaPDF::Document::Layout. It can be accessed through HexaPDF::Document#layout.

This interface provides a central store for styles. Through them it is easy to define document wide
styles for paragraphs, headings, and so on. Those styles can then be assigned to boxes created
through the interface.

There are a few special methods for creating boxes, like HexaPDF::Document::Layout#text_box, and a
general method HexaPDF::Document::Layout#box. The latter one uses the configuration option
layout.boxes.map to create box instances based on registered box names. This feature allows one to
create and register custom box classes and use them like the built-in ones.

All-in-one Document Composition

All the classes discussed above focus on special aspects of the layouting work. The
HexaPDF::Composer class now ties all the classes together to provide a very easy to use interface
for creating whole documents:

require 'hexapdf'

HexaPDF::Composer.create('output.pdf') do |composer|
 composer.text("Hello World", font_size: 20)
 composer.image("some image.jpg", text_align: :center, width: 300)
end

The composer uses the central style store provided by HexaPDF::Document::Layout and also delegates
the box creation to that class.

In addition to automatically laying out the given boxes and drawing them, it creates new pages when
needed. This allows one to just add all the boxes without too much thinking about how and where the
boxes will fit.

 © Thomas Leitner
 | gettalong/hexapdf
 | Legal Notice
 | Privacy Policy

